
Babeş - Bolyai” University, Cluj-Napoca

Faculty of Mathematics and Computer Science

Computational intelligence Reports

2005

A New Algorithm within Genetic

Chromodynamics. Applications to Function

Optimization and Classification

Catalin Stoean and D. Dumitrescu

Abstract

A recently developed radii-based evolutionary algorithm designed to solve multimodal optimization problems is

presented. The approach can be placed within the genetic chromodynamics framework. The basic motivation for

modifying the original algorithm was to preserve its ability to search for many optima in parallel while

increasing convergence speed, especially for more complex problems, by adopting generational selection and

different replacement schemes.

Presented algorithm is applied to function optimization and used as an engine for a learning classifier system; the

latter is applied for two classification problems. Obtained experimental results encourage further investigation.

 2

1. Introduction

 Current report presents a recently created radii-based evolutionary algorithm and

proves its efficiency in solving various problems. The algorithm is inspired from a

metaheuristic presented in [Dum00b], namely Genetic Chromodynamics (GC), that has been

largely used in recent years for function optimisation, clustering or classification ([Dum00b],

[Gor04], [Sto04], [Sto05a]).

 The new algorithm (presented in this report) within the GC framework, called Elitist

Generational GC (EGGC), is an algorithm that speeds up convergence and, at the same time,

looks into the search space for more accurate approximations of the solutions. The new

algorithm is applied for function optimization, as well as for two classification problems;

results obtained are compared with those of the classical algorithm in the GC framework and

with those of other models applied for the same ([Sto05a], [Sto05b], [Sto05c], [Sto05d]).

 The report starts with a presentation of the classical algorithm in the GC framework in

order to introduce the changes that lead to EGGC in section 3. Section 4 contains applications

of the new algorithm to the optimization of several multimodal, n-dimensional functions.

Next section contains the integration of EGGC into a learning classifier system and

application to two classification problems.

2. Genetic Chromodynamics Framework

GC belongs to the family of radii-based multimodal evolutionary frameworks, as it

builds and maintains subpopulations connected each to local or global optima of the problem

to be solved. This is achieved by introducing a set of restrictions such as the way selection is

applied or the way recombination takes place. For selection, each chromosome represents a

stepping-stone for the forming of the new generation – each chromosome is taken into

account for reproduction. If a chromosome has no similar individuals to it, then it mutates.

Consequently, for reproduction a local interaction principle is considered, meaning that only

chromosomes similar under a given threshold recombine. After either recombination or

mutation takes place, the offspring fights for survival with the stepping-stone parent.

GC introduces a new operator that merges very similar chromosomes into a single one

that is often chosen to be the best one of them with respect to fitness evaluation (Algorithm

1). It is a very useful operator as it leads to a better computational time, obtained by reducing

 3

the size of the population, meaning thus less fitness evaluations. Consequently,

subpopulations independently evolve and become better separated with each iteration and

lead, at convergence, each one to an optimum.

GC is able to concentrate search on many basins of attraction in parallel, so that

several optima are found simultaneously. The evolutionary process takes place as follows.

First, the initial population is randomly generated. Next, every chromosome is taken into

account in the forming of the new generation; mating regions around each chromosome are

determined by a radius. Therefore, only neighbouring chromosomes are recombined. When

no mate is found in the mating region of the current chromosome, the latter produces one

offspring by mutation, with a step size that still keeps the descendant in the mating region of

its parent. If there is more than one chromosome near the current, the mate is determined

using proportional selection. Then, if the offspring has better fitness than the current

chromosome, it replaces the latter in the population. Figure 1 illustrates the way crossover,

mutation and merging take place.

In conclusion, there are two important parameters:

� mating radius parameter that is used for finding a mate for crossover for the

current chromosome; in Figure 1, the mating radius represents the radius of the

circle that has the centre in c2.

� merging radius parameter used for detecting the chromosomes that will be merged.

Begin

Repeat

A chromosome c is considered to be the current one;

Select all m individuals in the merging region of c,

including itself;

Remove all but the best chromosome from the selection;

Until merging cannot be applied at all

End

Algorithm 1. Merging procedure in GC

 4

Figure 1. Mating (left) and merging (right) within GC. Chromosome c1 produces one offspring by mutation,

chromosome c2 selects another chromosome from its mating region (dotted circle) and produces one offspring by

crossover. Crossed lines indicate replaced chromosomes with worse fitness. During merging, c2 is deleted

because there is another chromosome with better fitness in its merging region (solid circle).

Figure 2 presents a general scheme of the GC algorithm, as flow-chart.

Figure 2. General scheme of a GC algorithm

Initial

population

Parent

Mating area

Crossover Mutation

Offspring

Merging

For each
member

Replace
if better

If the algorithm
does not stop…

Did not find any
individual in the
mating range…

Found individual
in the mating
range…

 5

By reducing potential partners for crossover of a chromosome to those lying in its

mating region, only chromosomes that are close to each other recombine, favouring the

appearance and maintenance of subpopulations. Offspring replaces the current chromosome

only if fitter. Therefore, after a few generations, the chromosomes will concentrate on the

most promising regions of the search space, i.e. those connected to the optima. Algorithm 2

outlines the pseudocode of GC.

The stop condition of the algorithm may refer to a pre-specified number of steps

(generations) for which the algorithm will run or to a fixed number of generations without any

improvement for which the algorithm should run or to a specified accuracy of the optimum

that the algorithm must reach etc.

