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ABSTRACT
The performance of niching based or related evolutionary algo-
rithms clearly depends on problem properties as e.g. the number
of local optima of a problem. We assume there must be more such
properties currently not taken into account and, following from
practical experience, suggest two more, namely basin size contrast
(BSC), the size relation of the largest and the smallest basin, and
global to local optima contrast (GLC), the height relation of the
global and an average local optimum. We investigate the effect
of these problem properties on the performance of different basin
identification methods (as subtasks of niching algorithms), namely
nearest-better clustering, detect-multimodal, and Jarvis-Patrick clus-
tering, individually, or in combinations. Employing an existing
problem generator that enables complete control and knowledge of
basins, instances are generated and validated according to prede-
fined property values and the basin identification performance data
is modeled in order to detect similarities that may be interpreted
as effects of the stated properties. We also give recommendations
concerning usage of basin identification methods in different situ-
ations. Our approach is strongly related to the recently suggested
general idea of exploratory landscape analysis (ELA).

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—Global Op-
timization, Unconstrained Optimization; I.2.6 [Artificial Intelli-
gence]: Learning—Knowledge Acquisition; I.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search—Heuris-
tic methods

General Terms
Experimentation, Measurement, Performance

Keywords
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1. INTRODUCTION
When optimizing multimodal blackbox problems, evolutionary

algorithms (EAs) and also other heuristic or deterministic opti-
mization methods are prone to sooner or later end up in a single
basin of attraction which is not necessarily the one carrying the
global optimum. This can only be cured by organizing search in a
way that the EA operates on different search space areas separately
(sequentially or in parallel). This is the fundamental idea of niching
algorithms, and the most developed EAs for real-valued optimiza-
tion (e.g. the CMA-ES presented in [8]) also adhere to this prin-
ciple, although they do not employ spatial separation. Despite the
fact that parallelism is an interesting option for implementing sepa-
rate searches, we completely disregard the timing issue in this work
and concentrate on the space issue only: Where shall the restarts
take place? Basically, two different approaches are possible.

• Performing restarts in random places, e.g. with different
algorithm parameters. The recent CMA-ES variants IPOP-
CMA-ES [3] and BIPOP-CMA-ES [6] are good examples
for this simple strategy. Random restarts require no knowl-
edge of the optimized function and shall be the used if ob-
taining such knowledge proves difficult.

• Dissecting the search space into possible basins of attraction
according to the data collected online and let the optimiza-
tion method work on the basins separately. This approach
is followed by niching algorithms, and there is a plethora
of methods designed for this purpose, possibly starting with
crowding and fitness sharing.

In the following, we concentrate on the niching approach, although
it is more complex and not suitable for all multimodal problems.
E.g., it may be argued that methods relying on distance measuring
will not work well in very high dimensions, as for D � 15, the
contrast between measures dramatically drops [4], and for D →
∞, points in search space are effectively all equally distant from
each other. However, there are many engineering problems with
moderate dimensionality between 5 and 20, where niching should
work well. In the past, many experimental investigations of nich-
ing methods have been performed to a large extent on 1D, 2D
and 3D functions, which has been heavily criticised due to lack
of practical relevance. Interestingly, analysing the results of the
BBOB’09 competition [7]1 shows that behavior of the optimiza-
tion algorithms on 5 to 20 dimensions is relatively consistent [10].
We deduce that this is at least partly caused by the problems which

1results: http://coco.gforge.inria.fr/doku.php?
id=bbob-2009-results, this site also contains the BBOB’10
results which are more complete but qualitatively similar



behave rather similar when the dimension is changed in this range.
For these reasons, we confine our investigation to 5D problems in-
stances only, seemingly the most simple ones with practical rele-
vance and still suitable for niching methods. Note that we do not
advocate niching methods as the only possible optimization tech-
niques for complicated real-world problems, but if niching methods
shall be successfully applied, it is important to answer the where
is elsewhere? question posed by [21] in order to find meaningful
starting places for separate populations.

