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Abstract

The thesis presents a novel evolutionary technique constructed as a resemblant alternative of the

standard support vector machines paradigm. The approach adopts the learning strategy of the

latter but aims to simplify and generalize its training, by offering a transparent evolutionary sub-

stitute to the initial black-box. Contrary to the canonical technique, the evolutionary resembling

support vector machines can at all times explicitly acquire the coefficients of the decision func-

tion, without any further constraints. Moreover, in order to converge, the evolutionary approach

does not require properties of positive (semi-)definition for kernels within nonlinear learning.

The concept is furthermore extended to handle large amounts of data, a problem frequently

occurring e.g. in spam mail detection, one of the considered test cases. An adapted chunking tech-

nique is therefore alternatively used. In addition to the two different representations, a crowding

variant of the evolutionary algorithm is tested in order to investigate whether the performance

of the method is preserved; its global search capabilities would be important for the prospected

coevolution of non-standard kernels. An all-in-one evolutionary framework that also evolves the

support vector machine hyperparameters is eventually proposed; the result, of valuable practical

importance, confirms its employment.

Several potential structures, enhancements and additions are hence proposed and experiments

on various configurations of real-world problems prove the validity of the new approach in terms

of flexibility, prediction accuracy and runtime.

21



Chapter 1

Introduction

1.1 Problem Statement. Motivation and Aims

Support vector machines are a modern and powerful machine learning technique that has achieved

competitive results in targeting data mining tasks, such as classification and regression. De-

spite the originality and performance of the learning vision of support vector machines, the in-

ner training engine is intricate, constrained, rarely transparent and unable to offer convergence

for any decision function. This has offered the motivation to investigate a resembling alterna-

tive training, based on evolutionary algorithms, which are known to be adaptable and robust

[Dumitrescu, 2000], [Dumitrescu et al., 2000], [Eiben and Smith, 2003].

There have been numerous and recent other liaisons between support vector machines and

evolutionary algorithms [Eads et al., 2002], [de Souza et al., 2005], [Friedrichs and Igel, 2004],

however, the approach proposed herein is significantly different. Within the evolutionary resem-

blant to support vector machines, the learning path remains unchanged, but the coefficients of the

decision function can now be evolved with respect to the optimization objectives of accurateness

and generalization. The reason is to overcome the initial drawbacks from a remote perspective

upon an otherwise effective training. Apart from the theoretical reasons, evolutionary resem-

bling support vector machines offer a straightforward and efficient tool for practical applications

[Stoean et al., 2006d], [Stoean et al., 2007a], [Stoean et al., 2007b].

22
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1.2 Contributions

The original aspects of this dissertation can be summarized as follows:

• The evolutionary resembling technique considers the learning task as in support vector ma-

chines but uses an evolutionary algorithm to solve the optimization problem of determining

the decision function.

• Classification and regression particularities are treated separately. The optimization prob-

lem is tackled through two possible evolutionary algorithms; one allows for a more re-

laxed evolutionary learning condition [Stoean et al., 2008b], while the second is more sim-

ilar to support vector training [Stoean et al., 2007a]. Validation is achieved by consid-

ering five diverse real-world learning tasks [Stoean et al., 2008b], [Stoean et al., 2006h],

[Stoean et al., 2006i], [Stoean et al., 2006d], [Stoean et al., 2007c].

• Besides comparing results, the potential of the utilized, simplistic evolutionary algorithm

through parameterization is investigated [Stoean et al., 2007a], [Stoean et al., 2007b].

• To enable handling large data sets, the first approach is enhanced by the use of a chunking

technique, resulting in a more versatile technique [Stoean et al., 2007a].

• The behavior of a crowding-based evolutionary algorithm on preserving the performance

of the technique is examined with the purpose of its future employment for the coevolution

of nonstandard kernels [Stoean et al., 2007a].

• The second methodology, which is more straightforward, is generalized through the addi-

tional evolution of internal hyperparameters within support vector machines; a very general

method of practical importance is therefore achieved [Stoean et al., 2007b].

• The evolutionary approach demonstrates to be an efficient tool for real-world application

in vital domains like disease diagnosis and prevention or spam filtering. Accordingly, var-

ious practical tasks are addressed and solved by proposed technique: Diabetes mellitus di-

agnosis [Stoean et al., 2006i], spam detection [Stoean et al., 2006g], [Stoean et al., 2007c],

iris recognition [Stoean et al., 2008b], soybean disease diagnosis [Stoean et al., 2006h] and

Boston housing [Stoean et al., 2006c], [Stoean et al., 2006d].
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Obtained results have proven the suitability and efficiency of the proposed technique, so, in

this context, the evolutionary resembling learning approach qualifies as a viable simpler alterna-

tive to the classical support vector machines. Nevertheless, the multicriterial optimization task

can be further pursued through a specific evolutionary mechanism. More important, as a large

potential of the evolutionary resemblant lies in the possible immediate implementation of uncon-

strained kernels, a method for their evolutionary determination must be appointed.

The thesis contributes some key elements to both evolutionary algorithms and support vector

machines:

• The evolutionary resembling support vector machines combine the strong characteristics

of the two important artificial intelligence fields, namely: The original learning concept of

support vector machines and the flexibility of the direct search and optimization power of

evolutionary algorithms.

• The novel alternative approach resolves the complexity of the support vector training.

• The proposed resemblant offers the possibility of a general evolutionary solution to all

support vector machine components.

• The evolutionary resembling support vector machines open the direction towards the evo-

lution and employment of nonstandard kernels.

1.3 Thesis Organization

The work is organized as follows.

Chapter 2 outlines the general working scheme of an evolutionary algorithm. The main ele-

ments and mechanisms are explained and exemplified.

Chapter 3 introduces the basic aspects of support vector machines and describes the geomet-

rical learning idea within. The particular challenges and solutions to classification and regression

tasks are presented in turn.

Chapter 4 brings along the principles and methods of the standard training manner in deter-

mining the optimal decision surface inside support vector machines. The conditions, constraints

and solving steps are illustrated in detail. The demonstrations to theorems and propositions that
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are not general but pertain to particularities of support vector machines have been adapted and

are illustrated.

Chapters 5 and 6 present the evolutionary resembling technique. The two potential encodings

of the training problem are reported and analyzed. The multiple improvements for a realistic

perspective are proposed and tested. The novel paradigm is validated on various real-world tasks

both for generality and practical reasons. Critical assessment and comparison to the rival canoni-

cal support vector machines is additionally undertaken.

Chapter 7 shows the real-world problems that had been targeted and solved by means of the

evolutionary resembling support vector machines. Obtained results are revealed in comparison to

those of the classical paradigm and of other successful artificial intelligent techniques.



Chapter 2

Overview of Evolutionary Algorithms

2.1 Aims of This Chapter

This chapter puts forward the basic aspects involved in the natural paradigm of evolutionary

computation (EC) . The biological inspiration, elements and general scheme of an evolutionary

algorithm (EA) are described. The role of each EA component is explained and the most common

choices for every element are outlined. The eventual purpose of this chapter is to emphasize a

general evolutionary framework that can be established as a starting point towards a practical

solver for a considered problem.

2.2 Underlying Concepts

The pursuit of a solution to a problem could be imagined as a search held in the space of all poten-

tial solutions. If interest also lies in acquiring the best solution, search is doubled by an optimiza-

tion process. During the last decades, the development of search and optimization techniques has

changed course from the classical approaches, with restrictions, convergence issues and single

point movement, to some flexible classes of methods based on principles of evolution and heredi-

tary, the EAs [Baeck, 1996], [Baeck et al., 1997], [Dumitrescu, 2000], [Dumitrescu et al., 2000],

[Eiben and Smith, 2003], [Fogel, 1995], [Michalewicz, 1992], [Schwefel et al., 2003],

[Sarker et al., 2002].