Begin

Initialize population;

While termination condition is not satisfied

� Evaluate each chromosome;

� For all chromosomes c in the population do

o If mating region of c is empty then

� Apply mutation to c;

� If obtained chromosome is fitter than c

then replace c;

� End if

o Else

� Select one chromosome from the mating

region of c for crossover;

� Obtain and evaluate one offspring;

� If offspring is fitter than c then replace

c;

� End if

o End if

� End for

� Merging

End while

End

Algorithm 2. GC Algorithm

 6

3. Elitist Generational Genetic Chromodynamics

 The new approach achieves a better exploitation of the search space for the three

changes made in the classical algorithm (Algorithm 2). First, it proposes a random search

mechanism, instead of the deterministic stepping stone principle. Second, it uses a

generational strategy for selection, i.e., when a new chromosome is obtained, it immediately

enters the current population. Finally, the descendant obtained after crossover replaces the

worst chromosome in its region instead of its parent.

 Consequently, the algorithm has an increased random character, as the chromosomes

that form the next generation are randomly taken from the population. And as the newly

generated chromosomes are immediately entering the current population and moreover, as

they are replacing the worst chromosomes in their region, the model achieves an increased

convergence speed.

 In the initialization of the population, a number n of chromosomes are considered –

the values for genes are randomly taken from their intervals. The distance between two

chromosomes is computed. Let a chromosome c be considered: the distance between c and all

the other chromosomes in the population is calculated. The mating region of c contains all

chromosomes that are at a distance from c of less than a given threshold that represents the

mating radius.

Figure 3. Mating (left) and merging (right) within EGGC. As in Figure 1, c1 and c2 each produce one

offspring. This time, the second offspring replaces its other parent – one of the chromosomes in its replacement

area (red dotted circle) - because the latter is the worst chromosome within its replacement region. During

merging, two chromosomes are removed, c2 and one offspring, because now three chromosomes are within

merging radius from c2.

 7

Like in GC case, crossover is usually considered to take place only between pairs of

two chromosomes and one offspring is obtained from these two parents. In order to enter the

current generation, the offspring fights with the chromosomes in its personal replacing region.

Mutation causes only minor perturbation to a chromosome. The local interaction, crossover,

mutation and merging principles still hold. Radii-based evolution in the new context of EGGC

is depicted in Figure 3 and the complete procedure is outlined in Algorithm 3.

Begin

Initialize population;

While termination condition is not satisfied

� Evaluate each chromosome;

� For i = 1 to n do

o Randomly pick a chromosome c;

o If mating region of c is empty then

� Apply mutation to c;

� If obtained chromosome is fitter than c

then replace c;

� End if

o Else

� Select one chromosome from the mating

region of c for crossover;

� Obtain and evaluate offspring d;

� Find worst chromosome w within replacement

radius of d;

� If d is fitter than w then replace w;

� End if

o End if

� End for

� Merging

End while

End

Algorithm 3. EGGC algorithm

 In EGGC algorithm, the original scheme was modified in order to achieve increased

convergence speed based on better exploitation of the search space. That is obtained

especially by the way in which offspring resulting from crossover enters the population. It

does not replace the first parent, but the worst chromosome in its replacement radius.

 8

Therefore, weak chromosomes are removed more aggressively (alongside with the effect

merging has in this respect) from the current population. This is the motivation for not

applying the stepping stone principle here, but n (where n is the number of chromosomes in

the population) random chromosomes are selected instead. Now chromosomes may be

replaced by some offspring without ever being selected for recombination. An important

aspect of the algorithm is the choice of the replacement radius value. If picked properly, this

new parameter may lead to improved convergence speed.

 Selection for replacement adopts a generational scheme, as already stated. As the

effect of quasi-generational selection for replacement, used by the classical GC, can be

noticed only when another stepping-stone does not find the initial chromosome in its mating

region but sees the offspring instead, the new algorithm is totally generational. This means

that the offspring that replaces its parent might be selected for reproduction many times in the

same generation or might vanish within that generation. Thus, the generational scheme leads

to increased exploitation.

4. Application of EGGC to Function Optimization

 The EGGC algorithm was tested on three bi-dimensional functions and an n-

dimensional one (Table 1) and obtained results indicate that it has good accuracy, stability,

low computational time and thus provides a good method for multimodal function

optimization.

FUNCTION F EXPRESSION DOMAIN

Six-Hump Camel

Back
f1 -[(4 – 2.1x

2
+

3

4x
)x

2
+ xy + 4(y

2
– 1)y

2
] [-2, 2]

2

Schaffer f2 -0.5 -
222

222

))(001.01(

5.0) (sin

yx

yx

++

−+
 [-20, 20]

2

Himmelblau f3 200 – (x
2
+ y – 11)

2
– (x

+ y

2
 – 7)

 2
 [-4, 4] × [-6, 6]

Schwefel f4 ∑
=

n

i

ii xx
1

)sin([-500, 500]
2

Table 1. The four considered multimodal test problems

 9

The aim for the Six-Hump Camel Back function is to locate the two global optima and

the four other local optima; they are reviewed in Table 2.

Optimum type Coordinates (x, y) f1(x, y)

Global (-0.0898, 0.7126) 1.0316

Global (0.0898, -0.7126) 1.0316

Local (-1.7036, 0.7961) 0.2155

Local (1.7036, -0.7961) 0.2155

Local (-1.6071, -0.5687) -2.1043

Local (1.6071, 0.5687) -2.1043

Table 2. Values for the global and local optima of the Six-Hump Camel Back function

The major difficulty for the f1 function (Figure 4) is that the two local optima with the

same value -2.1043 can easily be missed by a multimodal evolutionary algorithm. For

instance, in [Lee01], several algorithms were used (a genetic algorithm using gradient

information, a local optimization method, a multi-start local optimization method and a

conventional EA), but each time only one local or global optimum was detected with an

accuracy of ε = 10
-3
; in [Zah04], not all optima were found every time the algorithm was run.