Among niching methods, we may make the distinction between
implicit and explicit basin identification. The latter means that we
learn where the basins are, which requires to establish a matching
between sampled search points and different basins. Optimization
algorithms may then use this knowledge to start separate parallel
strands of local optimization. Such methods realize the niching
paradigm as stated in [12], adapted from versions defined by other
authors: Niching in EAs is a two-step procedure that a) concur-
rently or subsequently distributes individuals onto distinct basins
of attraction and b) facilitates approximation of the corresponding
(local) optimizers.

Implicit basin identification means that the current population
distributes over different basins, but we do not know the matching
(arguably, this is the case for standard crowding and fitness shar-
ing). The EA may still successfully form separate populations and
thus speed up search, but the algorithm (and the user) is not able to
extract any problem knowledge from the runs. This in turn com-
plicates explaining algorithm performance, as it is difficult to name
reasons for success or failure when it is to a large extent unclear
how algorithm and problem interact.

In the following, we start by envisioning some problem proper-
ties and show how to create instances that respect these properties,
using an already existing problem generator (section 2). After in-
troducing the compared basin identification methods in section 3,
we then perform an experimental study that employs these basin
identification mechanisms and combinations thereof in order to find
relations between their performance (and cost) and the given prop-
erties. This is done in two stages, on randomly generated initial
sample data, and on already developed populations that could oc-
cur after running a few generations (section 4).

We pursue two research questions, namely how the developed
problem properties affect the difficulty of an otherwise fixed prob-
lem, and which of the tested basin identification methods is best
suited to extract basin information out of these problems. This is
novel in different ways, and in some sense more low-level than
other approaches as we do not compare complete algorithms (as
has e.g. been done in [17]) but the base mechanisms of niching
methods. The two problem properties employed for building test
problems are suggested in [13] but have never been investigated
by themselves. [10] found that their role in explaining algorithm
performance on the BBOB test set is limited (where the number of
multimodal problems without global structure is very small), but
practical experience and reports from others (e.g. [19]) tells us that
they a) have some relevance for the performance of algorithms and
b) will also occur in real-world problems. Of course, with show-
ing different performances of basin identification methods on our
designed benchmark problems we cannot prove that it is these prop-
erties that make algorithms better or worse on specific multimodal
problems, neither can we safely assume that they are important fea-
tures of real-world problems. However, observed performance dif-
ferences hint at the possibility that both is the case. In the absence
of a more complete theory, this is a step towards explaining what
actually makes global optimization problems difficult to solve for
stochastic search algorithms and what we can do about it.

2. GENERATING PROBLEMS WITH DIS-
TINCTIVE PROPERTIES

When investigating optimization methods on multimodal prob-
lems, we can imagine many problem features which influence per-
formance. Unfortunately, there is no good understanding of the
hardnesses imposed by different features at the moment, maybe
with some exceptions2: number of local optima, global structure in
location of optima and separability.

Looking for one global optimum is of course harder if the num-
ber of misleading peaks grow, but if the peaks follow a global
scheme as for the Rastrigin function or funnel problems, this prop-
erty may be used to increase the search speed again. In the BBOB’09
benchmark problem set [7], most multimodal problems have there-
fore been labeled as possessing strong or weak global structure,
and observations on real-world problems show that problems with
strong global structure indeed exist, e.g. [1].

A separable problem is easier to solve than one with interact-
ing dimensions because it can be transformed into several one-
dimensional subproblems. However, the named properties only al-
low for a very rough classification of optimization problems, more
of them could surely be found/defined and exploited by optimiza-
tion methods. Eventually, establishing more problem properties
should be useful also for optimizing real-world problems, even if
one usually lacks the domain knowledge to sort any problem into a
classification in an ad-hoc way. Dealing with a real-world problem
is usually an iterative process of algorithm adaptation and learn-
ing (from results), and being aware of possible problem proper-
ties and their relation to the used algorithms surely helps in setting
up a good optimization algorithm faster. Defining some proper-
ties would thus enable some kind of explorative landscape analysis
(ELA, [13] and [10]) which only means that the currently often
very informal process of iterative adaptation of algorithms could
be replaced by a somewhat more structured approach.