The methods of EC are simple, general and fast, with several potential solutions that exist at

the same time. EAs are semi-probabilistic techniques that combine local search - the exploitation

26
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of the best available solutions at some point - with global search - the exploration of the search

space. The different properties of continuity, convexity or derivability that have been standardly

required for an objective function are of no further concern within EAs. As for success, an EA

obviously cannot outperform a problem tailored method but gains ground as concerns generaliza-

tion. Conversely, an EC technique is usually better than a random search strategy.

The EA idea finds its inspiration in what it is that governs nature. A population of initial

individuals (genomes) goes through a process of adaptation through selection, recombination and

mutation; these phenomena encourage the appearance of fitter solutions. The best performing

individuals are selected in a probabilistic manner as parents of a new generation and gradually

the system evolves to the optimum. The fittest individual(s) obtained after a certain number of

iterations is (are) the solution to the problem.

2.3 Components of an Evolutionary Algorithm

A canonical EA is defined by several main constituents [Dumitrescu et al., 2000], [Dumitrescu, 2000],

[Eiben and Smith, 2003]:

• a representation , an encoding for the candidate solutions (individuals, chromosomes)

• a fitness (evaluation, objective) function to measure the performance, quality of individuals

• a population of potential solutions and a method for generating its initial configuration

• a mechanism for parent selection

• a set of variation operators to create new individuals

• a means for survivor selection (replacement)

• a stop condition

• values for parameters: Population size, number of generations/fitness evaluations, recom-

bination and mutation probabilities, mutation strength.
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2.4 Design of an Evolutionary Algorithm

The standard behavior of an EA is outlined in Algorithm 1 [Dumitrescu, 2000],

[Dumitrescu et al., 2000], [Eiben and Smith, 2003] .

Algorithm 1 A canonical evolutionary algorithm
Require: A search/optimization problem

Ensure: The fittest individual(s)

begin

t← 0

initialize population P(t)

evaluate P(t)

while stop condition not reached do

t← t + 1

select parents in P(t) from P(t-1)

recombination on P(t)

mutation on P(t)

select survivors in P(t)

evaluate P(t)

end while

return fittest individual(s)

end

2.4.1 Representation of Individuals

Although EAs were originally imagined and designed to work with a binary string encoding

of potential solutions, their impact with real-world applications triggered the incorporation of

problem knowledge into the structure of an individual . Thus, genes can refer integers, real

numbers, ordinal values, strings, trees etc. It is common fashion that all individuals share the

same length.



CHAPTER 2. OVERVIEW OF EVOLUTIONARY ALGORITHMS 29

2.4.2 Fitness Function

The fitness function plays the role of the environment to which the individuals must adapt. It

integrates the objective function of the specific problem at hand and, depending on the case, can

or cannot suffer certain alterations.

2.4.3 Population and Initialization

A population of individuals intervenes in every iteration. Its cardinal is usually constant, but

may decrease/increase in special types of EAs. The initial configuration is usually appointed

of individuals whose every gene is generated in a pseudo-random manner with respect to the

corresponding domain of definition .

2.4.4 Parent Selection

The goal of parent selection is to offer, at every generation, more chances of reproduction to the

fittest individuals in the population. Its role is therefore that of exploitation of the best solutions

that have been obtained up to the current time. A parents pool is consequently formed through

a certain preferred and suitable mechanism. In what follows, we will refer to the most widely

employed [Dumitrescu, 2000], [Dumitrescu et al., 2000], [Eiben and Smith, 2003].

The usual choice is fitness proportional selection where every individual is assigned a se-

lection probability, which is taken as a measure of its absolute performance as compared to the

absolute fitness values of the other individuals in the population; the higher one’s fitness, the

greater the chance to be chosen. Although straightforward, there are nevertheless two drawbacks

to this type of parent selection: the dominance of a single fit individual (premature convergence)

or the quasi-random selection when there are only small differences between the fitness values of

individuals in a population (lack of selection pressure).

A more advantageous alternative way of selecting parents can be performed by ranking se-

lection. Every individual in the current population is evaluated and the population is ordered

decreasingly according to these values. Subsequently, a selection probability that corresponds to

the rank in this order and to the value of the pressure of selection is attributed to each individual.

The pressure of selection is defined as the mean number of offspring of the fittest individual and

is a constant of this selection mechanism, usually considered as a number from the [1, 2] interval.
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The fact that this approach relates on relative fitness makes it overcome the previously discussed

disadvantages.

The selection probabilities are typically implemented by the roulette wheel mechanism. The

cumulative probabilities are calculated and a roulette is built accordingly, where each slot reflects

the performance of an individual. Each time a spin takes place, one corresponding individual is

selected for the parents pool.

A third and perhaps the most simple and practical selection method is tournament selection,

which is also based on a relative fitness comparison. For the number of times required to fill the

parents pool, two or more individuals are randomly chosen and the best one of them, based on

their evaluations, is selected for reproduction.

2.4.5 Variation

Selection alone cannot introduce variation into the population. This task relies on the recombina-

tion and mutation operators .

Recombination

Recombination aims to achieve the exploration of the promising regions of the search space. In

this respect, it combines the genetic material of some (usually two) considered individuals. The

resulting offspring (generally one or two) have thus characteristics of both parents. The two

parents that undergo recombination are chosen probabilistically, according to the value that is

appointed to the corresponding parameter of the EA.

The process usually takes place as follows. For every individual in the current population, a

random number in the [0, 1] interval is generated; if it is smaller than the given recombination

probability , then the current individual is chosen for recombination. If the number of chosen

individuals is odd, then they recombine as pairs which are randomly formed. Otherwise, one

individual is deleted or another one is added from the parents pool, a decision which is also

randomly taken.

As concerns the different possibilities of recombination, several situations can be distin-

guished: Discrete, continuous or problem dependent mechanisms; the choice obviously depends

on the specific task and chosen encoding. The types are numerous, however only the most com-

mon schemes within the more general discrete and continuous representations are further outlined
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[Dumitrescu, 2000], [Dumitrescu et al., 2000], [Eiben and Smith, 2003].

For the discrete representation, the best known type is the one point recombination. A random

position is generated which is the point of split for the two parents. The resulting offspring

take the first part from one parent and the other from the second, respectively. A generalized

form is the multiple point recombination, where several cut points are considered. Furthermore,

within adaptive recombination, the splitting points also undergo evolution by adapting to previous

splits that took place. Additionally, segmented recombination is a variant of the multiple point

recombination where the number of points can vary from one individual to another.

Uniform recombination does not use split points. For every gene of the first offspring it is

probabilistically decided which parent gives the value of that component, while the correspond-

ing gene of the second offspring gets the value of that of the other parent. This operator could

also be considered such that the values for both offspring individuals are computed in the same

probabilistic manner, but independently.

Shuffle recombination is an add-on to an arbitrary discrete recombination scheme. The genes

of the two parents are shuffled randomly, remembering their initial positions. The resulting indi-

viduals may then undergo any kind of discrete recombination. Resulting offspring are un-shuffled.

These recombination mechanisms are obviously not suitable for a continuous encoding. In-

termediate recombination presumes that the value of each gene of the offspring is a convex com-

bination of the corresponding values of the parents.

Mutation

Through the use of mutation , which induces small changes to an individual, potential solutions

that could never be obtained otherwise are introduced in the population. The effect of mutation

is the modification of the values of several genes of an individual. The genes that undergo mu-

tation are chosen probabilistically, according to the value that is appointed to the corresponding

parameter of the EA.