Figure 4. Six-Hump Camel Back function and the optima points located by proposed model

Because of lack of information, direct comparisons to other algorithms could not be

conducted. In Table 3, results obtained by the original GC algorithm, EGGC and two

algorithms presented in [Zah04] are outlined. The values for the EGGC parameters used for f1

are shown in Table 8 The success rate was computed as the ratio between the number of cases

 10

when all optima have been located with the desired accuracy and the total number of runs. For

the two algorithms from [Zah04], local optima accuracies were not specified. Although the

number of generations in EGGC was lower than that in the classical algorithm of GC, the

number of evaluations in EGGC was a little higher; the explanation is that after each

crossover, there are some more evaluations that are performed for all chromosomes in the

replacement area of the offspring. In conclusion, for this function, the two algorithms perform

in a very similar manner.

Measures
CDE and

MCDE
MMDE GC EGGC

No. of runs 30 30 30 30

Accuracy global optima 10
-5
 10

-5
 10

-5
 10

-5

Accuracy local optima - - 10
-4
 10

-4

Success rate (%) 100 100 100 100

Mean evaluation calls 62 645 14 610 19 923 19 980

Table 3. Comparisons of algorithms for the Six-Hump Camel Back function

The aim for the Schaffer function (Figure 5) is to detect the global optimum f2(x, y) = 0

that can be escaped because of the high number of local optima around it and because the

difference between the values of the local optima and the value of the global optimum is very

small (of the order 10
-3
). This is the reason why parameters for f2 were chosen such (Table 8)

that the entire search space was covered.

 (a) (b)

Figure 5. The Schaffer function. (a) All optima detected by EGGC algorithm (b) The global optimum detected

by the algorithm.

 11

 (a) (b)

Figure 6. Same Schaffer function represented on a smaller interval, [-3, 3]
2
. There are two different view

points here: (a) shows the detected global optimum (the hill), its surrounding valley and the nearby encircling

hills.; (b) illustrates the slight difference between the global optimum and the surrounding local optima.

While in Figure 5 it cannot be easily noticeable how small the difference between the

global optimum and the very close local optima around it is, Figure 6 takes us closely to the

global optimum area, by reducing the function interval representation. As noticeable from

Table 4, the original GC algorithm, although performing well, needs many more evaluations

than EGGC.

Measures GC EGGC

No. of runs 30 30

Accuracy global optimum 10
-6
 10

-6

Success rate (%) 100 100

Mean evaluation calls 658 211 349 712

Table 4. Performance of GC and EGGC on the Schaffer function

 The Himmelblau function has four global optima (Figure 7), f3(x, y) = 200.

 12

Figure 7. Himmelblau function and its global optima found by EGGC algorithm

In [Bea93], the optimization of Himmelblau function was tested using a sequential

niche technique; again, obtained results cannot be directly compared with those obtained by

GC/EGGC due to the fact that in [Bea93], in order to detect all the four optima, several runs

(6.1, on average) of the algorithm were necessary. Additionally, the desired accuracy was not

specified. Using the EGGC algorithm, all four optima were detected for each of the 30 runs

with the accuracy ε = 10
-5
. A performance comparison between GC and EGGC is given in

Table 5.

Measures GC EGGC

No. of runs 30 30

Accuracy global optima 10
-4
 10

-4

Success rate (%) 100 100

Mean evaluation calls 87 307 97 817

Table 5. Performance of GC and EGGC on the Himmelblau function

 Schwefel function (Figure 8 illustrates the two-dimensional case) is a well known

benchmark function which is very misleading for evolutionary algorithms; it has a high

number of local optima and the global one can easily be missed. The aim for it is to find the

global optimum f4(x) = 418.9829n. In this paper, f4 was considered in turn for n = 1, 2, ...

100. Although radii-based evolutionary algorithms usually have difficulties with high-

 13

dimensional test problems, EGGC algorithm detects the optimum with an accuracy of ε =10
-2
,

even for n = 100, in all 100 runs, but at the expense of a high number of fitness evaluations.

Accuracy improves when decreasing the value of n for the function.

Figure 8. Schwefel function for n = 2 and the optima detected by EGGC algorithm

The Schwefel function was also tested with the original GC algorithm which detected

the optimum for n = 100 with similar accuracy, but needed even more fitness evaluations than

EGGC. We present a comparison of both algorithms and different performance measures for

n = 10 and ε = 10
-2
 in Table 4.6.

Measures GC EGGC

No. of runs 30 30

Mean evaluation calls 1 819 593 1 545 752

Mean generations 48 747 39 043

Mean best fitness 4189.827822 4189.827956

Table 6. GC and EGGC performance on the Schwefel function when n = 10

 Comparisons of results obtained after applying EGGC for the Schwefel function were

performed to those in [Gord93]. In the latter, authors presented the performance of four global

evolutionary algorithms, four island algorithms and one cellular algorithm, on the shifted

 14

Schwefel function with n = 1, 2,..., 10. In the first category, a simple genetic algorithm

(SGA), an elitist SGA (ESGA), the parallel CHC (pCHC) and the Genitor algorithm were

present. The second category contained island-SGA (I-SGA), island elitist SGA (I-ESGA)

island-pCHC (I-pCHC) and island-Genitor (I-Genitor). The algorithms were run for a set

number of generations and the number of runs (out of 30) in which the global optimum was

found (denoted by ns) was reported, along with the mean best fitness of the 30 runs (denoted

by MBF in Table 7). Note that fitness values are normalized so that the global optimum is at

0.0.

