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Abstract 

___________________________________________________________________________ 

 
A recently developed radii-based evolutionary algorithm designed to solve multimodal optimization problems is 

presented. The approach can be placed within the genetic chromodynamics framework. The basic motivation for 

modifying the original algorithm was to preserve its ability to search for many optima in parallel while 

increasing convergence speed, especially for more complex problems, by adopting generational selection and 

different replacement schemes. 

Presented algorithm is applied to function optimization and used as an engine for a learning classifier system; the 

latter is applied for two classification problems. Obtained experimental results encourage further investigation.  

___________________________________________________________________________ 
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1. Introduction 
 

 Current report presents a recently created radii-based evolutionary algorithm and 

proves its efficiency in solving various problems. The algorithm is inspired from a 

metaheuristic presented in [Dum00b], namely Genetic Chromodynamics (GC), that has been 

largely used in recent years for function optimisation, clustering or classification ([Dum00b], 

[Gor04], [Sto04], [Sto05a]).  

 The new algorithm (presented in this report) within the GC framework, called Elitist 

Generational GC (EGGC), is an algorithm that speeds up convergence and, at the same time, 

looks into the search space for more accurate approximations of the solutions. The new 

algorithm is applied for function optimization, as well as for two classification problems; 

results obtained are compared with those of the classical algorithm in the GC framework and 

with those of other models applied for the same ([Sto05a], [Sto05b], [Sto05c], [Sto05d]). 

 The report starts with a presentation of the classical algorithm in the GC framework in 

order to introduce the changes that lead to EGGC in section 3. Section 4 contains applications 

of the new algorithm to the optimization of several multimodal, n-dimensional functions. 

Next section contains the integration of EGGC into a learning classifier system and 

application to two classification problems.  

 

2. Genetic Chromodynamics Framework 
 

GC belongs to the family of radii-based multimodal evolutionary frameworks, as it 

builds and maintains subpopulations connected each to local or global optima of the problem 

to be solved. This is achieved by introducing a set of restrictions such as the way selection is 

applied or the way recombination takes place. For selection, each chromosome represents a 

stepping-stone for the forming of the new generation – each chromosome is taken into 

account for reproduction. If a chromosome has no similar individuals to it, then it mutates. 

Consequently, for reproduction a local interaction principle is considered, meaning that only 

chromosomes similar under a given threshold recombine. After either recombination or 

mutation takes place, the offspring fights for survival with the stepping-stone parent. 

GC introduces a new operator that merges very similar chromosomes into a single one 

that is often chosen to be the best one of them with respect to fitness evaluation (Algorithm 

1). It is a very useful operator as it leads to a better computational time, obtained by reducing 
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the size of the population, meaning thus less fitness evaluations. Consequently, 

subpopulations independently evolve and become better separated with each iteration and 

lead, at convergence, each one to an optimum. 

 

 

GC is able to concentrate search on many basins of attraction in parallel, so that 

several optima are found simultaneously. The evolutionary process takes place as follows. 

First, the initial population is randomly generated. Next, every chromosome is taken into 

account in the forming of the new generation; mating regions around each chromosome are 

determined by a radius. Therefore, only neighbouring chromosomes are recombined. When 

no mate is found in the mating region of the current chromosome, the latter produces one 

offspring by mutation, with a step size that still keeps the descendant in the mating region of 

its parent. If there is more than one chromosome near the current, the mate is determined 

using proportional selection. Then, if the offspring has better fitness than the current 

chromosome, it replaces the latter in the population. Figure 1 illustrates the way crossover, 

mutation and merging take place. 

In conclusion, there are two important parameters: 

� mating radius parameter that is used for finding a mate for crossover for the 

current chromosome; in Figure 1, the mating radius represents the radius of the 

circle that has the centre in c2. 

� merging radius parameter used for detecting the chromosomes that will be merged. 

 

Begin 

Repeat 

A chromosome c is considered to be the current one; 

Select all m individuals in the merging region of c, 

including itself; 

Remove all but the best chromosome from the selection; 

Until merging cannot be applied at all 

End 

Algorithm 1. Merging procedure in GC 
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Figure 1. Mating (left) and merging (right) within GC. Chromosome c1 produces one offspring by mutation, 

chromosome c2 selects another chromosome from its mating region (dotted circle) and produces one offspring by 

crossover. Crossed lines indicate replaced chromosomes with worse fitness. During merging, c2 is deleted 

because there is another chromosome with better fitness in its merging region (solid circle). 

 

Figure 2 presents a general scheme of the GC algorithm, as flow-chart.  

 

Figure 2. General scheme of a GC algorithm 
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By reducing potential partners for crossover of a chromosome to those lying in its 

mating region, only chromosomes that are close to each other recombine, favouring the 

appearance and maintenance of subpopulations. Offspring replaces the current chromosome 

only if fitter. Therefore, after a few generations, the chromosomes will concentrate on the 

most promising regions of the search space, i.e. those connected to the optima. Algorithm 2 

outlines the pseudocode of GC.  