For every individual in the current population and each gene of that individual, a random

number in the [0, 1] interval is generated. If the mutation probability is higher than the generated

number, then that gene suffers mutation. Sometimes global search is intended in the initial evolu-

tionary phases and local search (fine tuning) is planned towards the final steps of the EA. In this

respect, the mutation probability may decrease with the increase in the number of generations.
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Another distinct situation concerns those cases when the change of a gene lying at the beginning

of a individual could make a significant modification to the individual in question, while the same

change at the end of the individual would induce a less significant alteration; here, while the num-

ber of generations increases, the probability of mutation of the first genes in every individual may

decrease and that of the final ones increase.

There are several forms of this operator as well, again depending on the specific task and the

considered representation. The more usual situations of discrete and continuous encodings are

further outlined and the most frequent types are described [Dumitrescu, 2000],

[Dumitrescu et al., 2000], [Eiben and Smith, 2003].

In the particular binary case, a strong mutation presumes that, when a gene undergoes muta-

tion, 1 changes into 0 and 0 into 1. Weak mutation supposes that the above change does not take

place automatically as before, but 1 or 0 is probabilistically chosen and attributed to that position.

In this way, the newly generated value could be identical to the old one, so no effective change

would actually occur. For the universal discrete case, the flipping is generalized in the sense that

the value of a gene probabilistically changes into one of the allowed choices for that position.

For the continuous instances, mutation customary performs a small perturbation in the value

of the selected gene, which is induced by a parameter called mutation strength multiplied by a

number that is randomly generated, usually either following a uniform or normal distribution.

2.4.6 Survivor Selection

Any EA has to determine in what amount do the individuals in the population of one generation

find themselves among the individuals in the next generation or, in other words, survive that gen-

eration [Dumitrescu, 2000], [Dumitrescu et al., 2000], [Eiben and Smith, 2003]. Generally, the

population of the next generation is formed of the newly obtained individuals plus the individ-

uals that were not selected for reproduction; this means that the offspring resulting after either

recombination or mutation automatically replace their parents. Conversely, the offspring and the

parents may fight for a place in the subsequent generation. Another possibility is to copy, without

any modification, a fixed number of the best individuals from the current population to the next

and let the same individuals also participate in the parent selection.
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2.4.7 Stop Condition

The evolutionary process generally stops either after a predefined number of generations or a

certain number of fitness evaluations . There are also some situations when the EA is termi-

nated after a number of iterations with no fitness improvement or the solution is reached with the

desired accuracy or when the population diversity falls below a given limit [Dumitrescu, 2000],

[Dumitrescu et al., 2000], [Eiben and Smith, 2003].

2.5 Applications to Data Mining

EC methods have a wide range of applications, acting either as stand-alone or in hybridization

with problem-specific methods. As the practical side of this thesis targets the data mining domain,

many important evolutionary techniques that regard this direction and, moreover, have been con-

cerned with the particular problems of classification and clustering can be mentioned.

Two classical evolutionary classifiers are represented by the Michigan and Pittsburgh learn-

ing strategies. The Pittsburgh approach [Holland, 1986] aims to evolve a complete classification

rule set by encoding the entire structure into each individual. Conversely, the Michigan alter-

native [Michalewicz, 1992] considers every individual as the representative of one rule, uses a

credit assignment system to reward/penalize the collaboration between rules and struggles to

achieve the complete optimal rule set as the output of the EA. Automated classification can

be accomplished through the means of an evolution program that simultaneously searches for

both the optimum number of classes and the optimal classification [Luchian et al., 1994]. Co-

operative coevolution can also be used as a learning engine [Stoean et al., 2005]. Clustering

[Dumitrescu and Gorunescu, 2004] or classification [Stoean et al., 2008a] can be otherwise ap-

proached by certain multimodal EAs. As regards the hybridization of EAs with classification-

tailored methods, the combination with the powerful paradigm of neural networks [Yao and Liu, 1997]

can be as well successfully employed for the classification task. Additionally, the present thesis

will focus on the mixture of EAs with the other state-of-the-art learning technique of support

vector machines.
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2.6 Remarks

EAs are easy and straightforward for any task, while their performance as general optimizers is

very competitive. Their power and success lie in the simplicity of their mathematical functioning,

the naturalness of underlying metaphor and the easy tailoring for any given problem.



Chapter 3

Learning Within Support Vector Machines

3.1 Aims of This Chapter

This chapter presents the learning conception of the state-of-the-art technique of support vector

machines (SVMs) . The SVM paradigm represents a system for efficiently training linear learning

machines in kernel-induced feature spaces, while respecting the insights of generalization theory

and exploiting optimization theory [Cristianini and Shawe-Taylor, 2000].

SVMs have lately been established as a viable approach for classification and regression

[Haykin, 1999], [Hsu and Lin, 2004], [Mierswa, 2006b], [Olafsson et al., 2006],

[Trafalis and Gilbert, 2006], [Vapnik, 1995b]. The chapter outlines the SVM perception upon

learning and the principles that govern the technique (section 3.2). Classification and regression

have fundamentally different learning tasks and, consequently, SVMs approach them in distinc-

tive ways. The learning view upon classification of SVMs is targeted in section 3.3, while that

concerning support vector regression is pursued in section 3.4.

3.2 Fundaments of Support Vector Machines

Given {(xi, yi)}i=1,2,...,m, a training set where every xi ∈ Rn represents a data sample and each

yi corresponds to a target, a learning task is concerned with the discovery of the optimal function

that minimizes the discrepancy between the given targets of data samples and the predicted ones;

the outcome of previously unknown samples is then tested.

The SVM technique pursues equally classification and regression problems. The task for

35
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classification is to achieve an optimal separation of given data into classes. SVMs regard learning

in this situation from a geometrical point of view: They assume the existence of a separating

surface between every two classes labelled as -1 and 1. The aim then becomes the discovery of

the appropriate decision hyperplane.

The standard assignment of SVMs for regression is to find the optimal function to be fitted to

the data such that it achieves at most ε deviation from the actual targets of samples; the purpose

thus becomes to estimate the optimal regression coefficients of such a function.

3.3 Support Vector Machines for Classification

The placement of data samples to be classified triggers corresponding separating surfaces within

SVM learning . The technique basically considers only the general case of binary classification

and treats reductions of multi-class tasks; subsection 3.3.5 explains the possible methods to handle

the latter situation.

Essentially, while targeting classification, SVMs must obey a fundamental theoretical as-

sumption, the principle of structural risk minimization (SRM) [Vapnik and Chervonenkis, 1968],

[Vapnik and Chervonenkis, 1974], [Vapnik, 1982], [Vapnik, 1995b], [Vapnik, 1995a], which is

further on depicted in subsection 3.3.1.

3.3.1 Principle of Structural Risk Minimization

Recall the formulation of a learning problem in section 3.2 and consider the case of a binary

classification task, yi ∈ {−1, 1} . Let it additionally be given a set of functions which are param-

eterized by some vector t:

{ft|t ∈ T} , ft : �n → {−1,+1}

Proposition 1. (Structural Risk Minimization principle) [Vapnik, 1982]

For the considered learning problem, for any parameters t ∈ T and for m > h, with a proba-

bility of at least 1− η, the following inequality

R(t) ≤ Remp(t) + φ

(
h

m
,
log(η)

m

)
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holds, where R(t) is the test error, Remp(t) is the training error and φ is called the confidence

term and is defined as:

φ

(
h

m
,
log(η)

m

)
=

√
h

(
log 2m

h
+ 1

)− log η
4

m
.