Algorithm Ns MBF

SGA 0 17.4

ESGA 16 17.3

pCHC 15 5.9

Genitor 20 13.2

I-SGA 9 16.5

I-ESGA 13 2.6

I-pCHC 28 0.2

I-Genitor 24 0.9

Cellular 26 0.7

Table 7. Performance of different evolutionary techniques on the Schwefel function taken from

[Gord93]

 Table 8 contains the empirically determined EGGC parameter values for the four

functions. Mutation with normal perturbation was used in all cases; the value of the mutation

strength directly depends on the size of the interval and implicitly on the search space size. In

the case of the Schwefel function, higher mutation strength was chosen in the beginning, to

escape local optima. The value was afterwards decreased by n/100 every 100 generations,

where n represents the number of dimensions. The values for mating and merging radii were

chosen in the same manner, thus depending on the search space size. Replacement radius for a

given chromosome is generally chosen to be equal to the mating value of that individual.

However, for problems with large plateaus in the fitness landscape, by choosing a different

value for the replacement from that of the mating radius, faster convergence can be achieved

(see Tables 6 and 8 vs. Table 9 for f4). On the other hand, for problems with very close

optima, its value must be chosen again not equal to the mating radius (see f1 in Table 8), in

 15

order to obtain all optima. The last parameter from Table 8 gives the number of generations

without any improvement which is necessary to determine termination of the algorithm. For

the Schaffer and Schwefel functions, the stop condition was established to be the moment

when the algorithm achieves the desired accuracy because only the global optimum had to be

determined.

Parameters f1 f2 f3 f4

No. of chromosomes 100 2 000 150 500

Mutation strength 0.1 0.1 0.5 25n

Mating radius 0.14 0.1 2 15n

Replacement radius 0.1 0.1 2 15n

Merging radius 0.14 0.1 0.02 12n

Mutation probability 0.4 0.4 0.4 0.4

No. improvement times 100 - 50 -

Table 8. Parameters of the EGGC algorithm for all functions

To strengthen the assumption that for the tested high dimensional problem, EGGC is

really faster than the original GC algorithm, a recent parameter tuning method, SPO,

developed by colleagues at Dortmund University, ([Bar04], [Bar05]), was applied for the 10

and 20-dimensional Schwefel function. The response value Y (quality criterion) was set to the

average number of evaluations (AES) until reaching the global optimum with accuracy 10
-2

(Table 9).

Parameter name N/R Min Max GC EGGC

No. of chromosomes N 10 500 10 13

Mating radius R+ 0.01 5.0 3.6752 2.9366

Replacement radius R+ 0.01 5.0 - 4.748

Merging radius R+ 0.01 5.0 1.275 3.9197

Mutation strength R+ 1.0 250.0 238.45 231.08

 16

Mutation probability R+ 0.0 1.0 0.6185 0.8575

Mutation scaledown N 10 1000 368 625

No. improvement times N 1 200 167 46

AES, 32 runs - - - 1.69E+5 1.45E+5

AES, standard deviation - - - 5.92E+4 3.63E+4

Table 9 Algorithm design for optimizing the 10-dimensional Schwefel function with GC and EGGC.

The two last columns give the best found configurations, the last lines the resulting AES measures

with standard deviations.

Results show that for both algorithms the AES decreased considerably, to ≅10% of the

original values reported in Table 6. A t-test confirms that the true means for GC and EGGC

are different with 95% confidence (p-value 0.036), so one may conclude that EGGC is indeed

faster on this problem. However, the difference is quite small - around 15% - and may be

statistically significant, but of little importance for practical uses. Surprisingly, many

optimized parameter values are very similar for the two algorithms, e.g. number of

chromosomes, mating radius and mutation strength and probability. In contrast to that, the

merging radii are chosen differently; larger than the mating radius for EGGC and smaller for

GC. Nevertheless, other good configurations found during tuning indicate that smaller

merging radii also work for EGGC.

From these first results, and supported by our previous findings, we learned that

EGGC may be advantageous for higher dimensional problems. Consequently, we performed a

second comparison for the same test function in 20 dimensions, this time allowing for larger

radius values. The outcome (Table 10) unambiguously favours EGGC over GC, thereby

validating our assumption. However, the maximum radii tested may still be too small;

increasing them may lead to even better speedup.

Parameter name N/R Min Max GC EGGC

No. of chromosomes N 10 500 24 10

Mating radius R+ 0.01 15.0 11.695 11.02

Replacement radius R+ 0.01 15.0 - 9.6561

Merging radius R+ 0.01 15.0 14.748 3.81

 17

Mutation strength R+ 1.0 250.0 242.16 237.43

Mutation probability R+ 0.0 1.0 0.6705 0.6185

Mutation scaledown N 10 1000 269 238

No. improvement times N 1 200 8 167

AES, 32 runs - - - 3.32E+5 1.07E+5

AES, standard deviation - - - 1.10E+5 2.26E+4

Table 10. Algorithm design for optimizing the 20-dimensional Schwefel function with GC and

EGGC; the maximum radii are increased compared to Table 9.

 Through the increased exploitative nature of EGGC, it seems that a better equilibrium

between exploration and exploitation than in the standard GC algorithm is established. This

leads to two advantages in using EGGC.