 

 

  

The stop condition of the algorithm may refer to a pre-specified number of steps 

(generations) for which the algorithm will run or to a fixed number of generations without any 

improvement for which the algorithm should run or to a specified accuracy of the optimum 

that the algorithm must reach etc. 

 

Begin 

Initialize population; 

While termination condition is not satisfied 

� Evaluate each chromosome; 

� For all chromosomes c in the population do 

o If mating region of c is empty then 

� Apply mutation to c; 

� If obtained chromosome is fitter than c 

then replace c; 

� End if 

o Else 

� Select one chromosome from the mating 

region of c for crossover; 

� Obtain and evaluate one offspring; 

� If offspring is fitter than c then replace 

c; 

� End if 

o End if 

� End for 

� Merging 

End while 

End 

Algorithm 2. GC Algorithm 



 6 

3. Elitist Generational Genetic Chromodynamics 
 

 The new approach achieves a better exploitation of the search space for the three 

changes made in the classical algorithm (Algorithm 2). First, it proposes a random search 

mechanism, instead of the deterministic stepping stone principle. Second, it uses a 

generational strategy for selection, i.e., when a new chromosome is obtained, it immediately 

enters the current population. Finally, the descendant obtained after crossover replaces the 

worst chromosome in its region instead of its parent. 

 Consequently, the algorithm has an increased random character, as the chromosomes 

that form the next generation are randomly taken from the population. And as the newly 

generated chromosomes are immediately entering the current population and moreover, as 

they are replacing the worst chromosomes in their region, the model achieves an increased 

convergence speed. 

 In the initialization of the population, a number n of chromosomes are considered – 

the values for genes are randomly taken from their intervals. The distance between two 

chromosomes is computed. Let a chromosome c be considered: the distance between c and all 

the other chromosomes in the population is calculated. The mating region of c contains all 

chromosomes that are at a distance from c of less than a given threshold that represents the 

mating radius.  

 

 

Figure 3. Mating (left) and merging (right) within EGGC. As in Figure 1, c1 and c2 each produce one 

offspring. This time, the second offspring replaces its other parent – one of the chromosomes in its replacement 

area (red dotted circle) - because the latter is the worst chromosome within its replacement region. During 

merging, two chromosomes are removed, c2 and one offspring, because now three chromosomes are within 

merging radius from c2. 
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Like in GC case, crossover is usually considered to take place only between pairs of 

two chromosomes and one offspring is obtained from these two parents. In order to enter the 

current generation, the offspring fights with the chromosomes in its personal replacing region. 

Mutation causes only minor perturbation to a chromosome. The local interaction, crossover, 

mutation and merging principles still hold. Radii-based evolution in the new context of EGGC 

is depicted in Figure 3 and the complete procedure is outlined in Algorithm 3. 

  

Begin 

Initialize population; 

While termination condition is not satisfied 

� Evaluate each chromosome; 

� For i = 1 to n do 

o Randomly pick a chromosome c; 

o If mating region of c is empty then 

� Apply mutation to c; 

� If obtained chromosome is fitter than c 

then replace c; 

� End if 

o Else 

� Select one chromosome from the mating 

region of c for crossover; 

� Obtain and evaluate offspring d; 

� Find worst chromosome w within replacement 

radius of d; 

� If d is fitter than w then replace w; 

� End if 

o End if 

� End for 

� Merging 

End while 

End 

Algorithm 3. EGGC algorithm 

 

 In EGGC algorithm, the original scheme was modified in order to achieve increased 

convergence speed based on better exploitation of the search space. That is obtained 

especially by the way in which offspring resulting from crossover enters the population. It 

does not replace the first parent, but the worst chromosome in its replacement radius. 
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Therefore, weak chromosomes are removed more aggressively (alongside with the effect 

merging has in this respect) from the current population. This is the motivation for not 

applying the stepping stone principle here, but n (where n is the number of chromosomes in 

the population) random chromosomes are selected instead. Now chromosomes may be 

replaced by some offspring without ever being selected for recombination. An important 

aspect of the algorithm is the choice of the replacement radius value. If picked properly, this 

new parameter may lead to improved convergence speed. 

 Selection for replacement adopts a generational scheme, as already stated. As the 

effect of quasi-generational selection for replacement, used by the classical GC, can be 

noticed only when another stepping-stone does not find the initial chromosome in its mating 

region but sees the offspring instead, the new algorithm is totally generational. This means 

that the offspring that replaces its parent might be selected for reproduction many times in the 

same generation or might vanish within that generation. Thus, the generational scheme leads 

to increased exploitation. 

 

4. Application of EGGC to Function Optimization 
 

 The EGGC algorithm was tested on three bi-dimensional functions and an n-

dimensional one (Table 1) and obtained results indicate that it has good accuracy, stability, 

low computational time and thus provides a good method for multimodal function 

optimization. 
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Table 1. The four considered multimodal test problems 
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The aim for the Six-Hump Camel Back function is to locate the two global optima and 

the four other local optima; they are reviewed in Table 2.  

