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Abstract. When using an evolutionary algorithm on an unknown problem, prop-
erties like the number of global/local optima must be guessed for properly pick-
ing an algorithm and its parameters. It is the aim of current paper to put forward
an EA-based method for real-valued optimization to provide an estimate on the
number of optima a function exhibits, or at least of the ones that are in reach for a
certain algorithm configuration, at low cost. We compare against direct clustering
methods applied to different stages of evolved populations; interestingly, there is
a turning point (in evaluations) after which our method is clearly better, although
for very low budgets, the clustering methods have advantages. Consequently, it is
argued in favor of further hybridizations.

Keywords: Multimodal optimization, basins of attraction, function optimization,
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1 Introduction

The fitness landscape of an optimization problem that is considered for solving by
means of evolutionary techniques is almost always completely unknown for the user.
Exceptions are represented by the optimization of two- and three-dimensional functions
that can be plotted in order to have an idea of the difficulty of the problem at hand. How-
ever, for the real-world tasks, one hopes for a unimodal problem, but usually expects
that the landscape contains some local optima and one or more global ones. In this re-
spect, it would be very useful to know in advance how multimodal the fitness landscape
of the problem is, as this could help decide which optimization algorithm to choose or
even set appropriate values for its specific parameters.

The aim of this paper is to design such a tool, also based on an evolutionary al-
gorithm (EA), for the acquisition of data on the profile of the fitness landscape for
problems defined over real-valued domains. Instead of obtaining a set of best solutions
as usually pursued by contemporary niching EAs, we strive for obtaining an estimate on
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the number of optima an objective function possesses. One could imagine doing so by
simply applying clustering techniques, but even these can only detect different clusters
representing optima after somehow progressing towards good regions (as e.g. demon-
strated in [1]); a random sample is hard to cluster meaningfully. In order to move into
promising areas, some optimization method has to be applied before. However, march-
ing too far e.g. by means of an EA implies the danger of missing several optima on
which the subpopulations go extinct. Additionally, randomly initialized recombinative
EAs have a natural tendency to contract the population near the search space center, as
it has the lowest average distance to all individuals.

We must therefore find a good compromise between basin maintenance, conver-
gence into basins, and further exploration. We track this goal by addressing the topology
of the fitness landscape and the preservation of the fittest individuals, in a novel tech-
nique tailored after [2]. With this approach at hand, we compare against the straightfor-
ward clustering means – chosen as either the state-of-the-art Jarvis-Patrick or the more
recent, effective Nearest-Better grouping – with a prior canonical EA for the generation
of samples and a final unification of clusters based on the space topology. It goes with-
out saying that the parametrization of any EA based method plays a decisive role for
the ability to discover distinct optima and must be taken into account when fitting it for
delivering estimates on the multimodality of unknown problems. Different parametriza-
tions will influence the reachable search space region of the EA. Consequently, there
are no means to perform estimations over areas never visited.

The paper is organized as follows. §2 emphasizes the circumstances and the argu-
ments for the development of such an instrument, while §3 describes the Topological
Multimodality Estimator (TME). Conducted experiments to validate and investigate the
estimations of proposed technique are outlined in §4; the two clustering algorithms also
examine test landscapes and results of expected/found optima of all three are put side
by side. Finally, conclusions of the experimentation and outcome are reached.

2 Context and Motivation

When a less-known multimodal problem is considered, one may either resort to iterated
local search techniques (ILS) [3] or rely on a usually radius-dependent niching EA for
separating the resembling individuals into different subpopulations (species); in the best
case, each one of these would track a different optimum and the number of subpopula-
tions equals the number of optimal solutions. When such an EA is employed, the main
concern lies in determining an accurate value for the radius parameter that would help
separating the individuals into subpopulations in the most advantageous manner.