For now, we resolve to employing our intuitive understanding of
what kind of problem structure makes optimization easier or harder
and set up some properties we expect to be meaningful. We then
use a problem generator to create instances with the desired prop-
erty values. It is important to note that the concrete generator itself
plays a minor role and could easily be exchanged, but it must allow
for complete knowledge of the basin locations in order to check the
output of basin identification methods investigated later on.

2.1 Landscape Properties
Next to the already named properties, we concentrate on two

more here, namely basin size contrast and global to local optima
contrast. Further properties surely make sense, but are disregarded
in this study.
Basin size contrast [19] already stated that the basin size of the
global optimum certainly influences the hardness of a problem. We
argue that an optimization algorithm dealing with a multimodal
problem shall try to locate many optima, and, as it is not known
a priori which is the global one, the size relation of the largest to
the smallest basin should give a meaningful measure of problem
hardness.

bsc(f) :=
min(V (bi))

max(V (bi))
for basins bi of function f, V = volume

(1)
A small BSC means a big difference and thus a tendency towards

a harder problem (if the number of peaks is not very small), a large
2besides dimensionality, which usually positively correlates to
problem hardness and is always known prior to optimization



BSC (approaching 1) stands for a low difference in basin sizes and
a rather simple problem.

Note that many algorithms for multimodal problems (e.g. most
niching EA methods) assume similar basin sizes and use appropri-
ately adjusted distances for differentiating between basins. If size
differences are huge, these methods are doomed to fail. Some algo-
rithms therefore attempt to adapt to basin sizes which should give
a clear advantage in these cases.
Global to local optima contrast refers to the height (objective
function) differences between global and local peaks in compari-
son to the average fitness level of a problem. It thus determines if
the best peaks are easily recognized as such because their relative
fitness distance to average function values is much larger than the
one for average local optima. [5] give an example for a bit-coded
problem where the difference between the best peak and the other
peaks is explicitly controlled (modified P-PEAKS generator). The
Katsuura function (no. 23) as employed in the BBOB’09 test set
[7] is an example of a problem with a low difference between the
global and local peaks, compared to average function values, and,
according to BBOB’09 and BBOB’10 results ([2]), is is practically
unsolvable for all tested methods. With x∗

g standing for the global
and x∗

l,i for some local optimum, we define

glc(f) :=
avg(f(x∗

l,i))− avg(f(x))
f(x∗

g)− avg(f(x))
. (2)

It follows from the definition that a low GLC value means a large
function value difference between the average local optimum and
the global optimum and thus a simple problem, whereas a high
GLC stands for a small difference, creating a difficult problem.

2.2 Problem Generation
For setting up benchmark problems with given number of op-

tima, GLC and BSC measures, we employ the real-valued n-Peak
problem generator described in [14]. It builds fitness landscapes by
combining several polynomial peaks of different height and shape.
To keep things simple, we restrict it to quadratic peaks. Each peak
is randomly located within the search space and possesses a max-
imum height between 0 and 1 (1 for the unique global optimum).
Its extension in each dimension is controlled by a randomly drawn
radius between rmin and rmax, and by applying a randomly drawn
rotation matrix we ensure non-separability of the resulting problem.
All peaks are distributed in the space bounded by [0, 20]D=5.

Table 1: Established test problem configurations of factors
peaks, glc, and bsc. Unnumbered combinations could not be
achieved by means of the problem generator (see text).

no peaks glc bsc no peaks glc bsc no peaks glc bsc

1 10 0.25 0.1 10 0.25 0.01 10 0.25 10−3

2 30 0.25 0.1 11 30 0.25 0.01 30 0.25 10−3

100 0.25 0.1 12 100 0.25 0.01 21 100 0.25 10−3

4 10 0.50 0.1 13 10 0.50 0.01 22 10 0.50 10−3

5 30 0.50 0.1 14 30 0.50 0.01 23 30 0.50 10−3

100 0.50 0.1 15 100 0.50 0.01 24 100 0.50 10−3

7 10 0.75 0.1 16 10 0.75 0.01 25 10 0.75 10−3

8 30 0.75 0.1 17 30 0.75 0.01 26 30 0.75 10−3

100 0.75 0.1 18 100 0.75 0.01 27 100 0.75 10−3

For 5 dimensions, we realize all achievable combinations of num-
ber of peaks = {10, 30, 100}, GLC = {0.25, 0.5, 0.75}, and
BSC = {0.1, 0.01, 0.001} by measuring the resulting BSC and
GLC with large random samples (2 · 105) and iteratively correcting
them according to simple heuristic rules. E.g., the distance between

minimum and maximum basin size as provided to the generator is
enlarged if the resulting BSC is too large, and downsized if it gets
too small. A purely random process was found to be much too slow
to generate the desired instances in acceptable time.