 

Optimum type Coordinates (x, y) f1(x, y) 

Global (-0.0898, 0.7126) 1.0316 

Global (0.0898, -0.7126) 1.0316 

Local (-1.7036, 0.7961) 0.2155 

Local (1.7036, -0.7961) 0.2155 

Local (-1.6071, -0.5687) -2.1043 

Local (1.6071, 0.5687) -2.1043 

 

Table 2. Values for the global and local optima of the Six-Hump Camel Back function 
 

The major difficulty for the f1 function (Figure 4) is that the two local optima with the 

same value -2.1043 can easily be missed by a multimodal evolutionary algorithm. For 

instance, in [Lee01], several algorithms were used (a genetic algorithm using gradient 

information, a local optimization method, a multi-start local optimization method and a 

conventional EA), but each time only one local or global optimum was detected with an 

accuracy of ε = 10
-3
; in [Zah04], not all optima were found every time the algorithm was run. 

 

Figure 4. Six-Hump Camel Back function and the optima points located by proposed model 

 

Because of lack of information, direct comparisons to other algorithms could not be 

conducted. In Table 3, results obtained by the original GC algorithm, EGGC and two 

algorithms presented in [Zah04] are outlined. The values for the EGGC parameters used for f1 

are shown in Table 8 The success rate was computed as the ratio between the number of cases 
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when all optima have been located with the desired accuracy and the total number of runs. For 

the two algorithms from [Zah04], local optima accuracies were not specified. Although the 

number of generations in EGGC was lower than that in the classical algorithm of GC, the 

number of evaluations in EGGC was a little higher; the explanation is that after each 

crossover, there are some more evaluations that are performed for all chromosomes in the 

replacement area of the offspring. In conclusion, for this function, the two algorithms perform 

in a very similar manner. 

 

Measures 
CDE and 

MCDE 
MMDE GC EGGC 

No. of runs 30 30 30 30 

Accuracy global optima 10
-5
 10

-5
 10

-5
 10

-5
 

Accuracy local optima - - 10
-4
 10

-4
 

Success rate (%) 100 100 100 100 

Mean evaluation calls 62 645 14 610 19 923 19 980 

 

Table 3. Comparisons of algorithms for the Six-Hump Camel Back function 

 

The aim for the Schaffer function (Figure 5) is to detect the global optimum f2(x, y) = 0 

that can be escaped because of the high number of local optima around it and because the 

difference between the values of the local optima and the value of the global optimum is very 

small (of the order 10
-3
). This is the reason why parameters for f2 were chosen such (Table 8) 

that the entire search space was covered.  

 

   (a)        (b) 

Figure 5. The Schaffer function. (a) All optima detected by EGGC algorithm (b) The global optimum detected 

by the algorithm. 
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   (a)                 (b) 

Figure 6. Same Schaffer function represented on a smaller interval, [-3, 3]
2
. There are two different view 

points here: (a) shows the detected global optimum (the hill), its surrounding valley and the nearby encircling 

hills.; (b) illustrates the slight difference between the global optimum and the surrounding local optima. 

 

While in Figure 5 it cannot be easily noticeable how small the difference between the 

global optimum and the very close local optima around it is, Figure 6 takes us closely to the 

global optimum area, by reducing the function interval representation. As noticeable from 

Table 4, the original GC algorithm, although performing well, needs many more evaluations 

than EGGC. 

 

Measures GC EGGC 

No. of runs 30 30 

Accuracy global optimum 10
-6
 10

-6
 

Success rate (%) 100 100 

Mean evaluation calls 658 211 349 712 

 

Table 4. Performance of GC and EGGC on the Schaffer function 

 

 The Himmelblau function has four global optima (Figure 7), f3(x, y) = 200.  
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Figure 7. Himmelblau function and its global optima found by EGGC algorithm 

 

In [Bea93], the optimization of Himmelblau function was tested using a sequential 

niche technique; again, obtained results cannot be directly compared with those obtained by 

GC/EGGC due to the fact that in [Bea93], in order to detect all the four optima, several runs 

(6.1, on average) of the algorithm were necessary. Additionally, the desired accuracy was not 

specified. Using the EGGC algorithm, all four optima were detected for each of the 30 runs 

with the accuracy  ε = 10
-5
. A performance comparison between GC and EGGC is given in 

Table 5. 

 

Measures GC EGGC 

No. of runs 30 30 

Accuracy global optima 10
-4
 10

-4
 

Success rate (%) 100 100 

Mean evaluation calls 87 307 97 817 

 

Table 5. Performance of GC and EGGC on the Himmelblau function 

 

 Schwefel function (Figure 8 illustrates the two-dimensional case) is a well known 

benchmark function which is very misleading for evolutionary algorithms; it has a high 

number of local optima and the global one can easily be missed. The aim for it is to find the 

global optimum f4( x ) = 418.9829n. In this paper, f4 was considered in turn for n = 1, 2, ... 