Among the radius-related EAs, the most commonly referred is the niching tech-
nique of Goldberg and Richardson [4]; for the last two decades, it has represented a
source of inspiration for the development of many radius-based EAs in the vein of it
[5], [6]. Within this niching technique, individuals are grouped into species by a given
radius, so that no distance inbetween them is larger. As previously stated, the value to
be chosen for the radius parameter directly depends on the fitness landscape, i.e. on the
problem considered for solving. Selecting an appropriate value for the radius assures
accurate results. Deb and Goldberg [7] proposed one solution for computing the value
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for the radius threshold (σshare) that leads to the formation of subpopulations; this has
afterwards been embraced by most of the researchers dealing with such parameters.
Knowing the number of optima that are to be found, N , and being aware that each
niche is enclosed by an n-dimensional hypersphere of radius r, the niche radius σshare

can be estimated as σshare = r
n√

N
.

However, in most of the cases, especially for real-world applications, one usually
cannot know in advance the number of optima. Additionally, there is no guarantee that
basins of attraction are formed like regular hyperspheres. Methods for approximating
the number of solutions for combinatorial optimization problems are described e.g. in
[8]. For problems with continuous domain, by investing a small amount of fitness eval-
uations and using the tool that we put forward, one could have an approximation for N ,
or at least for the fraction of N that is found relatively often. We assume that this reach-
able fraction of optima heavily depends on the configuration of the underlying EA, so
that it is larger for more explorative settings. For any clever technique, a higher number
of fitness evaluations invested shall lead to a more accurate estimation, as is the case for
the proposed method. Moreover, the present approach also provides approximations of
the detected optima, especially for relatively high budgets of evaluations.

3 Topological Multimodality Estimator

As the suggested method represents a pre-processing tool, it shall provide information at
a very low cost, i.e. with a reduced budget of fitness evaluations. In order to achieve this
aim and, at the same time, explore the search space thoroughly, we utilize a variable
sized population: We start with a large population and subsequently continue solely
with the most prolific individuals that belong to different basins of attraction. Thus, the
number of consumed fitness evaluations is kept low. The population size is allowed to
raise again during reproduction, but, unless new basins of attraction are discovered, it
is again reduced to a minimum. Another important constraint that had been taken into
account is that the technique did not have to require additional parameters (as compared
to a canonical EA) that directly depend on the considered problem. In order to avoid the
use of a threshold (radius) for subpopulation differentiation, we exploit the topology of
the fitness landscape, separating us from simple clustering approaches.

The algorithm begins with the generation of random individuals within the problem
domain. A method for detecting whether two individuals belong to the same basin of
attraction or not is succeedingly used for selecting the fittest individuals within each
of the detected attractors. The procedure was introduced in [9] and called hill-valley;
taking into account two individuals, it verifies whether there exists either a hill (in this
case, they track the same peak) or a valley (different peaks) inbetween, within the fitness
landscape. The method is herein renamed detect-multimodal for reasons of simplicity
and is described below. From this point on, the search continues only with the fittest
individuals that undergo recombination and mutation; obtained offspring are checked
to see whether they belong to different basins of attraction than the ones already discov-
ered and the population is updated by retaining the best individual within each attractor.
Evolution continues for several cycles until the predefined budget is consumed.
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3.1 The Detect-Multimodal Mechanism

The routine takes two individuals (points) as input, checks their relative position within
the search space and returns a boolean value, which specifies whether there is a valley
between them in the fitness landscape or not: In the latter circumstances, the conclusion
is that they climb different hills. In order to reach that decision, a set of interior points
between the twois generated. If the fitness of all these is higher than the minimal fitness
of the two tested individuals, it is concluded that they track the same optimum. Contrar-
ily, if there exist such a point whose fitness is smaller than the minimal fitness of the two,
then it is assessed that they follow different peaks. To conclude, the detect-multimodal
method verifies the assumption that two individuals track the different optima and re-
turns true if so and false if they follow the same peak [9]. The only required parameter
refers to the number of gradations (interior points) taken into account. In all undertaken
experiments of current paper, the gradations are values taken equidistantly from the in-
terval [0,1]. The higher the number of interior points, the more precision the outcome
of the detect-multimodal mechanism has.