However, 6 combinations could not be realized with good ac-
curacy as they are somewhat too extreme. They are too fragile to
be possibly reached by any stochastic generator, however they may
be constructed. These go unnumbered in Table 1 and are disre-
garded in the following. Due to the box constraints (and the cutting
of peaks at the edges), it is very difficult to achieve volume dif-
ferences of only 1 : 10, and it gets even harder the more basins
exist. Therefore, combinations 10, 19, and 20 are unavailable with
this generator. For such a large BSC value, basin sizes are all rel-
atively similar. Demanding a large GLC value becomes problem-
atic in the presence of many peaks, because peak shapes are all
quadratic. This is the reason why combinations 3, 6, and 9 could
not be reached.

3. BASIN IDENTIFICATION METHODS
We examine how three basin identification (clustering) algorithms

under different settings perform on the generated function instances
given in table 1. We consider the Jarvis-Patrick (JP) clustering
method ([9]), the nearest-better (NB) approach that also includes
fitness information ([15]) and a procedure that goes back to the
method of [20] and also refers to the topological information in or-
der to detect multimodality. Note that whether the latter two may be
applied on an initial random sample, the Jarvis-Patrick clustering as
any other search space based clustering needs a developed sample
that already contains a clustered structure because it does not take
fitness values into account. Neither of the three methods assumes
that the number of clusters/basins of attraction to find is known but
detects it from the data. Some more nearest-neighbor based clus-
tering methods have been applied inside EAs, e.g. [18], but are
disregarded here. Most other methods rely on fixed size or adapted
radii for separating populations but cannot provide explicite basin
information and are unable to learn the number of basins actually
present, e.g. [16].

The JP algorithm is a non-iterative type of clustering, based on
a "nearest neighbor" mechanism. J nearest neighbors, in terms of
(Euclidean) distance, are collected for each individual. Every two
pairs of samples are taken and, if the two are contained in each
other’s neighbor list and have at least K neighbors in common,
they are placed in the same cluster. The NB clustering mechanism
also relies on a non-iterative procedure and a "nearest neighbor"
principle, however topological information is included in addition
to location of points. For each individual, it considers the con-
nection to the nearest neighbor which is strictly better in terms of
fitness. NB essentially assumes that the best individuals in differ-
ent attraction basins are much further away from each other than
the average distance of all individuals to their nearest better neigh-
bors. The connections longer than φ·mean(lengths of all edges)
are removed and the prototypes for each cluster are represented by
those individuals that do not connect to others. The parameter φ is
usually set to 2 as a robust default.

The third approach is detailed in [17], we only give an overview
here. The confirmation that two points follow the same (maximum)
peak follows a mechanism based on the topological positioning of
the individuals in question, called detect-multimodal (DM) algo-
rithm. We modify the hill-valley procedure originally proposed by
[20] that chooses a set of interior points between the two on the base
of user-defined gradations. A first point is set in the middle of the
two, then, up to a maximum predefined number of points, another
one is chosen in the middle of two gathered consecutive points (ev-
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Figure 1: (Experiment 1) Comparison of the basin identification methods on the 21 test problem instances. In all figures, each method
corresponds to three points, one for each basin number of 10, 30, and 100. Upper line figures from left to right: Ability to find unique
clusters (only one cluster per basin), fraction of basins recognized, only considering additional evaluations (initiated by the basin
identification method), fraction of basins, all evaluations (also considering the initial sample). Bottom line figures: fraction of basins
recognized over the number of peaks, probability of covering the basin containing the global optimum, estimated expected runtime
for detecting the basin of the global optimum.