100. Although radii-based evolutionary algorithms usually have difficulties with high-
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dimensional test problems, EGGC algorithm detects the optimum with an accuracy of ε =10
-2
, 

even for n = 100, in all 100 runs, but at the expense of a high number of fitness evaluations. 

Accuracy improves when decreasing the value of n for the function. 

 

Figure 8. Schwefel function for n = 2 and the optima detected by EGGC algorithm 

 

The Schwefel function was also tested with the original GC algorithm which detected 

the optimum for n = 100 with similar accuracy, but needed even more fitness evaluations than 

EGGC. We present a comparison of both algorithms and different performance measures for 

n = 10 and ε = 10
-2
 in Table 4.6.  

Measures GC EGGC 

No. of runs 30 30 

Mean evaluation calls 1 819 593 1 545 752 

Mean generations 48 747 39 043 

Mean best fitness 4189.827822 4189.827956 

 

Table 6. GC and EGGC performance on the Schwefel function when n = 10 

 

 Comparisons of results obtained after applying EGGC for the Schwefel function were 

performed to those in [Gord93]. In the latter, authors presented the performance of four global 

evolutionary algorithms, four island algorithms and one cellular algorithm, on the shifted 
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Schwefel function with n = 1, 2,..., 10. In the first category, a simple genetic algorithm 

(SGA), an elitist SGA (ESGA), the parallel CHC (pCHC) and the Genitor algorithm were 

present. The second category contained island-SGA (I-SGA), island elitist SGA (I-ESGA) 

island-pCHC (I-pCHC) and island-Genitor (I-Genitor). The algorithms were run for a set 

number of generations and the number of runs (out of 30) in which the global optimum was 

found (denoted by ns) was reported, along with the mean best fitness of the 30 runs (denoted 

by MBF in Table 7). Note that fitness values are normalized so that the global optimum is at 

0.0. 

 

Algorithm Ns MBF 

SGA 0 17.4 

ESGA 16 17.3 

pCHC 15 5.9 

Genitor 20 13.2 

I-SGA 9 16.5 

I-ESGA 13 2.6 

I-pCHC 28 0.2 

I-Genitor 24 0.9 

Cellular 26 0.7 

 

Table 7. Performance of different evolutionary techniques on the Schwefel function taken from 

[Gord93] 

 Table 8 contains the empirically determined EGGC parameter values for the four 

functions. Mutation with normal perturbation was used in all cases; the value of the mutation 

strength directly depends on the size of the interval and implicitly on the search space size. In 

the case of the Schwefel function, higher mutation strength was chosen in the beginning, to 

escape local optima. The value was afterwards decreased by n/100 every 100 generations, 

where n represents the number of dimensions. The values for mating and merging radii were 

chosen in the same manner, thus depending on the search space size. Replacement radius for a 

given chromosome is generally chosen to be equal to the mating value of that individual. 

However, for problems with large plateaus in the fitness landscape, by choosing a different 

value for the replacement from that of the mating radius, faster convergence can be achieved 

(see Tables 6 and 8 vs. Table 9 for f4). On the other hand, for problems with very close 

optima, its value must be chosen again not equal to the mating radius (see f1 in Table 8), in 
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order to obtain all optima. The last parameter from Table 8 gives the number of generations 

without any improvement which is necessary to determine termination of the algorithm. For 

the Schaffer and Schwefel functions, the stop condition was established to be the moment 

when the algorithm achieves the desired accuracy because only the global optimum had to be 

determined.  

 

Parameters f1 f2 f3 f4 

No. of chromosomes 100 2 000 150 500 

Mutation strength 0.1 0.1 0.5 25n 

Mating radius 0.14 0.1 2 15n 

Replacement radius 0.1 0.1 2 15n 

Merging radius 0.14 0.1 0.02 12n 

Mutation probability 0.4 0.4 0.4 0.4 

No. improvement times 100 - 50 - 

 

Table 8. Parameters of the EGGC algorithm for all functions 

 

To strengthen the assumption that for the tested high dimensional problem, EGGC is 

really faster than the original GC algorithm, a recent parameter tuning method, SPO, 

developed by colleagues at Dortmund University, ([Bar04], [Bar05]), was applied for the 10 

and 20-dimensional Schwefel function. The response value Y (quality criterion) was set to the 

average number of evaluations (AES) until reaching the global optimum with accuracy 10
-2 
 

(Table 9). 

 

Parameter name N/R Min Max GC EGGC 

No. of chromosomes N 10 500 10 13 

Mating radius R+ 0.01 5.0 3.6752 2.9366 

Replacement radius R+ 0.01 5.0 - 4.748 

Merging radius R+ 0.01 5.0 1.275 3.9197 

Mutation strength R+ 1.0 250.0 238.45 231.08 
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Mutation probability R+ 0.0 1.0 0.6185 0.8575 

Mutation scaledown N 10 1000 368 625 

No. improvement times N 1 200 167 46 

AES, 32 runs - - - 1.69E+5 1.45E+5 

AES, standard deviation - - - 5.92E+4 3.63E+4 

 

Table 9 Algorithm design for optimizing the 10-dimensional Schwefel function with GC and EGGC. 