First, it proves to be very accurate and stable in very hard multimodal cases. A first

situation is that of the difficulty in locating the local optima, e.g. the Six-Hump Camel Back

function. Another hard situation would be very distant optima, e.g. the Schwefel function,

where other algorithms often miss the global optimum. Another situation is having more

global optima which are not easily distinguishable in the fitness landscape, like in the case of

the Himmelblau function. An even harder situation is that of local optima lying too close to

the global optimum - thus an evolutionary algorithm usually gets stuck in a local optimum;

this is the case with the Schaffer function. Some of the evolutionary algorithms fail in some of

these cases, some fail in other cases. The classical GC algorithm, on the other hand, also

performs well in this respect, but its speed of convergence is not very good for functions with

many local optima very near to the global optimum, e.g. the Schaffer function and, especially

in the case of more complex problems (n-dimensional problems), e.g. the Schwefel function.

As the question of computational time arises, for many low-dimensional multimodal

functions, both algorithms are surely not competitive to other, namely non-evolutionary

algorithms. For the other cases, i.e. local optima and global optima almost indistinguishable

and n-dimensional function optimization with high values for n, for instance, both EGGC and

GC perform accurate and stable; however, EGGC is significantly faster.

Another important feature of proposed algorithm is the new parameter, the

replacement radius. Together with the generational scheme, it seems to have brought more

power to EGGC. For instance, for the Schwefel function, where the optima are far from each

 18

other, this parameter promotes rapid movement of the chromosomes through the search space.

In the Six-Hump Camel Back function, where the optima are very close to each other, the

parameter is responsible for the small steps necessary not to escape them.

5. EGGC as Engine for a Learning Classifier System

 Instead of using an unimodal genetic algorithm for the development of a learning

classifier system (LCS), EGGC is chosen to be applied for classifying data by means of

machine learning; it looks like a good choice from many points of view (that are to be

discussed later in this report) but especially because its multimodality; thus, multiple rules

may be built for classifying the objects in the considered data sets. This section continues with

a short description of LCSs.

5.1. Learning Classifier Systems

 A learning classifier system represents a machine learning system that uses an

evolutionary algorithm as a rule discovery component [Dum00a], [Mic92]. The rules (or

productions, which are simple if-then rules) represent a population that is evolved by an

appropriate evolutionary algorithm; the rules cover the space of possible inputs and they are

then evolved in order to successfully be applied to the problem to be solved - the problems

may range from data mining to robotics.

 There are two important families of LCSs: the Pittsburgh and Michigan approaches. In

a Pittsburgh-type LCS, each individual represents an entire set of rules. The individuals

compete among themselves and only the strong ones survive and reproduce. This is achieved

by means of natural, proportional selection and variation operators; therefore, Pittsburgh

approach uses a typical evolutionary algorithm (EA) for the learning problem. What remains

to be solved is the representation problem and the way individuals adapt to their environment.

Usually, in a chromosome there also appear operators from propositional logic, like

disjunction and/or conjunction.

In a Michigan-style LCS, each individual of the population represents a unique,

distinct rule, so the EA evolves a set of rules; the population represents the rule set needed to

solve the problem. The goal here is not to obtain the best individual, but to find the best set of

chromosomes (rules) in the end of the algorithm. Usually, chromosomes representation is

 19

divided into two parts - one is the condition part and contains the values for the attributes that

appear in the condition of the rule and the other part consists of the conclusion of the rule. A

credit assignment system is used in order to reward the better rules in a higher proportion or,

at the same time, to penalise the worse rules. When new entities (rules) enter the population

through mutation and/or recombination, usually crowding methods are utilised in order to

introduce them; in this way, they replace only very similar individuals in the population. This

technique is especially used because, in this problem case, not the best chromosome is desired

most, but a set of chromosomes (rules) that, when applied, gain an optimum result for the

problem to be solved.

5.2. EGGC Learning Classifier System

 An LCS inspired from the Michigan family is presented. It is applied for the

classification of two data sets that come from the UCI repository of machine learning

databases ([Pre94]); one of them is Pima Indians Diabetes Database and the other one is the

Iris Plants Database. Based upon some values the patients have for their attributes, the first

task is to predict whether they suffer of diabetes or not and the second task is, again, based on

the values of the attributes the iris flower have, to predict their classes.

In each of the two cases, the data set, containing patients or flowers, respectively, is

divided in two parts – a training set and a test set. The LCS uses the objects in the training set

and the values for their attributes for producing classification rules that are used in the

decision-making process. The rules are finally used to predict the class for each of the object

(patient or flower, depending on the data set) in the test set.

Present model offers an easier alternative to the credit assignment system proposed by

Holland in order to solve the multimodal optimization problem within the Michigan approach.

And proposed replacement is EGGC, since it has many times proven to be a very efficient

way in determining multiple optima. Thus, the combination between the Michigan approach

and the GC engine seems like a good match in the domain of learning classifier systems.

5.3. Application to Pima Indian Diabetes Database

All patients in the data set are females of at least 21 years old, of Pima Indian heritage,

living near Phoenix, Arizona, USA. There are eight attributes (either discrete or continuous)

 20

containing personal data, e.g. age, number of pregnancies, and medical data, e.g. blood

pressure, body mass index, result of glucose tolerance test etc.

The last attribute is a discrete one and it offers the diagnosis, which is either 0

(negative) or 1 (positive). 34.9% of the patients in the dataset are assigned diabetes positive.