Definition 1. The parameter h is called the VC (Vapnik-Chervonenkis) – dimension of a set of

functions. A given set of m input samples can be labelled in 2m possible ways. If for each

labelling, a member of the set {ft|t ∈ T} can be found to correctly assign those labels, then it

is said that the set of samples is shattered by that set of functions. Now, the VC-dimension for

a set of functions {ft|t ∈ T} is defined as the maximum number of training samples that can be

shattered by it.

The SRM principle basically states that, in order to achieve a high generalization ability, both

the training error and the confidence term must be kept small. It is important to notice that the

confidence term is minimized by reducing the VC-dimension.

Intuitively speaking, SRM states that, for a given learning task, with a certain amount of train-

ing data, generalization performance is solely achieved if the accuracy on the particular training

set and the capacity of the machine to pursue learning on any other training set without error have

a good balance. This request can be illustrated by a simple natural example: A machine with too

much capacity is like a botanist with photographic memory who, when presented with a new tree,

concludes that it is not a tree because it has a different number of leaves from anything she has

seen before; a machine with too little capacity is like the botanist’s lazy brother, who declares

that if it’s green, then it’s a tree. Neither can generalize well [Burges, 1998].

3.3.2 Linear Support Vector Machines: The Separable Case

If training data is known to be linearly separable, then there exists a linear hyperplane of equation

(3.1) :

〈w, x〉 − b = 0, (3.1)

which separates the samples according to classes [Burges, 1998], [Haykin, 1999].

The positive data samples lie on the corresponding side of the hyperplane and their negative

counterparts on the opposite side.
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As a consequence, Proposition 2 arises [Burges, 1998], [Haykin, 1999]:

Proposition 2. Two subsets of n-dimensional samples are linearly separable iff there exist w ∈
Rn and b ∈ R such that (3.2):

⎧⎨
⎩ 〈w, xi〉 − b ≥ 0, yi = +1

〈w, xi〉 − b ≤ 0, yi = −1
, i = 1, 2, ...,m (3.2)

An illustration of this geometric concept can be found in Figure 3.1.

Figure 3.1: The positive and negative samples and the separating hyperplane between the two

corresponding separable subsets.

As a stronger statement for linear separability, each of the positive and negative samples lies

on the corresponding side of a matching supporting hyperplane for the respective class.

Proposition 3. [Bosch and Smith, 1998] Two subsets of n-dimensional samples are linearly sep-

arable iff there exist w ∈ Rn and b ∈ R such that:

⎧⎨
⎩ 〈w, xi〉 − b ≥ +1, yi = +1

〈w, xi〉 − b ≤ −1, yi = −1
, i = 1, 2, ...,m (3.3)

Proof. ” ⇐ ” The subsets given by yi = +1 and yi = −1, respectively, are linearly separable

since all positive samples lie on one side of the hyperplane given by

〈w, x〉 − b = 0,
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since:

〈w, xi〉 − b ≥ 1 > 0 for yi = +1,

and simultaneously:

〈w, xi〉 − b ≤ −1 < 0 for yi = −1,

so all negative samples lie on the other side of this hyperplane.

”⇒ ” Suppose the two subsets are linearly separable.

Then, there exist w ∈ Rn and b ∈ R such that:

⎧⎨
⎩ 〈w, xi〉 − b ≥ 0, yi = +1

〈w, xi〉 − b ≤ 0, yi = −1
, for i = 1, 2, ...,m

Since:

min {〈w, xi〉 |yi = +1} > max {〈w, xi〉 |yi = −1} ,

if one sets:

p = min {〈w, xi〉 |yi = +1} −max {〈w, xi〉 |yi = −1}

and makes:

w′ =
2

p
w

and

b′ = 1
p
(min {〈w, xi〉 |yi = +1}+ max {〈w, xi〉 |yi = −1}),

then:
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min {〈w′, xi〉 |yi = +1} =

= 2
p
min {〈w, xi〉 |yi = +1} =

= 1
p
(min {〈w, xi〉 |yi = +1}+ max {〈w, xi〉 |yi = −1}+

min {〈w, xi〉 |yi = +1} −max {〈w, xi〉 |yi = −1}) =

= 1
p
(min {〈w, xi〉 |yi = +1}+ max {〈w, xi〉 |yi = −1}+ p) =

= b′ + 1

and

max {〈w′, xi〉 |yi = −1} =

= 2
p
max {〈w, xi〉 |yi = −1} =

= 1
p
(min {〈w, xi〉 |yi = +1}+ max {〈w, xi〉 |yi = −1} − p) =

= b′ − 1

Consequently, there exist w ∈ Rn and b ∈ R such that:

〈w, xi〉 ≥ b+ 1⇒ 〈w, xi〉 − b ≥ 1 when yi = +1

and 〈w, xi〉 ≤ b− 1⇒ 〈w, xi〉 − b ≤ 1 when yi = −1

Remark 1. Basically, in the procedure above, a scaling of the parameters for the separating

hyperplane was performed.

Remark 2. Consider the data points (xi, yi) for which either the first or the second line of equa-

tion (3.3) holds with the equality sign. They are called support vectors . They are data points that

lie closest to the decision surface. Their removal would change the found solution.

An illustration of the stronger separation is given in Figure 3.2. The separating hyperplane is

the one that lies in the middle of the two parallel supporting hyperplanes for the two classes .

At this moment, SVMs must determine the optimal values for the coefficients w and b of the

decision hyperplane that separates the training data with as few exceptions as possible. Following

(3.3), the optimal w and b must then satisfy :

yi(〈w, xi〉 − b)− 1 ≥ 0, i = 1, 2, ...,m (3.4)
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Figure 3.2: The separating and supporting hyperplanes for the separable subsets. The support

vectors are circled.

In addition, according to the SRM principle, separation must be performed with a high gen-

eralization capacity.

Let the margin of separation between classes be determined.

The distance from one random sample z to the separating hyperplane is given by |〈w,z〉−b|
‖w‖ .

It results that the distance from the samples zi that lie closest to the separating hyperplane, on

either side of it, is:

|〈w,zi〉−b|
‖w‖ = 1

‖w‖ for all i (|〈w, zi〉 − b| = 1, as, lying closest to the separating hyperplane,

either zi ∈ H1 or zi ∈ H2 for all i).

This results in the fact that the margin of separation is [Vapnik, 2003]:

2

‖w‖ . (3.5)

The following proposition can be enunciated [Burges, 1998]:

Proposition 4. Let R be the radius of the smallest ball

BR(a) = {x ∈ �n| ‖x− a‖ < R} , a ∈ �n

containing the samples x1, ..., xm and let

fw,b = sgn(〈w, x〉 − b)
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be hyperplane decision functions defined on these samples.

Then the set {fw,b| ‖w‖ ≤ A} has a VC-dimension satisfying

h < R2A2 + 1

Intuitively, Proposition 4 states that, due to the fact that, following (3.5), ‖w‖ is inversely

proportional to the margin of separation, by requiring a large margin (i.e. a small A), a small

VC-dimension is obtained. Conversely, by allowing for separations with small margin, a much

larger class of problems can be potentially separated (i.e. a larger class of possible labelling for

the training samples, following Definition 1 of VC-dimension) .

But, as the SRM principle requests that, in order to achieve high generalization of the clas-

sifier, training error and VC-dimension must be both kept small, hyperplane decision functions

must be therefore constrained such that they maximize the margin , i.e.

minimize
‖w‖2

2
, (3.6)

and separate the training data with as few exceptions as possible.