The two last columns give the best found configurations, the last lines the resulting AES measures 

with standard deviations. 

 

Results show that for both algorithms the AES decreased considerably, to ≅10% of the 

original values reported in Table 6. A t-test confirms that the true means for GC and EGGC 

are different with 95% confidence (p-value 0.036), so one may conclude that EGGC is indeed 

faster on this problem. However, the difference is quite small - around 15% - and may be 

statistically significant, but of little importance for practical uses. Surprisingly, many 

optimized parameter values are very similar for the two algorithms, e.g. number of 

chromosomes, mating radius and mutation strength and probability. In contrast to that, the 

merging radii are chosen differently; larger than the mating radius for EGGC and smaller for 

GC. Nevertheless, other good configurations found during tuning indicate that smaller 

merging radii also work for EGGC. 

From these first results, and supported by our previous findings, we learned that 

EGGC may be advantageous for higher dimensional problems. Consequently, we performed a 

second comparison for the same test function in 20 dimensions, this time allowing for larger 

radius values. The outcome (Table 10) unambiguously favours EGGC over GC, thereby 

validating our assumption. However, the maximum radii tested may still be too small; 

increasing them may lead to even better speedup. 

 

Parameter name N/R Min Max GC EGGC 

No. of chromosomes N 10 500 24 10 

Mating radius R+ 0.01 15.0 11.695 11.02 

Replacement radius R+ 0.01 15.0 - 9.6561 

Merging radius R+ 0.01 15.0 14.748 3.81 
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Mutation strength R+ 1.0 250.0 242.16 237.43 

Mutation probability R+ 0.0 1.0 0.6705 0.6185 

Mutation scaledown N 10 1000 269 238 

No. improvement times N 1 200 8 167 

AES, 32 runs - - - 3.32E+5 1.07E+5 

AES, standard deviation - - - 1.10E+5 2.26E+4 

 

Table 10. Algorithm design for optimizing the 20-dimensional Schwefel function with GC and 

EGGC; the maximum radii are increased compared to Table 9. 

 

 Through the increased exploitative nature of EGGC, it seems that a better equilibrium 

between exploration and exploitation than in the standard GC algorithm is established. This 

leads to two advantages in using EGGC. 

First, it proves to be very accurate and stable in very hard multimodal cases. A first 

situation is that of the difficulty in locating the local optima, e.g. the Six-Hump Camel Back 

function. Another hard situation would be very distant optima, e.g. the Schwefel function, 

where other algorithms often miss the global optimum. Another situation is having more 

global optima which are not easily distinguishable in the fitness landscape, like in the case of 

the Himmelblau function. An even harder situation is that of local optima lying too close to 

the global optimum - thus an evolutionary algorithm usually gets stuck in a local optimum; 

this is the case with the Schaffer function. Some of the evolutionary algorithms fail in some of 

these cases, some fail in other cases. The classical GC algorithm, on the other hand, also 

performs well in this respect, but its speed of convergence is not very good for functions with 

many local optima very near to the global optimum, e.g. the Schaffer function and, especially 

in the case of more complex problems (n-dimensional problems), e.g. the Schwefel function. 

As the question of computational time arises, for many low-dimensional multimodal 

functions, both algorithms are surely not competitive to other, namely non-evolutionary 

algorithms. For the other cases, i.e. local optima and global optima almost indistinguishable 

and n-dimensional function optimization with high values for n, for instance, both EGGC and 

GC perform accurate and stable; however, EGGC is significantly faster.  

Another important feature of proposed algorithm is the new parameter, the 

replacement radius. Together with the generational scheme, it seems to have brought more 

power to EGGC. For instance, for the Schwefel function, where the optima are far from each 
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other, this parameter promotes rapid movement of the chromosomes through the search space. 

In the Six-Hump Camel Back function, where the optima are very close to each other, the 

parameter is responsible for the small steps necessary not to escape them.  

 

5. EGGC as Engine for a Learning Classifier System  
 

 Instead of using an unimodal genetic algorithm for the development of a learning 

classifier system (LCS), EGGC is chosen to be applied for classifying data by means of 

machine learning; it looks like a good choice from many points of view (that are to be 

discussed later in this report) but especially because its multimodality; thus, multiple rules 

may be built for classifying the objects in the considered data sets. This section continues with 

a short description of LCSs. 

 

5.1. Learning Classifier Systems 

 

 A learning classifier system represents a machine learning system that uses an 

evolutionary algorithm as a rule discovery component [Dum00a], [Mic92]. The rules (or 

productions, which are simple if-then rules) represent a population that is evolved by an 

appropriate evolutionary algorithm; the rules cover the space of possible inputs and they are 

then evolved in order to successfully be applied to the problem to be solved - the problems 

may range from data mining to robotics. 