3.2 TME Mechanics

TME starts with the initialization of a uniformly randomly generated set of individu-
als. From this collection, the fittest individual from each different basin of attraction is
selected. The chosen individuals undergo an iterative process that includes the follow-
ing steps. Recombination is applied to the selected pool of individuals: All offspring
obtained after recombination are added to the current population which is subject to
mutation. The membership of all offspring to the currently detected basins of attraction
is verified. For each discovered basin, only the fittest individual is kept. The individuals
located in previously unseen basins are also preserved, once more only the fittest one
per basin. The selection of the fittest individual within every attraction basin uses the
detect-multimodal procedure for distinguishing the different attractors (Algorithm 1).
The entire population is sorted decreasingly according to fitness. The fittest individual
in the population represents a seed. Each individual in the sorted series is considered in
turn and checked against the currently found seeds to see if they track distinct optima. If
it follows a different peak than all the others that have been tracked until the present mo-
ment, then the individual represents a new seed. The recorded seeds (Seeds) are taken

Algorithm 1 Seeds identification
Sort population P decreasingly according to fitness;
Seeds = {P1}; //the fittest individual automatically becomes a seed
for i = 2 to n do

Find closest (highest probable) s ∈ Seeds such that detect-multimodal(Pi, s) = false;
if no such a seed s then

Seeds = Seeds ∪ {Pi}; // Pi is a seed
end if

end for
return the Seeds set
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Algorithm 2 Integration of the newly created individuals
for each offspring x in X do

Find its closest individual s in Seeds for which detect−multimodal(x, s) = false;
if s exists then

Seeds = (Seeds\{s}) ∪ {fitter(x, s)}; // x and s fight for survival
X = X \ {x};

end if
end for
Find the fittest free individual x in X;
NewSeeds = {x}; // x is a new seed
while there are still individuals in X do

For fittest x∈X find closest s ∈NewSeeds such that detect−multimodal(x, s) = false;
if no such seed s then

NewSeeds = NewSeeds ∪ {x};
end if
X = X \ {x};

end while
Seeds = Seeds ∪NewSeeds; // individuals that follow other peaks are added to population
return the Seeds set with the integrated individuals

one by one in terms of Euclidean proximity from the considered individual. It is more
likely that the individual tracks the same peak as the nearest seed and, consequently, it
is verified, by distance rank, against the closest ones to avoid unnecessary calls of the
detect-multimodal procedure.

The selected set of seeds then enters the evolutionary cycle. Thus, the size of the
population is drastically diminished in order to reduce the fitness evaluation cost. Re-
combination takes place and all resulted offspring are appended to the current popula-
tion. Hence, the space between the currently tracked optima is explored. Now the whole
population undergoes mutation. All obtained offspring from either of the two variation
operators are checked against the parent population with two purposes. If an offspring
tracks an optimum that has already been followed by one closest individual from the
parent population, i.e. the two belong to the same basin of attraction, then only the fitter
of the two is kept in the seeds population for the next generation. Secondly, when an
offspring lies within a basin of attraction that has not been previously tracked by any
other individual from the parent population, it shall be added to the seeds population of

Algorithm 3 Topological Multimodality Estimator
Initialize population and identify the seeds Seeds (Algorithm 1);
while stop condition is not met do

Apply mating selection to Seeds;
Apply recombination to Seeds and obtain the set of offspring X;
Apply mutation to Seeds and X and append all obtained offspring to X;
Integrate the newly created individuals X to Seeds (Algorithm 2);

end while
return the cardinal of Seeds and the actual solutions in Seeds
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the next generation, given that there are no solutions between itself and other descen-
dants that lie within the same basin of attraction (Algorithm 2). NewSeeds represents
the set of seeds that are detected in the current generation. Each time a new seed is
considered for adding, it is checked against the other solutions in the NewSeeds set.
Finally, NewSeeds is appended to the Seeds set to form the population that will enter
the next generation. The steps of the entire approach are outlined in Algorithm 3. Note
that with TME, basin identification in the worst case requires O(|P |2) extra evaluations
(|P | stands for population size). However, this happens only if every newly produced
individual is outside all yet identified basins. Additionally, the population is kept small
by deleting all non-seed individuals inside a basin. Practical experience shows that with
these measures, the process requires rather O(|P |) evaluations for basin testing.