From (3.4) and (3.6), it follows that the optimization problem is (3.7) :

⎧⎪⎨
⎪⎩

find w and b as to minimize ‖w‖2

2

subject to yi(〈w, xi〉 − b) ≥ 1, i = 1, 2, ...,m.

(3.7)

3.3.3 Linear Support Vector Machines: The Nonseparable Case

Generally, training data are not linearly separable. In the nonseparable case, it is obvious that a

linear separating hyperplane is not able to build a partition without any errors. However, a linear

separation that minimizes training error can be tried as a solution to the classification problem

[Haykin, 1999].

The idea is to relax the separability statement by introducing some so-called slack variables .

This relaxation can be achieved by observing the deviations of data samples from the cor-

responding supporting hyperplane, i.e. from the ideal condition of data separability. Such a

deviation corresponds to a value of ±ξi

‖w‖ , ξi ≥ 0 [Cortes and Vapnik, 1995].
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These values may indicate different nuanced digressions (Figure 3.3), but only a ξi higher

than unity signals a classification error.

Figure 3.3: Position of data and corresponding indicators for errors - correct placement, ξi = 0

(label 1) margin position, ξi < 1 (label 2) and classification error, ξi > 1 (label 3)

Minimization of training error is achieved by adding the indicator for error (slack variable) for

every training data sample into the separability statement and, at the same time, by minimizing

the sum of indicators for errors.

The constraints in (3.4) subsequently become:

yi(〈w, xi〉 − b) ≥ 1− ξi, i = 1, 2, ...,m, (3.8)

where ξi ≥ 0.

And, simultaneously with (3.8), sum of misclassification situations must be minimized:

minimizeC

m∑
i=1

ξi, (3.9)

where C is a SVM hyperparameter, a larger C corresponding to assigning a higher penalty for

errors .

Remark 3. The data points (xi, yi) for which (3.8) holds with the equality sign are the support

vectors.

Therefore, the optimization problem changes to 3.10 :
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

find w and b as to minimize ‖w‖2

2
+ C

∑m
i=1 ξi,

C > 0

subject to yi(〈w, xi〉 − b) ≥ 1− ξi, ξi ≥ 0,

i = 1, 2, ...,m.

(3.10)

It can be seen that this approach still obeys the SRM principle as the VC-dimension is still

minimized and separation of training data with as few exceptions as possible is again achieved,

both through (3.8) and (3.9).

Illustration of a linear separation for nonseparable training data is given in Figure 3.4.

Figure 3.4: The separating and supporting linear hyperplanes for the nonseparable training sub-

sets. The support vectors are circled and the misclassified data point is highlighted.

3.3.4 Nonlinear Support Vector Machines

If a linear hyperplane does not provide satisfactory results for the classification task, then is it

possible that a nonlinear decision surface is appointed? [Burges, 1998], [Haykin, 1999]. The

answer is positive and is based on the following result .

Theorem 1. [Cover, 1965] A complex pattern classification problem cast in a high-dimensional

space nonlinearly is more likely to be linearly separable than in a low-dimensional space.

The above theorem states that an input space can be transformed into a new feature space

where data is linearly separable with high probability, provided:
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1. The transformation is nonlinear.

2. The dimensionality of the feature space is high enough.

The initial space of training data samples can thus be nonlinearly mapped into a higher dimen-

sional feature space, where a linear decision hyperplane can be subsequently built. The separating

hyperplane will achieve an accurate classification in the feature space which will correspond to a

nonlinear decision function in the initial space (Figure 3.5).

Figure 3.5: Initial data space (left), nonlinear map into the higher dimension where the objects

are linearly separable/the linear separation (right), and corresponding nonlinear surface.

The procedure therefore leads to the creation of a linear separating hyperplane that would, as

before, minimize training error, only this time it would perform in the feature space. Accordingly,

a nonlinear map Φ : Rn → H is considered and data samples from the initial space are mapped

into H .

As it will be seen in chapter 4, in the training SVM mechanism, vectors appear only as part

of scalar products; the issue can be thus further simplified by substituting the scalar product by a

kernel, which is a function with the property that (3.11) :

K(x, y) = 〈Φ(x),Φ(y)〉 , (3.11)

where x, y ∈ �n.

The kernel can be perceived as to express the similarity between samples. SVMs require

that the kernel is a positive (semi-)definite function in order for the standard solving approach
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to find a solution to the optimization problem [Mierswa, 2006b]. Such a kernel is one that satis-

fies Mercer’s theorem from functional analysis and is, therefore, a scalar product in some space

[Burges, 1998].

Theorem 2. [Boser et al., 1992], [Courant and Hilbert, 1970], [Haykin, 1999], [Mercer, 1908]

Let K(x,y) be a continuous symmetric kernel that is defined in the closed interval a ≤ x ≤ b

and likewise for y. The kernel K(x,y) can be expanded in the series

K(x, y) =
∞∑
i=1

λiΦ(x)iΦ(y)i

with positive coefficients, λi > 0 for all i. For this expansion to be valid and for it to converge

absolutely and uniformly, it is necessary that the condition

∫ b

a

∫ b

a

K(x, y)ψ(x)ψ(y)dxdy ≥ 0

holds for all ψ(·) for which

∫ b

a

ψ2(x)dx <∞

The problem with this restriction is twofold [Mierswa, 2006b]. On the one hand, Mercer’s

condition is very difficult to check for a newly constructed kernel. On the other hand, kernels that

fail the theorem could prove to achieve a better separation of the training samples.

Applied SVMs consequently use a couple of classical kernels that had been demonstrated to

meet Mercer’s condition [Boser et al., 1992], [Vapnik, 1995b]:

• the polynomial kernel of degree p : K(x, y) = 〈x, y〉p

• the radial basis function kernel : K(x, y) = e
‖x−y‖2

σ , where p and σ are also hyperparame-

ters of SVMs.

However, as a substitute for the original solving, a direct search technique does not depend on

the condition whether the kernel is positive (semi-)definite or not.

Illustration of the construction of a linear separating hyperplane in the feature space and its

correspondent nonlinear hyperplane in the input space is shown in Figure 3.6 where a polynomial

kernel of odd degree is considered. Figures 3.7 and 3.8 show the creation of nonlinear hyperplanes

when the kernels are, in turn, even polynomial and radial, respectively.
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Figure 3.6: The mapping of input data (a) nonlinearly (via Φ) into a higher-dimensional feature

space and the construction of the separating hyperplane there (b) corresponding to a nonlinear

separating hyperplane in the input space (c). An odd polynomial kernel was used.

Figure 3.7: Construction of the separating hyperplane for input data (a) using an even polynomial

kernel (b).

Figure 3.8: Construction of the separating hyperplane for input data (a) using a radial kernel (b).
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3.3.5 Design of Multi-class Support Vector Machines

Multi-class SVMs build several two-class classifiers that separately solve the matching tasks . The

translation from multi-class to two-class is performed through different systems, among which

one-against-all, one-against-one or decision directed acyclic graph are the most commonly em-

ployed.

One-against-all Approach

The one-against-all (1aa) technique [Hsu and Lin, 2004] builds k classifiers. Every ith SVM con-

siders all training samples labelled with i as positive and all the remaining as negative.

Consequently, by placing the problem in the initial space, the aim of every ith SVM is to

determine the optimal coefficients w and b of the decision hyperplane which best separates the

samples with outcome i from all the other samples in the training set, such that (3.12) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ‖wi‖2

2
+ C

∑m
j=1 ξ

i
j,

subject to yj(〈wi, xj〉 − b) ≥ 1− ξi
j,

ξi
j ≥ 0

j = 1, 2, ...,m, i = 1, 2, ..., k.