 There are two important families of LCSs: the Pittsburgh and Michigan approaches. In 

a Pittsburgh-type LCS, each individual represents an entire set of rules. The individuals 

compete among themselves and only the strong ones survive and reproduce. This is achieved 

by means of natural, proportional selection and variation operators; therefore, Pittsburgh 

approach uses a typical evolutionary algorithm (EA) for the learning problem. What remains 

to be solved is the representation problem and the way individuals adapt to their environment. 

Usually, in a chromosome there also appear operators from propositional logic, like 

disjunction and/or conjunction. 

In a Michigan-style LCS, each individual of the population represents a unique, 

distinct rule, so the EA evolves a set of rules; the population represents the rule set needed to 

solve the problem. The goal here is not to obtain the best individual, but to find the best set of 

chromosomes (rules) in the end of the algorithm. Usually, chromosomes representation is 
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divided into two parts - one is the condition part and contains the values for the attributes that 

appear in the condition of the rule and the other part consists of the conclusion of the rule. A 

credit assignment system is used in order to reward the better rules in a higher proportion or, 

at the same time, to penalise the worse rules. When new entities (rules) enter the population 

through mutation and/or recombination, usually crowding methods are utilised in order to 

introduce them; in this way, they replace only very similar individuals in the population. This 

technique is especially used because, in this problem case, not the best chromosome is desired 

most, but a set of chromosomes (rules) that, when applied, gain an optimum result for the 

problem to be solved.  

 

5.2. EGGC Learning Classifier System 

 

 An LCS inspired from the Michigan family is presented. It is applied for the 

classification of two data sets that come from the UCI repository of machine learning 

databases ([Pre94]); one of them is Pima Indians Diabetes Database and the other one is the 

Iris Plants Database. Based upon some values the patients have for their attributes, the first 

task is to predict whether they suffer of diabetes or not and the second task is, again, based on 

the values of the attributes the iris flower have, to predict their classes.  

In each of the two cases, the data set, containing patients or flowers, respectively, is 

divided in two parts – a training set and a test set. The LCS uses the objects in the training set 

and the values for their attributes for producing classification rules that are used in the 

decision-making process. The rules are finally used to predict the class for each of the object 

(patient or flower, depending on the data set) in the test set.  

Present model offers an easier alternative to the credit assignment system proposed by 

Holland in order to solve the multimodal optimization problem within the Michigan approach. 

And proposed replacement is EGGC, since it has many times proven to be a very efficient 

way in determining multiple optima. Thus, the combination between the Michigan approach 

and the GC engine seems like a good match in the domain of learning classifier systems. 

 

5.3. Application to Pima Indian Diabetes Database 

 

All patients in the data set are females of at least 21 years old, of Pima Indian heritage, 

living near Phoenix, Arizona, USA. There are eight attributes (either discrete or continuous) 
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containing personal data, e.g. age, number of pregnancies, and medical data, e.g. blood 

pressure, body mass index, result of glucose tolerance test etc. 

The last attribute is a discrete one and it offers the diagnosis, which is either 0 

(negative) or 1 (positive). 34.9% of the patients in the dataset are assigned diabetes positive. 

The total number of cases is 768. The data is complete, according to its documentation; 

nevertheless, there are some 0 values of attributes that were not reported as missing data, but 

look a bit strange. No replacement or deletion of these values was undertaken in present 

paper. 

Each chromosome will encode an IF-THEN rule. A chromosome contains therefore 

nine genes, one for each attribute and one for the outcome; first eight genes are real valued 

while the last is a binary one and it gives the output of the chromosome (conclusion of the 

rule encoded). In conclusion, the condition of the rule is a conjunction of personal data and 

symptoms and its conclusion is the diagnosis. 

The rules (chromosomes) are evolved against the training set. The fitness of a 

chromosome is computed as its distance to all patients in the training set that have the same 

outcome. The aim is to minimize distances, conceiving thus good rules for the diagnosis they 

represent. A rule is considered of high-quality if it matches the condition part of the data in 

the training set with same outcome as itself. 

Having a chromosome c = (c1, c2, …, c8, c9) and a patient from the training set p = (p1, 

p2, …, p8, p9), the distance between c and p is computed by: 

d(c, p) = ∑
= −

−8

1

||

i ii

ii

ab

pc
  (1) 

where ai and bi represent the lower and upper bounds of the i-th attribute. As the values for 

the eight attributes belong to different intervals, the distance measure has to refer to the 

interval bounds.  

Convex crossover was used, with the coefficients biased by the fitness of the two 

parents involved. Mutation is with normal perturbation. Values for the parameters of the 

EGGC algorithm are specified in Table 12. 

difi denotes the difference between the bounds of the interval corresponding to 

attribute i. Replacement radius was taken equal to the mating radius for both applications. The 

stop condition of the algorithm is given by a number of generations that can pass without any 

improvement for the solutions; this value was considered to be 10. 

At termination of the algorithm, two chromosomes are obtained, one for each class. 