The total number of cases is 768. The data is complete, according to its documentation;

nevertheless, there are some 0 values of attributes that were not reported as missing data, but

look a bit strange. No replacement or deletion of these values was undertaken in present

paper.

Each chromosome will encode an IF-THEN rule. A chromosome contains therefore

nine genes, one for each attribute and one for the outcome; first eight genes are real valued

while the last is a binary one and it gives the output of the chromosome (conclusion of the

rule encoded). In conclusion, the condition of the rule is a conjunction of personal data and

symptoms and its conclusion is the diagnosis.

The rules (chromosomes) are evolved against the training set. The fitness of a

chromosome is computed as its distance to all patients in the training set that have the same

outcome. The aim is to minimize distances, conceiving thus good rules for the diagnosis they

represent. A rule is considered of high-quality if it matches the condition part of the data in

the training set with same outcome as itself.

Having a chromosome c = (c1, c2, …, c8, c9) and a patient from the training set p = (p1,

p2, …, p8, p9), the distance between c and p is computed by:

d(c, p) = ∑
= −

−8

1

||

i ii

ii

ab

pc
 (1)

where ai and bi represent the lower and upper bounds of the i-th attribute. As the values for

the eight attributes belong to different intervals, the distance measure has to refer to the

interval bounds.

Convex crossover was used, with the coefficients biased by the fitness of the two

parents involved. Mutation is with normal perturbation. Values for the parameters of the

EGGC algorithm are specified in Table 12.

difi denotes the difference between the bounds of the interval corresponding to

attribute i. Replacement radius was taken equal to the mating radius for both applications. The

stop condition of the algorithm is given by a number of generations that can pass without any

improvement for the solutions; this value was considered to be 10.

At termination of the algorithm, two chromosomes are obtained, one for each class.

These chromosomes are tested against the data in the test set and accuracy is computed. The

 21

ratio between training and test sets was set to 75%-25%, as established by Prechelt in [Pre94]

with respect to the diabetes task.

Three kinds of tests were conducted with different possibilities of choosing the data

that would go into training and test, respectively. The two sets are obviously disjoint. First,

test sample cross-validation was performed. The first 75% of the data were taken to compose

the training set and the remaining data were assigned to the test set, as in the standard manner

of using this data set, according to [Pre94]. The obtained mean accuracy for the test set in 100

runs was 75.06%. Second, another test was done according to rules of splitting that should be

used for this data set, as established by Prechelt in [Pre94]. The data set is sequentially split

into 75% training - 25% test to give 4 different combinations of these two sets, i.e.:

• first 75% of the cases for training and last 25% for test

• reversely, first 25% data for test and last 75% for training

• first 50% data for training, next 25% for test and last 25% for training, as well

• first 25% data for training , next 25% for test and last 50% for training, as well

The algorithm is subject to 100 trials again. The mean accuracy obtained for the test

set was 69.672%. Last, random cross-validation was performed, i.e. the training set containing

75% data and the test set containing 25% data were randomly generated in each run. The

algorithm was applied 100 times and the obtained mean accuracy was of 69.515%.

However, in many tests, it was noticed that when the chromosome pool still has four

chromosomes left and has not converged yet, a higher accuracy of 80% is obtained. This leads

to the idea that in the structure of each of the two obvious clusters two other subclusters are

included. Thus, with the best instead of last accuracy, better results can be obtained. Note that

applying SPO parameter tuning here did not lead to any improvement.

Literature reports accuracy on the diabetes task ranging from 62% to 80.7%.

Unfortunately, not many papers specify variables of the testing environment; thus, proposed

algorithm cannot be objectively compared with them. Yet, there are some papers which

specify them, although they differ in training/test sets sizes and method of assigning data to

each of them. Authors also mention they did not delete any of the lines containing missing

data. When not specified, the number of runs is presumed to be ten.

In [Smi88] a neural network algorithm to forecast the onset of diabetes mellitus was

used. From the 768 samples, an equal number of 170 samples were selected randomly to

represent each of the two possible results of diabetes test: positive and negative. The

remaining 428 were used as validating samples. The mean of five runs was 75.12%. In

 22

[Au01], a total of 30% of the records were randomly selected as test set. Rules were mined

from the remaining 70% of the data. The algorithm was applied ten times. If the authors were

to define a baseline accuracy to mean the accuracy obtained by simply assigning the most

frequently occurring values to the attributes being predicted, it is 65.1%.

One approach our results can be directly compared to is [Smt04]. Using a neural

network, 75% training - 25% test, the rules established by Prechelt, 100 trials and no

replacement or deletion of missing data, the mean accuracy was obtained as 65.55%. Another

approach that allows for objective comparison of results is [Yao97]. A new evolutionary

system to evolve artificial neural networks was proposed, test sample cross-validation was

used, 30 runs of the algorithm were conducted and again no replacement or deletion of

missing data was done. The obtained mean accuracy on the test set was of 77.6%, the best

accuracy 80.7%.

In a succinct wrapping up, Table 11 contains a comparison between the accuracy

obtained by EGGC versus those of the two latter algorithms. The original GC algorithm was

not applied.

Algorithm
Number of

runs

Accuracy

(%)

EGGC with test sample cross-validation 100 75

EGGC with sequential splitting 100 69.67

EGGC with random cross-validation 100 69.5

EGGC best accuracy instead of last 100 80

Neural Network (NN) with sequential splitting 100 65.5

Evolved NN with test sample cross-validation 30 77.6

Evolved NN with cross-validation - best result within

specified number of runs
30 80.7

Table 11. Results of different techniques for the Diabetes Diagnosis Problem in comparison to

EGGC

5.4. Application to Iris Database

 Same LCS that uses EGGC as an engine is applied to another classification problem.