(3.12)

One-against-one Approach

The one-against-one (1a1) technique [Hsu and Lin, 2004] builds k(k−1)
2

SVMs. Every ith machine

is trained on data from every two classes, i and j, where samples labelled with i are considered

positive while those in class j are taken as negative.

Accordingly, living once more in the initial space, the aim of every SVM is to determine the

optimal coefficients w and b of the decision hyperplane which best separates the samples with

outcome i from the samples with outcome j, such that (3.13) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ‖wij‖2

2
+ C

∑m
l=1 ξ

ij
l ,

subject to yl(〈wij, xl〉 − b) ≥ 1− ξij
l ,

ξij
l ≥ 0

l = 1, 2, ...,m, i, j = 1, 2, ..., k, i �= j.

(3.13)
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Decision Directed Acyclic Graph

Learning within the decision directed acyclic graph (DDAG) technique [Platt et al., 2000] pro-

ceeds in an identical manner to that of 1a1.

3.4 Support Vector Regression

Recall the learning formulation at the beginning of section 3.2 and consider the regression case,

yi ∈ R. Such a data set could represent exchange rates of a currency measured in subsequent

days together with econometric attributes [Smola and Scholkopf, 1998] or a medical indicator

registered in multiple patients along with personal and medical information [Altman, 1991].

The task of ε-support vector regression (SVR) [Vapnik, 1995b] is to find a function f(x) that

has at most ε deviation from the actual targets of data samples and, simultaneously, is as flat

as possible [Smola and Scholkopf, 1998]. In other words, the aim is to estimate the regression

coefficients of f(x) with these requirements.

While the former condition for ε-SVR is straightforward, errors are allowed as long as they

are less than ε, the latter one needs some further explanation [Rosipal, 2001]. Resulting values of

the regression coefficients may affect the model in the sense that it fits current training data but

has low generalization ability. In order to avoid this situation, it is required to choose the flattest

function in the definition space.

Another way to interpret ε-SVR is that training data are constrained to lie on a hyperplane that

allows for some error and, at the same time, has high generalization ability.

3.4.1 Linear Support Vector Machines for Regression

Suppose a linear regression model can fit the training data. Consequently, function f has the form

3.14 :

f(x) = 〈w, x〉 − b. (3.14)

The task of ε-SVR is then mathematically translated as follows. On the one hand, the condi-

tion that f approximates training data with ε precision is written as:
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⎧⎪⎨
⎪⎩
yi − 〈w, xi〉+ b ≤ ε

〈w, xi〉 − b− yi ≤ ε

, i = 1, 2, ...,m (3.15)

On the other hand, flattest function means smallest slope (w) which leads to condition :

minimize ‖w‖2 (3.16)

Summing (3.15) and (3.16) up, the optimization problem that is reached in the case of linear

ε-SVR is stated as (3.17) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find w and b as to minimize ‖w‖2

subject to

⎧⎪⎨
⎪⎩
yi − 〈w, xi〉+ b ≤ ε

〈w, xi〉 − b− yi ≤ ε.

, i = 1, 2, ...,m
(3.17)

3.4.2 Linear Support Vector Machines for Regression with Indicators for

Errors

It may happen that the linear function f is not able to fit all training data and consequently ε-

SVR will also allow for some errors, analogously to the corresponding situation in SVMs for

classification [Cortes and Vapnik, 1995], [Haykin, 1999] .

Therefore, the positive slack variables ξi and ξ∗i , both attached to each sample, are introduced

into the condition for approximation of training data:

⎧⎪⎨
⎪⎩
yi − 〈w, xi〉+ b ≤ ε+ ξi,

〈w, xi〉 − b− yi ≤ ε+ ξ∗i .
, i = 1, 2, ...,m (3.18)

Simultaneously, the sum of these indicators for errors is minimized:

C
m∑

i=1

(ξi + ξ∗i ), (3.19)

where C denotes again the penalty for errors.

Adding (3.18) and (3.19) up, the optimization problem in the case of linear ε-SVR with indi-

cators for errors is written as (3.20) :
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

find w and b as to minimize ‖w‖2 + C
∑m

i=1(ξi + ξ∗i )

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yi − 〈w, xi〉+ b ≤ ε+ ξi

〈w, xi〉 − b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

, i = 1, 2, ...,m
(3.20)

3.4.3 Nonlinear Support Vector Machines for Regression

If a linear function is not at all able to fit training data, a nonlinear one has to be chosen. The

procedure follows the same steps as in SVMs for classification [Cover, 1965]. Data is mapped

via a nonlinear function into a high enough dimensional space and linearly modelled there as in

the previous section. This corresponds to a nonlinear regression hyperplane in the initial space .

3.5 Remarks

SVMs provide a very efficient vision upon learning. They pursue a geometrical interpretation of

the relationship between samples and decision surfaces and thus manage to formulate a simple

and natural optimization task. However, the method SVMs employ for the subsequent training is

constrained and intricate, as it can be seen in the following chapter.



Chapter 4

Training Within Support Vector Machines

4.1 Aims of This Chapter

This chapter addresses the theoretical aspects and mechanism of the classical approach to solving

the constrained optimization problem within SVMs. As before, discussion of the concepts behind

the classical solving addresses classification and regression in turn and pursues SVM training

from the existence of a linear decision function to the creation of a nonlinear surface .

4.2 Linear Support Vector Classification: The Separable Case

Let the constrained optimization problem be stated again [Haykin, 1999]:

⎧⎪⎨
⎪⎩

find w and b as to minimize ‖w‖2

2

subject to yi(〈w, xi〉 − b) ≥ 1, i = 1, 2, ...,m.

Remark 4. The scaling factor 1
2

is included for convenience of presentation.

The constrained optimization problem at hand is called the primal problem (PP) .

4.2.1 Properties of the Primal Problem

A few properties of PP have to be discussed prior to solving it.

Definition 2. A function f : C → � is said to be convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), for all x, y ∈ C and α ∈ [0, 1].

52
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The following propositions are well-known results in fundamental mathematics.

Proposition 5. For a function f : (a, b) → �, (a, b) ⊆ �, that has a second derivative in (a,b),

a necessary and sufficient condition for its convexity on that interval is that the second derivative

f ′′(x) ≥ 0 for all x ∈ (a, b).

Proposition 6. If two functions are convex, the composition of the functions is convex.

Proposition 7. prop:convexity2 The objective function in PP is convex [Haykin, 1999].

Proof. Let h = f ◦ g, where f : � → �, f(x) = x2 and g : �n → �, g(w) = ‖w‖.

Let the two functions be addressed in turn.

1. f : � → �, f(x) = x2⇒ f ′(x) = 2x⇒ f ′′(x) = 2 ≥ 0⇒ f is convex.

2. g : �n → �, g(w) = ‖w‖

Two properties of a norm are:

1. ‖αv‖ = |α| ‖v‖

2. ‖v + w‖ ≤ ‖v‖+ ‖w‖

Let v, w ∈ �n and α ∈ [0, 1].

g(αv + (1− α)w) = ‖αv + (1− α)w‖ ≤ |α| ‖v‖+ |1− α| ‖w‖ = α ‖v‖+ (1− α) ‖w‖ =

= αg(v) + (1− α)g(w)

⇒ g is convex.

Following Proposition 6⇒ h is convex.

Remark 5. Constraints in PP are linear in w.

Proposition 8. The feasible region for a constrained optimization problem is convex if the con-

straints are linear.