4 Experimental Investigation

Experimentation aims to validate the proposed technique against functions whose num-
ber and location of optima is known and compare the performance to that of the cheap
alternative of direct clustering on the search space. The Waves function (F1, 10 op-
tima) is asymmetric and has some peaks difficult to find as they lie on the border or
on flat hills. The Six-Hump Camel Back function (F2, 6 optima) exhibits two local
optima that are not really higher than their neighboring regions and thus can easily be
missed. Additionally, we employ a highly multimodal function (Rastrigin, F3) as model
for problems for which neither location nor number of optima is known (it is clear that
these are easy to compute in this case). Here, the global optimum is surrounded by a
large number of close local optima with small relative differences in their values.

F1(x, y) = (0.3x)3 − (y2 − 4.5y2)xy − 4.7cos(3x− y2(2 + x))sin(2.5Πx)),
−0.9 ≤ x ≤ 1.2,−1.2 ≤ y ≤ 1.2

F2(x, y) = −((4− 2.1x2 + x4

3 )x2 + xy + (−4 + 4y2)y2),
−1.9 ≤ x ≤ 1.9,−1.1 ≤ y ≤ 1.1

F3(x) = −(10·n +
∑n

i=1(x
2
i − 10 ∗ cos(2·Π·xi))), −5.12 ≤ xi ≤ 5.12.

Two conceptually different nearest neighbor clustering approaches were taken into
account for comparison: The Jarvis-Patrick clustering method and the recently proposed
Nearest-Better algorithm [10]. A canonical EA evolves a population of individuals for a
number of fitness evaluations and clustering is subsequently applied to the final genera-
tion. The estimated number of basins is given by the resulting number of clusters, while
the approximate optima are given by the prototypes. The Jarvis-Patrick (JP) algorithm
[11] considers a list of J nearest neighbors—in terms of (Euclidean) distance—for each
individual. Every point in the search space is verified in turn against all others: If the two
are contained in each other’s neighbor list and have at least K neighbors in common,
they are placed in the same cluster. A point cannot belong to more than one cluster.
Moreover, if x and y meet the condition to belong to the same cluster and x and z
also pass the two criteria, all three will be clustered together, indifferent of the fact of
whether y and z also respect the conditions. Finally, the prototypes are determined as
the fittest individuals in each cluster. The drawback of this very efficient algorithm con-
sists in the two parameters J and K that results are very dependent upon. The recently
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introduced Nearest-Better (NB) clustering mechanism relies on the connection to one
immediate neighbor for each point, which is also better in terms of fitness—thus, topo-
logical information is included in addition to location of points. It essentially assumes
that the best individuals in different attraction basins are much further away from each
other than the average distance of all individuals to their nearest better neighbors. Ev-
ery individual connects to its nearest better neighbor (in terms of Euclidean distance
once more). The longest edges—those higher than φ·mean(lengths of all edges)—are
removed and the prototypes for each cluster are represented by those individuals that
do not connect to others. This approach possesses only one additional parameter to be
tuned, with 2 being a good default value according to [10].

Research Questions: How do TME and JP/NB compare in terms of performance on
functions with known number of solutions? Can we find a correlation of results obtained
for the same configuration but in different runs to estimate the ’reachable’ optima?

Pre-experimental Planning: The two selected clustering techniques are utilized on
the test cases in advance in order to get acquainted to their behavior. The preceding
canonical EA also stops after a fixed number of fitness evaluations. Comparing the
number of detected optima against the number of clusters lead to the insight that the
two methods largely overestimate the number of attraction basins for both functions,
with an advantage on the NB side which is less deceiving. The number of clusters was
approx. 3 times higher than the amount of optima. The overrating clustering action of
the two techniques had to be resolved, in order to set an equal rival to suggested TME.
Ergo, we applied the detect-multimodal mechanism with a limited number of interior
points (set to 2 in the undertaken experiments) after clusters are determined, in order to
unify groups within the same basin. The fitness evaluations employed in this final step
are also counted within the totally allowed value.

Task: Directly compare the number of attraction basins found (F1 and F2) or reach-
able basins estimated (F3) by TME and JP/NB clustering. Measure the ability of the
techniques to find the same solutions in multiple runs of the same parameter design.