These chromosomes are tested against the data in the test set and accuracy is computed. The 
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ratio between training and test sets was set to 75%-25%, as established by Prechelt in [Pre94] 

with respect to the diabetes task. 

Three kinds of tests were conducted with different possibilities of choosing the data 

that would go into training and test, respectively. The two sets are obviously disjoint. First, 

test sample cross-validation was performed. The first 75% of the data were taken to compose 

the training set and the remaining data were assigned to the test set, as in the standard manner 

of using this data set, according to [Pre94]. The obtained mean accuracy for the test set in 100 

runs was 75.06%. Second, another test was done according to rules of splitting that should be 

used for this data set, as established by Prechelt in [Pre94]. The data set is sequentially split 

into 75% training - 25% test to give 4 different combinations of these two sets, i.e.: 

• first 75% of the cases for training and last 25% for test 

• reversely, first 25% data for test and last 75% for training 

• first 50% data for training, next 25% for test and last 25% for training, as well 

• first 25% data for training , next 25% for test and last 50% for training, as well 

The algorithm is subject to 100 trials again. The mean accuracy obtained for the test 

set was 69.672%. Last, random cross-validation was performed, i.e. the training set containing 

75% data and the test set containing 25% data were randomly generated in each run. The 

algorithm was applied 100 times and the obtained mean accuracy was of 69.515%.  

However, in many tests, it was noticed that when the chromosome pool still has four 

chromosomes left and has not converged yet, a higher accuracy of 80% is obtained. This leads 

to the idea that in the structure of each of the two obvious clusters two other subclusters are 

included. Thus, with the best instead of last accuracy, better results can be obtained. Note that 

applying SPO parameter tuning here did not lead to any improvement. 

Literature reports accuracy on the diabetes task ranging from 62% to 80.7%. 

Unfortunately, not many papers specify variables of the testing environment; thus, proposed 

algorithm cannot be objectively compared with them. Yet, there are some papers which 

specify them, although they differ in training/test sets sizes and method of assigning data to 

each of them. Authors also mention they did not delete any of the lines containing missing 

data. When not specified, the number of runs is presumed to be ten.  

In [Smi88] a neural network algorithm to forecast the onset of diabetes mellitus was 

used. From the 768 samples, an equal number of 170 samples were selected randomly to 

represent each of the two possible results of diabetes test: positive and negative. The 

remaining 428 were used as validating samples. The mean of five runs was 75.12%. In 
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[Au01], a total of 30% of the records were randomly selected as test set. Rules were mined 

from the remaining 70% of the data. The algorithm was applied ten times. If the authors were 

to define a baseline accuracy to mean the accuracy obtained by simply assigning the most 

frequently occurring values to the attributes being predicted, it is 65.1%. 

One approach our results can be directly compared to is [Smt04]. Using a neural 

network, 75% training - 25% test, the rules established by Prechelt, 100 trials and no 

replacement or deletion of missing data, the mean accuracy was obtained as 65.55%. Another 

approach that allows for objective comparison of results is [Yao97]. A new evolutionary 

system to evolve artificial neural networks was proposed, test sample cross-validation was 

used, 30 runs of the algorithm were conducted and again no replacement or deletion of 

missing data was done. The obtained mean accuracy on the test set was of 77.6%, the best 

accuracy 80.7%.  

In a succinct wrapping up, Table 11 contains a comparison between the accuracy 

obtained by EGGC versus those of the two latter algorithms. The original GC algorithm was 

not applied. 

 

Algorithm 
Number of 

runs 

Accuracy 

(%) 

EGGC with test sample cross-validation 100 75 

EGGC with sequential splitting 100 69.67 

EGGC with random cross-validation 100 69.5 

EGGC best accuracy instead of last 100 80 

Neural Network (NN) with sequential splitting 100 65.5 

Evolved NN with test sample cross-validation 30 77.6 

Evolved NN with cross-validation - best result within 

specified number of runs 
30 80.7 

 

Table 11. Results of different techniques for the Diabetes Diagnosis Problem in comparison to 

EGGC 

 

5.4. Application to Iris Database 

 

 Same LCS that uses EGGC as an engine is applied to another classification problem. 

The Iris Plants Database contains 3 classes (3 types of iris plants), with 50 instances for each 

class and 4 numerical attributes which represent length and width of the petals and sepals, 
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respectively. The three classes are equally distributed. According to database documentation, 

one class is linearly separable from the other two. 

There are two ways of dividing the database into training and test sets: on the one 

hand, two thirds of each of the three classes was considered as training set and the rest as test 

set; on the other hand, the training set was randomly chosen and the test set consisted of the 

remaining instances. In the first case, the three classes are equally distributed into training and 

test sets. 

Chromosome representation is similar to the one from the diabetes diagnosis problem, 

i.e. c = (c1, c2, …, c4, c5), where the first four genes correspond to the attributes of an iris plant 

and the last one embodies its class. Same distance as in (1) - with four instead of eight as the 

upper bound of the sum - was used for computing differences between individuals. Same 

variation operators were considered. The values that were used for the parameters of the 

evolutionary algorithm are given below in Table 12. 