The standard training method of finding the optimal solution with respect to defined con-

straints resorts to an extension of the Lagrange multipliers method.
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4.2.2 The Karush-Kuhn-Tucker-Lagrange Conditions

Given the fact that the objective function is convex and that constraints are linear, the Karush-

Kuhn-Tucker-Lagrange (KKTL) conditions can be stated for PP [Haykin, 1999] .

This is based on the fact that since constraints are linear, the KKTL conditions are guaranteed

to be necessary. Also, since PP is convex (convex objective function + convex feasible region),

the KKTL conditions are at the same time sufficient for global optimality [Fletcher, 1987].

First, the Lagrangian function is constructed:

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αi [yi(〈w, xi〉 − b)− 1] , (4.1)

where the variables αi are the Lagrange multipliers.

The solution to the problem is determined by the KKTL conditions [Burges, 1998]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂L(w,b,α)
∂w

= 0

∂L(w,b,α)
∂b

= 0

αi [yi(〈w, xi〉 − b)− 1] = 0, i = 1, 2, ..,m

Differentiation with respect to a vector

Let f(w) denote a real-valued function of parameter vector w. The derivative of f with respect to

w is defined by the vector [Haykin, 1999]:

∂f

∂w
=

[
∂f

∂w1

,
∂f

∂w2

, ...,
∂f

∂wn

]T

,

where n is the dimension of the vector.

In the particular case when f(w) = wTw =
∑n

i=1wiwi then ∂f
∂w

= w.

Application of the KKTL conditions yields:

∂L(w, b, α)

∂w
= w −

m∑
i=1

αiyixi = 0⇒ w =
m∑

i=1

αiyixi (4.2)

∂L(w, b, α)

∂b
=

m∑
i=1

αiyi = 0 (4.3)



CHAPTER 4. TRAINING WITHIN SUPPORT VECTOR MACHINES 55

yi(〈w, xi〉 − b)− 1 ≥ 0, i = 1, 2, ..,m

αi [yi(〈w, xi〉 − b)− 1] = 0, i = 1, 2, ..,m (4.4)

αi ≥ 0, i = 1, 2, ..,m

4.2.3 Lagrange Multipliers and Duality

Generally, given the primal problem:

minimize f(x)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(x) ≥ 0

...

gm(x) ≥ 0

,

the Lagrange multipliers are α = (α∗
1, ..., α

∗
m), α∗

i ≥ 0, such that:

inf
g1(x)≥0,...,gm(x)≥0

f(x) = inf
x∈
n

L(x, α∗),

where L is the Lagrangian function,

L(x, α) = f(x) +
m∑

j=1

αjgj(x), x ∈ �n, α ∈ �m.

Then, one can resort to the dual function [Haykin, 1999]:

q(α) = inf
x∈
n

L(x, α)

This naturally leads to the dual problem :

maximize q(α)

subject to α ≥ 0

The optimal primal value is f∗ = inf
g1(x)≥0,...,gr(x)≥0

f(x) = inf
x∈
n

sup
α≥0

L(x, α).

The optimal dual value is g∗ = sup
α≥0

q(α) = sup
α≥0

inf
x∈
n

L(x, α).

There is always that q∗ ≤ f ∗. But, if there is convexity in the primal problem, then:
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1. q∗ = f ∗

2. Optimal solutions of the dual problem are multipliers for the primal problem.

4.2.4 Dual Problem for the Constrained Optimization

Equation (4.1) is expanded and one obtains [Haykin, 1999]:

L(w, b, α) =
1

2
‖w‖2 −

m∑
i=1

αiyi 〈w, xi〉+ b

m∑
i=1

αiyi +
m∑

i=1

αi (4.5)

The third term on the right-hand side of the expansion is zero from Equation (4.3).

Moreover, from Equation (4.2) we obtain:

1

2
‖w‖2 = 〈w,w〉 =

m∑
i=1

αiyi 〈w, xi〉 =
m∑

i=1

m∑
j=1

αiαjyiyj 〈xi, xj〉

Therefore, Equation (4.5) changes to:

L(w, b, α) =
m∑

i=1

αi − 1

2

m∑
i=1

m∑
j=1

αiαjyiyj 〈xi, xj〉

According to the duality concepts, by settingQ(α) = L(w, b, α), one obtains the dual problem

(DP):

find {αi}i=1,2,..,m

as to maximize Q(α) =
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 αiαjyiyj 〈xi, xj〉

subject to the

⎧⎨
⎩

∑m
i=1 αiyi = 0

αi ≥ 0
, i = 1, 2, ...,m

The optimum Lagrange multipliers are next determined by setting the gradient of Q to zero

and solving the resulting system.

Then, the optimum vector w can be computed from Equation (4.2) as follows [Haykin, 1999]:

w =
m∑

i=1

αiyixi

As b is concerned, it can be obtained from any of the equalities of Equation (4.4), when

αi �= 0. Then:
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yi(〈w, xi〉 − b)− 1 = 0⇒

yi(
∑m

j=1 αjyj 〈xj, xi〉 − b) = 1⇒

∑m
j=1 αjyj 〈xj, xi〉 − b = yi ⇒

b =
∑m

j=1 αjyj 〈xj, xi〉 − yi

It is nevertheless safer to take the mean value of b obtained after solving all such equations.

In the solution, those points for which αi > 0 are support vectors.

4.3 Linear Support Vector Classification: The Nonseparable

Case

Recall that now the constrained optimization problem is defined as :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

find w and b as to minimize ‖w‖2

2
+ C

∑m
i=1 ξi,

C > 0

subject to yi(〈w, xi〉 − b) ≥ 1− ξi, ξi ≥ 0,

i = 1, 2, ...,m.

Therefore, the Lagrangian function becomes [Burges, 1998]:

L(w, b, ξ, α, μ) =
1

2
‖w‖2 + C

m∑
i=1

ξi −
m∑

i=1

αi [yi(〈w, xi〉 − b)− 1 + ξi]−
m∑

i=1

μiξi,

where the variables αi and μi are the Lagrange multipliers.

Application of the KKTL conditions to this new constrained optimization problem leads to

[Burges, 1998]:

∂L(w, b, ξ, α, μ)

∂w
= w −

m∑
i=1

αiyixi = 0⇒ w =
m∑

i=1

αiyixi

∂L(w, b, ξ, α, μ)

∂b
=

m∑
i=1

αiyi = 0
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∂L(w, b, ξ, α, μ)

∂ξi
= C − αi − μi = 0⇒ αi + μi = C, i = 1, 2, ..,m (4.6)

yi(〈w, xi〉 − b)− 1 + ξi ≥ 0, i = 1, 2, ..,m

ξi ≥ 0, i = 1, 2, ..,m

αi [yi(〈w, xi〉 − b)− 1 + ξi] = 0, i = 1, 2, ..,m (4.7)

μiξi = 0, i = 1, 2, ..,m (4.8)

αi ≥ 0, i = 1, 2, ..,m

μi ≥ 0, i = 1, 2, ..,m

The Lagrangian function then becomes, after expanding it term by term:

L(w, b, ξ, α, μ) =
m∑

i=1

αi − 1

2

m∑
i=1

m∑
i=1

αiαjyiyj 〈xi, xj〉+ C
m∑

i=1

ξi −
m∑

i=1

αiξi −
m∑

i=1

μiξi.