Experimental Setup: The same budget of fitness evaluations was used both for TME
and JP/NB, ranging from 200 to the maximum 2000. The values for all parameters were
generated using a Latin Hypersquare Design, i.e. 30 space-filling configurations were
produced. The parameters of the evolutionary algorithm were generated within the fol-
lowing intervals for all three methods: Population size is between 2 and 200, mutation
and recombination probabilities between 0 and 1 and mutation strength between 0 and
5. Additionally for the JP method, the values for the two parameters J and K were
both created between 1 and 25 with the constraint that J > K. Plus, as the number of
neighbors cannot be higher than the population size, the latter is between 25 and 200.
The TME technique also makes use of one parameter, which is the number of interior
points considered for the detect-multimodal method. The positive integer is generated
between 1 and 15. In order to evaluate whether a technique tends to find the same optima
in different runs with the same parameter configuration (estimation of reachable optima
number), we conducted the following computations: Within each parameter design, for
every two runs (out of 30 performed here), we use the pair of solution sets A and B for
computing the fraction of commonly found (correlated) peaks d = |A∩B|

|A| , where |A|
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represents the cardinal of the set A. Averaging d/| B | leads us to an estimator for 1/n
and thus for n according to [12]. However, we assume that here n is not the number of
all optima but rather the number of reachable basins for each different configuration.
Note that although used with results from 30 runs here, the estimator shall get stable
already for very small run sets. Otherwise, it would suffice to simply count the number
of optima found within a large number of runs.

Results/Visualization: Table 1 gives the number of optima detected by the three com-
pared techniques on F1 and F2, for the (30 LHD) different algorithm parameter settings.
Best columns refer to the highest average number of optima out of all configurations,
whether average stands for the average of all runs of all configurations. The small dif-
ferences between best and average TME results prove the fact that it is not very sensitive
to the parameter values.

Table 1: Attraction basins found by TME, JP and NB in the best configuration and average over
30 configurations for F1 and F2 with different fitness evaluation budgets.

Fitness F1 F2
evaluation TME JP NB TME JP NB

calls Best Average Best Average Best Average Best Average Best Average Best Average
200 5.96 4.48 8.13 5.15 8.36 5.95 3.4 2.97 4 3.33 4 3.37
500 6.96 5.68 8.2 4.33 8.26 5.16 4.43 3.63 4 2.62 4 2.57

1000 8.1 6.71 8.1 2.68 8.56 3.24 5.16 4.08 3.96 1.75 3.83 1.7
2000 9.33 7.89 2 1.07 2.5 1.21 5.63 4.45 1.93 1.22 1.96 1.24