ery so far formed disjunctive interval) with the largest gradient be-
tween them. By largest gradient we mean the approximation of the
minimum ratio of the fitness distance to the (Euclidean) distance
for every connection of two successive already established points.
If the fitness values of all interior points are higher than the mini-
mal fitness of the two individuals, it is concluded that they track the
same optimum, otherwise they follow different peaks. When clus-
tering is applied, the solutions are ordered in decreasing order with
respect to the fitness. Then the first solution is considered the main
representative of the first cluster, it is marked as processed, and is
tested with DM whether it follows the same peak with any other
unmarked individual, in turn. When such solutions are found, they
are also marked as processed and are assigned to the same cluster.
Then, the next unmarked individual is taken and the process re-
sumes. Note that DM needs additional evaluations, whilst the first
two methods do not.

For both NB and JP we also try variants in which DM is ap-
plied to the finally found clusters with the purpose of removing the
overestimation of the number of existing basins. These variants
are referred next as NB+DM and JP+DM, respectively. Thus, the
cases of attraction basins with two or more clusters within are tack-
led. The number of interior points in this case is set to only 2, so
that the spent number of fitness evaluations is not high, while still
a reasonably accurate result is returned by DM.

4. EXPERIMENTAL COMPARISON ON
THE ESTABLISHED PROBLEMS

The different basin identification methods are tested on the set of
generated problems under two conditions: On random samples as
they are usually employed for starting EAs, and on the best sam-

ples of a larger subset, thereby simulating a started optimization
process. Note that all implementations of the chosen methods were
performed by the authors. In the following, we refer to the fraction
of detected basins as FB, and to the probability to detect the basin
of the global optimum as PG.

Experiment 1: Which method is suited best for initial random sam-
ples? And is there a consistent effect of bsc and glc settings?
Pre-experimental planning. After trying out different parame-
ter configurations for the DM mechanism, we decided to keep only
one of 30 Latin Hypercube Sampling (LHS)-generated settings (for
LHS see e.g. [11]), namely the one with an initial sample size of
183 and 2 intermediate points, as its sample size is comparable to
a NB start population of 200 and the low number of intermediate
points is a good compromise between quality and the needed addi-
tional evaluations. Whenever DM is applied on the result of another
basin identification method, we keep using 2 intermediate points.
Task. To clearly decide for one method being better for one target
value (FB or PG measures), we require that its value is consistently
higher over all tested peak numbers. Concerning the effect of BSC
and GLC settings, we only consider behaviors consistently found
over all tested methods.
Setup. We run 5 basin identification method variants on the 21
problem instances given in Table 1, namely DM-183/2, NB(200),
NB(200)+DM, NB(1000) and NB(1000)+DM. These get randomly
initialized start populations of size 183, 200, and 1000, respec-
tively. JP cannot be run on random samples. In addition to the
two target values given above, we record the number of total evalu-
ations and the number of evaluations beyond the initial sample, and
also compute a very rough expected runtime (ERT) estimation for
detecting the basin of the global optimum by simply dividing the
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Figure 2: (Experiment 1) (Quadratic) Response Surface Model of FB measure (fraction of recognized basins), for the functions
with 30 peaks (first line, 8 glc/bsc combinations) and 100 peaks (second line, 7 glc/bsc combinations), based on factors GLC (on the
horizontal) and BSC (vertical). Bsc values scaled logarithmically.
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Figure 3: (Experiment 1) PG measure, modeled by a RSM for the functions with 30 (top) and 100 (bottom) peaks, based on factors
GLC (horizontal) and BSC (vertical). In the missing plot for NB 1000DM on 30 peaks, values would be flat at 1. Bsc values scaled
logarithmically.