 

Number of 

chromosomes 

Mutation 

probability 

Mating 

region 

Merging 

radius 

Mutation 

strength 

No 

improvement 

times 

100 0.4 0.3 0.03 difi / 100 10 

 

Table 12. Parameters of the EGGC algorithm for both classification problems 

 

The final result of the LCS has to consist of at least three rules (chromosomes), that is 

at least one for each class. The accuracy for the first mode of fixing the training and test set 

varies between 94% and 98%, while for the second way of selecting the two disjoint sets the 

accuracy ranges from 88% to 96%. Besides accuracy from the third row in Table 13, where 

the percent is the best found in 100 runs (obtained even during these runs and not necessarily 

at the end of them), all other values in the third column are obtained by computing the 

average for the accuracies obtained at the end of each of the 100 runs. 

 Unfortunately, in some literature approaches that also used this database there were no 

clear descriptions of the way training and test sets were chosen, so direct comparisons 

between their results and those obtained by EGGC are not very accurate. For instance, in 

[Vee96], a genetic programming model was tested on the Iris database, while in [Yan91], 

some neural networks algorithms (backpropagation algorithm, denoted by BP, and cascade-

correlation algorithm, in short CCA) were applied in this respect. Results are outlined in 

Table 13. 
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Algorithm 
Number of 

runs 

Accuracy 

(%) 

EGGC with equally distributed cross-validation 100 95.76 

EGGC with random cross-validation 100 92.84 

EGGC best accuracy instead of last 100 98 

Genetic programming ([Vee96]) 100 92.7 

Neural Network BP with random cross-validation 10 93.2 

Neural Network CCA with random cross-validation 10 92.6 

Neural Network modified CCA with random cross-

validation 
10 97 

 

Table 13 Results of different techniques for the Iris Plants Database in comparison to EGGC  

 

6. Conclusions and Future Work 
 

 A multimodal evolutionary algorithm has been tested for the optimization of four 

multimodal functions and has been used as an engine for a LCS; the obtained classifier system 

was applied to two classification problems. 

Referring to the modified LCS, some possible progresses are discussed in what 

follows; some of them are already being tested and promising early results were obtained, 

while some others are to be experimented in the near future.  

One possibility, suggested at the HCMC conference ([Sto05b]), is to build separate 

rules for different decades; therefore, rules are built depending on the age attribute. The 

explanation was that people that are young are very likely to have different reasons to suffer 

of diabetes than the others or they may have a different type of diabetes.  

Experiments have been conducted and results showed indeed an important increase of 

the classification accuracy: 77.08% of the patients in the test set were correctly classified, 

using test sample cross-validation, in comparison to 75% when plain EGGC was used. Two 

decades were considered, so that all patients of age between 21 and 51 are in the first decade 

and patients of age between 52 and 81 in the second one. Consequently, (at least) four rules 

are obtained, that is (at least) two for each decade: one for the ill patients and one for the 

healthy ones. 

Another possibility (suggested at the same HCMC conference) is to weight each of the 

eight attributes. In this manner, not all attributes have the same importance; the degrees of 

importance are detected either using a typical genetic algorithm or they may be evolved 
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together with the values for attributes using EGGC. In the first case, the EGGC algorithm 

provided the rules to be applied, that is the values for the eight attributes in each of the two 

cases; then, independently, a typical genetic algorithm evolved eight values, each between 0 

and 1, in order to find the proper weights for the attributes of the rules. The weights are 

evaluated with respect to the accuracy obtained by application of the rules to the training set – 

so the higher the accuracy on the training set, the better the weights are. This algorithm was 

tested in both situations, with two decades and without them. Without decades, the algorithm 

provides accuracy around 77%; what is unusual is that, when using decades, the result is not 

very stable – it varies from 74.48% to 79.68%. Evolving the weights together with the values 

for the attributes using EGGC did not offer good results.  

A third possibility concerns the way the fitness function is applied to the individuals; 

as all individuals represent rules, the fitness value of a certain chromosome c could be given 

by:  

f(c) = 
y

x

e +1
 

where x represents the number of patients from the training set that are correctly classified by 

the rule (chromosome) c and y says how many patients are wrongly classified by the same 

rule; f is the fitness function. If c does not classify correctly any patient from the training set 

then its fitness is considered to be zero. At the end of the EGGC algorithm, obtained rules are 

applied to the test set and accuracy is computed. 

 This mode of computing fitness evaluation should to be more efficient as it seems 

more convenient that a chromosome is closer (regarding distance) to only a part of the 

patients from training (and consequently test) set(s) and not to all of them as it was computed 

in the present model. Curiously, this mode of computing fitness for chromosomes did not lead 

to major improvement regarding accuracy on the test set; results were so far very similar to 

those outlined in present paper.  

A further improvement that is still to be done is to easily adjust the way merging takes 

place: it should occur only if the obtained set of rules provides a better accuracy on the 

training set. 
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