As for the second part of the experiment, which regards the correlation of basin
sets, when JP and NB were applied for F3 with 5 or more variables, it was found
that for several configurations, in all the 30 repeats, the methods found only different
attraction basins. In such a case, the value for the estimation n is infinity, which is not a
meaningful a priori information about the problem landscape. Consequently, the results
of JP and NB for F3 with 5 or 10 variables are not reported. For F1 with 200 evaluation
calls, NB provides the highest averaged value over all configurations for n, 6.08, while
for TME this is 5.34 and for JP 5.14. The maximum value in one configuration in these
low budget conditions is obtained by NB (8.32). As the number of evaluation calls is
increased, the average value for n puts TME in advantage and lowers the values for the
clustering methods: For 2000 evaluation calls, the average n for TME is 7.98, while
for JP and NB they are 1.26 and 1.4, respectively. The situation is very similar for F2,
where 3.42 is the estimated reachable basin number for NB, 3.28 when JP is employed,
and 3.08 for TME when the lowest budget is used; the value moves up to 4.42 for the
highest budget considered for TME, while it goes down for JP and NB towards 1.92
and 1.88. For F3 (2 var.), TME has a larger set of solutions that are found in multiple
runs, even with 200 evaluations calls: TME has 16.62, NB gives 14.62, while JP has
12.23. The value increases again for TME up to 20.01 for the highest budget, while NB
has 3.74 and JP 2.17, in the same circumstances. In case of 5 and 10 variables, TME
estimates in average 43.42 and 40.21 solutions (highest budget) and drops to 24.2 (5
var.) and to 17.14 (10 var.), respectively (lowest budget). The configurations with the
highest values find n equal to 90.5 (5 var.) and 71.2 (10 var.), while the smallest value
in one configuration is around 9 for both cases.
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Observations: While JP and NB perform very well for a small number of fitness eval-
uations and tend to decrease quality as more are considered, TME goes in the opposite
direction as a higher budget assures significantly better results. JP and NB with the sub-
sequent detect-multimodal manage to overcome the initial overrating. The explanation
for the performance decrease in JP and NB for increased number of evaluations lies in
the fact that the optimization process drives the population towards one or few optima
and, therefore, other local optima are neglected as they remain empty. For both func-
tions F1 (10 optima) and F2 (6 optima), the closest to the correct solution is TME,
when the 2000 evaluation calls are considered. It is interesting to see that JP and NB
come very close the real number of basins when the lowest budget is considered (8.36
out of 10 for F1 and 4 out of 6 for F2). However, it shall also be noted that the differ-
ence from the best configuration to the average over all configurations is very high in all
cases for the clustering techniques, while there exists only a small such difference for
TME. It seems that TME is not very dependent on the values of its parameters, while
for JP and NB they play an important role as wrong configurations lead to poor results.
Discussion: While JP and NB perform better for lower evaluation costs, TME’s ac-
curacy is significantly increased when the evolutionary cycle is prolonged. This is of
course due to the interaction between the basin preservation and detection and explo-
rative phases in TME. In JP and NB, this is inexistent and hence, the underlying EA pro-
duces smaller and smaller basin numbers while the runs progress. Out of the objective
comparison intention of this experiment, further tests were undertaken for TME with a
budget of up to 6000. The solutions quality was gradually increased until it reached 9.9
attraction basins for F1 and all 6 for F2 for the best configuration, in average over 30
repeats. The two presented clustering methods, JP and NB, represent good economical
alternatives for estimating the number of different attraction basins of a fitness land-
scape. However, they strongly depend on the underlying optimization algorithm, so that
providing more evaluations does not result in improvements unless the underlying al-
gorithm itself is explorative and preserving. However, if such means are provided, as in
TME, one gets a much less parameter-dependent and thus robust method, which shall
be the better choice, especially for real-world problems. Nevertheless, for higher di-
mensional spaces, results attest an increased level of parameter-dependency; additional
investigations are necessary to observe what parameter settings make TME efficient.

5 Conclusions and Future Work

An evolutionary technique, Topological Multimodality Estimator, to determine the pro-
file of the fitness landscape for real-valued optimization problems, with respect to a low
budget of evaluation calls, is introduced. A variable sized population to keep only the
most promising solutions for further evolution is thus used. Two improved clustering
methods, applied to the set of solutions of a canonical EA, are considered for direct
comparison on three multimodal functions. For two dimensions and a very low number
of evaluation calls, clustering provided better results. However, when the techniques
are allowed to evolve for more generations, TME results improve, while the quality of
the EA/clustering method combinations is worse – the underlying EA converges to few
attractive regions as it has no means to preserve the already found basins.
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Rethinking the obtained results, the conclusion seems obvious. Simple clustering
methods are cheap and successful especially during the early phases of an optimization,
and explorative methods like TME need more evaluations to obtain comparable results,
but do have a much higher potential; investing more yields more. Hybridization of TME
with one of the clustering methods to eliminate valuable calls of the fitness function,
especially at the beginning of the evolutionary cycle, may be a middle alternative. At
the same time, clustering affects the quality of solutions when the evaluation calls bud-
get is increased; this would be overcome through the replacement of the canonical EA
by the TME engine. Out of the two, NB looks like a better alternative for hybridization,
not only because of the better results, but also for the absence of additional parameters.
A future TME version should also attain information on the sizes of the detected attrac-
tion basins and, finally, the influence of its estimated number of optima on the success
probability/convergence rate of a radius-based search algorithm will be investigated.
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