The Iris Plants Database contains 3 classes (3 types of iris plants), with 50 instances for each

class and 4 numerical attributes which represent length and width of the petals and sepals,

 23

respectively. The three classes are equally distributed. According to database documentation,

one class is linearly separable from the other two.

There are two ways of dividing the database into training and test sets: on the one

hand, two thirds of each of the three classes was considered as training set and the rest as test

set; on the other hand, the training set was randomly chosen and the test set consisted of the

remaining instances. In the first case, the three classes are equally distributed into training and

test sets.

Chromosome representation is similar to the one from the diabetes diagnosis problem,

i.e. c = (c1, c2, …, c4, c5), where the first four genes correspond to the attributes of an iris plant

and the last one embodies its class. Same distance as in (1) - with four instead of eight as the

upper bound of the sum - was used for computing differences between individuals. Same

variation operators were considered. The values that were used for the parameters of the

evolutionary algorithm are given below in Table 12.

Number of

chromosomes

Mutation

probability

Mating

region

Merging

radius

Mutation

strength

No

improvement

times

100 0.4 0.3 0.03 difi / 100 10

Table 12. Parameters of the EGGC algorithm for both classification problems

The final result of the LCS has to consist of at least three rules (chromosomes), that is

at least one for each class. The accuracy for the first mode of fixing the training and test set

varies between 94% and 98%, while for the second way of selecting the two disjoint sets the

accuracy ranges from 88% to 96%. Besides accuracy from the third row in Table 13, where

the percent is the best found in 100 runs (obtained even during these runs and not necessarily

at the end of them), all other values in the third column are obtained by computing the

average for the accuracies obtained at the end of each of the 100 runs.

 Unfortunately, in some literature approaches that also used this database there were no

clear descriptions of the way training and test sets were chosen, so direct comparisons

between their results and those obtained by EGGC are not very accurate. For instance, in

[Vee96], a genetic programming model was tested on the Iris database, while in [Yan91],

some neural networks algorithms (backpropagation algorithm, denoted by BP, and cascade-

correlation algorithm, in short CCA) were applied in this respect. Results are outlined in

Table 13.

 24

Algorithm
Number of

runs

Accuracy

(%)

EGGC with equally distributed cross-validation 100 95.76

EGGC with random cross-validation 100 92.84

EGGC best accuracy instead of last 100 98

Genetic programming ([Vee96]) 100 92.7

Neural Network BP with random cross-validation 10 93.2

Neural Network CCA with random cross-validation 10 92.6

Neural Network modified CCA with random cross-

validation
10 97

Table 13 Results of different techniques for the Iris Plants Database in comparison to EGGC

6. Conclusions and Future Work

 A multimodal evolutionary algorithm has been tested for the optimization of four

multimodal functions and has been used as an engine for a LCS; the obtained classifier system

was applied to two classification problems.

Referring to the modified LCS, some possible progresses are discussed in what

follows; some of them are already being tested and promising early results were obtained,

while some others are to be experimented in the near future.

One possibility, suggested at the HCMC conference ([Sto05b]), is to build separate

rules for different decades; therefore, rules are built depending on the age attribute. The

explanation was that people that are young are very likely to have different reasons to suffer

of diabetes than the others or they may have a different type of diabetes.

Experiments have been conducted and results showed indeed an important increase of

the classification accuracy: 77.08% of the patients in the test set were correctly classified,

using test sample cross-validation, in comparison to 75% when plain EGGC was used. Two

decades were considered, so that all patients of age between 21 and 51 are in the first decade

and patients of age between 52 and 81 in the second one. Consequently, (at least) four rules

are obtained, that is (at least) two for each decade: one for the ill patients and one for the

healthy ones.

Another possibility (suggested at the same HCMC conference) is to weight each of the

eight attributes. In this manner, not all attributes have the same importance; the degrees of

importance are detected either using a typical genetic algorithm or they may be evolved

 25

together with the values for attributes using EGGC. In the first case, the EGGC algorithm

provided the rules to be applied, that is the values for the eight attributes in each of the two

cases; then, independently, a typical genetic algorithm evolved eight values, each between 0

and 1, in order to find the proper weights for the attributes of the rules. The weights are

evaluated with respect to the accuracy obtained by application of the rules to the training set –

so the higher the accuracy on the training set, the better the weights are. This algorithm was

tested in both situations, with two decades and without them. Without decades, the algorithm

provides accuracy around 77%; what is unusual is that, when using decades, the result is not

very stable – it varies from 74.48% to 79.68%. Evolving the weights together with the values

for the attributes using EGGC did not offer good results.

A third possibility concerns the way the fitness function is applied to the individuals;

as all individuals represent rules, the fitness value of a certain chromosome c could be given

by:

f(c) =
y

x

e +1

where x represents the number of patients from the training set that are correctly classified by

the rule (chromosome) c and y says how many patients are wrongly classified by the same

rule; f is the fitness function. If c does not classify correctly any patient from the training set

then its fitness is considered to be zero. At the end of the EGGC algorithm, obtained rules are

applied to the test set and accuracy is computed.

 This mode of computing fitness evaluation should to be more efficient as it seems

more convenient that a chromosome is closer (regarding distance) to only a part of the

patients from training (and consequently test) set(s) and not to all of them as it was computed

in the present model. Curiously, this mode of computing fitness for chromosomes did not lead

to major improvement regarding accuracy on the test set; results were so far very similar to

those outlined in present paper.