total number of used evaluations by the probability for detecting
the latter in one run.
Results/Visualization. The obtained performance data is visual-
ized in Fig. 1 from several perspectives. Note that in the plots over
the number of evaluations, the three data points for each method
refer to the aggregated data on 10, 30, and 100 peaks, respectively,
where the order is canonical (100 peaks always using the same or
more evaluations than 30 and so on). Note that we separately plot
the number of additional evaluations as these are the one that have
to be invested on behalf of the basin identification method whether
the initial ones are considered free as they consist of the initial pop-
ulation that must be evaluated anyway. To better understand the
effect of BSC and GLC settings, response surface models (RSM)
are built separately for each method variant and for the 30 and 100
peaks data. For 10 peaks there are not enough data points to estab-
lish a quadratic model, and we presume that a linear model would
be unappropriate. RSM contour plots are given in Fig. 2 for the FB,
and in Fig. 3 for the PG measure. However, these models are not
very accurate and shall only be interpreted as trends.
Observations. In Fig. 1, we can observe that DM or any combi-
nation with DM leads to perfectly separated, unique clusters, but

sometimes basins get lost during the DM cluster merge process.
Generally, DM performs much better than NB on the same sample
size, but also comes at a higher cost, especially for high numbers
of basins. Interestingly, attaching DM to NB leads only to a small
additional number of evaluations. The probabilities for detecting
the basin of the global optimum are remarkably high. From the
ERT plot we can estimate that probability 1 will be approached for
around NB(500) even for the 100 peaks problem. But, for grow-
ing sample sizes put into NB, the fraction of unique clusters also
drops, which can be cured by attaching DM (at the cost of losing
some basins). The RSM plots for FB lead to the conjecture that the
peak number has a very strong influence here, so 30 and 100 peaks
lead to different relations. For 30 peaks, the setting with lowest
GLC and BSC (0.25,10−3) is most difficult, whether for 100 peaks,
(0.25,10−1) and (0.75,10−3) are the hardest. For the PG measure,
the dependencies seem to be much simpler. Generally, large GLC
values lead to more difficult problems, and for 100 peaks we can
also observe that smaller BSC values only add to this trend. How-
ever, all differences are much smaller for high peak numbers.
Discussion. Concerning the tested method variants, we may con-
clude that which method is appropriate depends on the allowed
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Figure 4: (Experiment 2) Comparison of the basin identification methods on the 21 test problem instances, using developed samples
(best 200 of 1000). In all figures, each method corresponds to three points, one for each basin number of 10, 30, and 100. Upper line
figures from left to right: Ability to find unique clusters (only one cluster per basin), fraction of basins recognized, only considering
additional evaluations (initiated by the basin identification method), fraction of basins, all evaluations (initial and initiated). Bottom
line figures: fraction of basins recognized over the number of peaks, probability of covering the basin containing the global optimum,
estimated expected runtime for detecting the basin of the global optimum.

number of evaluations. For higher budgets, DM is the method of
choice, but if we want to attain a clustering without doing addi-
tional evaluations, NB is a good alternative. Adding DM to NB
results has only moderate cost and should be considered to get a
more accurate cluster to basin matching, otherwise one may ob-
tain several clusters in one basin. If the approximate number of
basins is known beforehand, an appropriate sample number may
be guessed from our data, but this will usually not be the case for
a real-world problem. Concerning the problem properties, we can
first state that both BSC and GLC obviously have some influence
on problem hardness, and that the effect of GLC is strongest on the
ability of the methods to reach good values for PG, while BSC has
more effect on FB. However, the peak number has a very strong
influence and may even change the effects of BSC and GLC.

Experiment 2: Which method is suited best for developed samples?
Are there differences concerning the bsc and glc effects?
Pre-experimental planning. As we wanted to be able build RSM
models for the 10 peaks settings as well, we added 4 ‘middle’ con-
figurations, namely all combinations of BSC values 0.03 and 0.003
(log 10 ≈ −1.5 and−2.5) and GLC values 0.375 and 0.625. Note
that these are only used in the model, not in the comparison plots
of figure 4.
Task. Similar to experiment 1, we only look for consistent simi-
larities over all methods regarding performance and effects of bsc
and glc. Concerning these effects, we also check for consistency
between experiment 1 and the new data.
Setup. To remove the need to tune the JP method that possesses
2 parameters, a space-filling sample of the algorithms variables is
generated via LHS. Variables J and K are allowed between {1,...,
25}, but with the constraint that J > K. We consider 30 con-
figurations and work with the obtained average performance. An