A further improvement that is still to be done is to easily adjust the way merging takes

place: it should occur only if the obtained set of rules provides a better accuracy on the

training set.

7. References

 26

[Au01] W. H. Au, K. C. C. Chan, Classification with Degree of Membership: A fuzzy

Approach. In Proc. of the 1st IEEE Int’l Conference on Data Mining, San Jose,

CA, 2001.

[Bar04] T. Bartz-Beielstein, K. E. Parsopoulos, M. N. Vrahatis, Design and Analysis of

Optimization Algorithms using Computational Statistics, Applied Numerical

Analysis & Computational Mathematics (ANACM), Vol. 1, No. 2, pp. 413-433,

2004.

[Bar05] T. Bartz-Beielstein, New Experimentalism Applied to Evolutionary Computation,

Ph.D. dissertation, University of Dortmund, 2005.

[Bea93] D. Beasley, R. Bull, R. R. Martin, Sequential niche technique for Multimodal

Function Optimization, Evolutionary Computation, Vol. 1, No. 2, pp. 101-125,

1993.

[Dum00a] D. Dumitrescu, B. Lazzerini, L.C. Jain, A. Dumitrescu, Evolutionary

Computation, CRC Press, Boca Raton, Florida, 2000.

[Dum00b] D. Dumitrescu, Genetic Chromodynamics, Studia Universitatis Babes-Bolyai

Cluj-Napoca, Ser. Informatica, vol. 45, no. 1, pp. 39-50, 2000.

[Gord93] V. S. Gordon, L. D. Whitley, Serial and Parallel Genetic Algorithms as Function

Optimizers, Proceedings of the 5th International Conference on Genetic

Algorithms, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp.

177-183, 1993,.

[Gor04] R. Gorunescu, P. H. Millard, An Evolutionary Model of a Multidisciplinary

Review Panel for Admission to Long-term Care, ICCC 2004, Baile – Felix,

Oradea, 2004, pp. 181 - 185.

[Mic92] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,

2nd Edition, Springer-Verlag, 1992.

[Lee01] K. - Y. Lee, M. I. Roh, An Efficient Genetic Algorithm using Gradient

Information for Ship Structural Design Optimization, 161 - 170, Schiffstechnik

Bd. 48 – 2001/Ship Technology Research Vol. 48 - 2001.

[Pre94] L. Prechelt, Proben 1 – a Set of Benchmark and Benchmarking Rules for Neural

Network Training Algorithms. University of Karlsruhe, Institute for Program

Structures and Data Organization (IPD), Tech. Rep. 21/94, 1994.

[Smi88] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, R. Johannes, Using

the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus,

 27

Proceedings of 12th Symposium on Computer Applications in Medical Care, R.

A. Greenes, Ed. IEEE Computer Society Press, pp. 261–265, 1988.

[Smt04] R. Smithies, S. Salhi, N. Queen, Adaptive Hybrid Learning for Neural Networks,

Neural Computation, vol. 16, no. 1, pp. 139–157, 2004.

[Sto04] C. Stoean, R. Gorunescu, M. Preuss, D. Dumitrescu, An Evolutionary Learning

Spam Filter System, SYNASC 2004, Timisoara, Romania, Symbolic and

Numeric Algorithms for Scientific Computing, International participation and

committee, D. Petcu, V. Negru, D. Zaharie, T. Jebelean (Eds.), Mirton Press, pp.

512-522, September 26-31, 2004.

[Sto05a] C. Stoean, M. Preuss, R. Gorunescu, D. Dumitrescu, Elitist Generational Genetic

Chromodynamics - a New Radii-Based Evolutionary Algorithm for Multimodal

Optimization, The 2005 IEEE Congress on Evolutionary Computation - CEC

2005, Edinburgh, UK, September 2-5, pp. 1839 - 1846, 2005.

[Sto05b] C. Stoean, R. Stoean, M. Preuss, D. Dumitrescu, Diabetes Diagnosis through the

Means of a Multimodal Evolutionary Algorithm, Proceedings of the First East

European Conference on Health Care Modelling and Computation - HCMC

2005, Craiova, Romania, pp. 277-289, 2005.

[Sto05c] Catalin Stoean, D. Dumitrescu, Elitist Generational Genetic Chromodynamics as

a Learning Classifier System, Annals of University of Craiova, Mathematics and

Computer Science Series, in press.

[Sto05d] Catalin Stoean, D. Dumitrescu, New Algorithms within Genetic

Chromodynamics. Applications to Function Optimization and Classification,

Technical Report, Department of Computer Science, Faculty of Mathematics and

Computer Science, Babes-Bolyai University.

[Vee96] C. J. Veenman, Positional Genetic Programming: Genetic Algorithms with

Encoded Tree Structures, Master's thesis, Vrije Universiteit, Amsterdam, 1996.

[Yan91] J. Yang, V., Honavar, Experiments with the Cascade-Correlation Algorithm,

Tehnical Report 91-16, Iowa State University, USA, 1991.

[Yao97] X. Yao, Y. Liu, A New Evolutionary System for Evolving Artificial Neural

Networks. IEEE Transactions on Neural Networks 8(3), pp. 694-713, 1997.

[Zah04] D. Zaharie, Extensions of Differential Evolution Algorithms for Multimodal

Optimization, Symbolic and Numeric Algorithms for Scientific Computing,

Timisoara, Romania, pp. 523-534, 2004.

 28