in-run situation is simulated by generating a random sample of
103 individuals and selecting the best 200 from them (1:5). On
this set, we run 4 method variants (again on the 21 problem in-
stances of Table 1), namely JP(200), JP(200)+DM, NB(200), and
NB(200)+DM. Data is recorded in the same way as for Experiment
1.
Results/Visualization. Fig. 4 shows the performance comparison
of the methods, Figs. 5 and 6 the RSM plots over measures FB and
PG.
Observations. The performance plots offer some interesting find-
ings: The JP method achieves the best FB results, but with many
non unique clusters, which is undesired. The amount of evaluations
spent for additional DM runs is much smaller and more stable than
in Experiment 1. JP and NB both profit a lot from applying DM
when the PG measure is considered, but even without, the values
obtained by NB are already good (despite JP finding many more
basins on average). In the RSM plots, we find that the FB hint to
a different behavior of JP and NB: Where we can recognize a high
correlation between BSC and quality for JP, NB seems to depend
more on GLC. For 10 peaks, this influence is not very strong, but
for 30 and 100 peaks, it clearly shows. Concerning problem hard-
ness, we make a slightly different observation compared to exper-
iment 1. Here, the hardest problem seems to be (0.75,10−3) only,
where it depends on the basin identification method how difficult
the other extreme points are. For the PG measure, the generated
RSM look very similar for 30 and 100 peaks and not much differ-
ent from the plots obtained in Experiment 1. Problems tend to be
harder for large gsc and/or small bsc values. However, for 10 peaks,
we have a different picture, and all 4 methods seem to behave very
similar.
Discussion. The comparison of JP and NB shows they have differ-
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Figure 5: (Experiment 2) FB measure, modeled by a RSM for the functions with 10, 30 and 100 peaks, based on factors GLC
(horizontal) and BSC (vertical). Bsc values scaled logarithmically.

ent advantages: JP finds more basins, but the basin-cluster mapping
is more distorted, which is probably unsuited for using it inside
a niching algorithm. Applying DM leads to very similar FB and
PG values for JP and NB at almost the same cost, but the needed
budget is considerable (roughly 4 times the size of the initial sam-
ple). If evaluations are precious, we would therefore recommend
using NB if the main task is to locate the global optimum, and JP
if many good solutions are sought. For larger budgets, NB+DM or
JP+DM are both acceptable. We can state that concerning bsc and
glc effects, the similarities between the results obtained for differ-
ent methods and base data (in Experiment 1) are relatively strong
and thus conclude that both effect hardness of a problem. Never-
theless, the peak number has the strongest effect and especially for
low peak numbers completely dominates the quality of the basin
identification methods, regardless of the other factors. For larger
peak numbers, this changes and BSC, GLC and the method itself
gain weight. However, while this may be surprising, it can be only
considered as trend and shall be investigated further.

5. CONCLUSIONS AND OUTLOOK
Following from the discussions of our experimental results, we

can conclude that the two properties used to establish test problem
instances indeed have some effect on problem hardness, at least in-
sofar as basin identification methods are considered. The large gsc
and small BSC values affect the ability of these methods to detect
the basin that holds the global optimum, while the effect on the
number of detected basins appears to be more complex. In either
case, the peak number strongly interacts with both properties’ ef-
fects, and for low peak numbers, completely hides them. For higher
peak numbers (in our investigation ≥ 30), the effects of the other
two properties get stronger. This interaction shall open up an inter-

esting research line for future investigations. Concerning the basin
identification methods, we can make recommendations based on
the available budget. If we have an initial sample and evaluations
are precious, NB seems to be the method of choice. If we can
invest a bit more, DM alone, NB+DM or JP+DM are reasonable al-
ternatives. For a developed sample (within a run), JP is remarkably
strong, but concentrating more on finding many good peaks than on
the globally optimal one, whether NB does it the other way around.
However, all these methods are simple heuristics and it would be
rewarding to attempt improving them in the future, possibly by re-
combining them.
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Figure 6: (Experiment 2) PG measure modeled by a RSM for 10, 30 and 100 peaks, based on factors GLC (horizontal) and BSC
(vertical). Bsc values are scaled logarithmically.
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