From Equation (4.8), the last term of the Lagrangian becomes zero and following Equation

(4.6) and expanding the third term, one obtains:

L(w, b, ξ, α, μ) =
∑m

i=1 αi − 1
2

∑m
i=1

∑m
i=1 αiαjyiyj 〈xi, xj〉+

∑m
i=1(αi + μi)ξi−

∑m
i=1 αiξi =

∑m
i=1 αi − 1

2

∑m
i=1

∑m
i=1 αiαjyiyj 〈xi, xj〉+

∑m
i=1 αiξi +

∑m
i=1 μiξi

−∑m
i=1 αiξi =

∑m
i=1 αi − 1

2

∑m
i=1

∑m
i=1 αiαjyiyj 〈xi, xj〉

Consequently, the following corresponding dual problem is obtained:
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find the {αi}i=1,2,..,m

as to maximize Q(α) =
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 αiαjyiyj 〈xi, xj〉

subject to

⎧⎨
⎩

∑m
i=1 αiyi = 0

0 ≤ αi ≤ C
, i = 1, 2, ...,m, C > 0

The second constraint is obtained from Equation (4.6) and the condition that μi ≥ 0, i =

1, 2, ..,m.

The optimum value for w is again computed as:

w =
m∑

i=1

αiyixi

As for the computation of b, it can be determined as follows [Haykin, 1999]: If the values αi

obeying the condition αi < C are considered, then from Equation (4.6)⇒μi �= 0. Subsequently,

from Equation (4.8) ⇒ ξi = 0. Under these circumstances, from Equations (4.7) and (4.2) one

obtains the same equation as in the separable case:

yi(〈w, xi〉 − b)− 1 = 0⇒ b =
m∑

j=1

αjyj 〈xj, xi〉 − yi

Again it is better to take b as the mean resulting from all such equations.

Those points that have 0 < αi < C are support vectors.

4.4 Nonlinear Support Vector Classification

One may state the dual problem in this new case by simply replacing the scalar product between

data points with the chosen kernel, as below :

find {αi}i=1,2,..,m

as to maximize Q(α) =
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 αiαjyiyjK(xi, xj)

subject to

⎧⎨
⎩

∑m
i=1 αiyi = 0

0 ≤ αi ≤ C
, i = 1, 2, ...,m, C > 0

As generally one is not able to construct the mapping Φ from the kernel K, the value for the

optimum vector w cannot always be determined explicitly from the equation:

w =
m∑

i=1

αiyiΦ(xi)
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Consequently, one usually has to directly determine the class for a new data sample, as follows

:

class(x) = sgn(〈w,Φ(x)〉 − b)

Therefore, by replacing w with
∑m

i=1 αiyiΦ(xi), one gets:

f(x) = sgn(〈w,Φ(x)〉 − b) =

sgn(
∑m

i=1 αiyi 〈Φ(x),Φ(xi)〉 − b) =

sgn(
∑m

i=1 αiyiK(x, xi)− b)
One is left to determine the value of b. This is done by replacing the scalar product by the

kernel in the same equations as in the linear case, i.e. when 0 < αi < C:

b =
m∑

j=1

αjyjK(xj, xi)− yi,

and taking the mean of all the values obtained for b.

The classification accuracy is finally defined as the number of correctly labelled cases over

the total number of test samples.

4.5 Multi-class Support Vector Machines

Resulting SVM decision functions are considered as a whole and the class for each sample in the

test set is decided by corresponding systems [Hsu and Lin, 2004] .

One-against-all Approach

Once the all hyperplanes are determined following the classical SVM training as above, the class

for a test sample x is given by the category that has the maximum value for the learning function,

as in (4.9):

class(x) = argmaxi=1,2,...,k(〈wi,Φ(x)〉)− bi). (4.9)
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One-against-one Approach

The moment the hyperplanes of the k(k−1)
2

SVMs are found, a voting method is used to determine

the class for a test sample x. For every SVM, the class of each sample x is computed by following

the sign of the corresponding decision function applied to x. Subsequently, if the sign says x is in

class i, the vote for the i-th class is incremented by one; conversely, the vote for class j is increased

by unity. Finally, x is taken to belong to the class with the largest vote. In case two classes have

an identical number of votes, the one with the smaller index is selected.

Decision Directed Acyclic Graph

After the hyperplanes of the k(k−1)
2

SVMs are discovered, the following graph system is used to

determine the class for a test sample x (Figure 4.1). Each node of the graph has a list of classes

attached and considers the first and last elements of the list. The list that corresponds to the root

node contains all k classes. When a test instance x is evaluated, one descends from node to node,

in other words, eliminates one class from each corresponding list, until the leaves are reached.

The mechanism starts at the root node which considers the first and last classes. At each node,

i vs j, we refer to the SVM that was trained on data from classes i and j. The class of x is com-

puted by following the sign of the corresponding decision function applied to x. Subsequently,

if the sign says x is in class i, the node is exited via the right edge; conversely, we exit through

the left edge. We thus eliminate the wrong class from the list and proceed via the corresponding

edge to test the first and last classes of the new list and node. The class is given by the leaf that x

eventually reaches.

4.6 Support Vector Regression

For reasons of generality and similarity to training within the classification case, we will directly

consider the situation of linear support vector regression with slack variables. Additionally, from

the same striking resemblance to support vector classification, computations are only sketched .

Recall that the primal optimization problem is defined as (4.10) :
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Figure 4.1: DDAG for labelling a test sample in three-class problems.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

find w and b as to minimize ‖w‖2 + C
∑m

i=1(ξi + ξ∗i )

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yi − 〈w, xi〉+ b ≤ ε+ ξi

〈w, xi〉 − b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

, i = 1, 2, ...,m
(4.10)

The Lagrangian function is formulated as [Smola and Scholkopf, 1998]:

L(w, b, ξ, α, μ) = 1
2
‖w‖2 + C

∑m
i=1(ξi + ξ∗i )−

∑m
i=1 αi [ε− yi + 〈w, xi〉 − b+ ξi]−

∑m
i=1 α

∗
i [ε+ yi − 〈w, xi〉+ b+ ξ∗i ]−

∑m
i=1(μiξi + μ∗

i ξ
∗
i ),

where the variables αi(
∗) and μi(

∗) are the Lagrange multipliers.

Remark 6. For simplicity reasons, we will use (∗) to refer to both the regular and the starred

notations.

Application of the KKTL conditions yields [Smola and Scholkopf, 1998]:

∂L(w, b, ξ, α, μ)

∂w
= w −

m∑
i=1

(αi − α∗
i )xi = 0

∂L(w, b, ξ(∗), α(∗), μ(∗))
∂b

=
m∑

i=1

(α∗
i − αi) = 0
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∂L(w, b, ξ(∗), α(∗), μ(∗))
∂ξi(∗)

= C − αi(
∗)− μi(

∗) = 0, i = 1, 2, ..,m

αi(
∗) ≥ 0, i = 1, 2, ..,m

μi(
∗) ≥ 0, i = 1, 2, ..,m

After substitutions, the following dual formulation is obtained :

find {αi(
∗)}i=1,2,..,m as to maximize

Q(α(∗)) =
∑m

i,j=1(αi − α∗
i )(αj − α∗

j ) 〈xi, xj〉
−ε∑m

i=1(αi + α∗
i ) +

∑m
i=1 yi(αi − α∗

i )

subject to

⎧⎨
⎩

∑m
i=1(αi − α∗

i ) = 0

0 ≤ αi(
∗) ≤ C, i = 1, 2, ...,m

The optimum value for w is computed as before and is:

w =
m∑

i=1

(αi − α∗
i )xi,

while b can be determined as the mean of:

b = ε− yi +
m∑

j=1

(αj − α∗
j ) 〈xj, xi〉+ ξi, i = 1, 2, ...,m,

when 0 < αi(
∗) < C.

Finally, in the most general case of nonlinear regression, the dual problem is restated as:

find {αi(
∗)}i=1,2,..,m as to maximize

Q(α(∗)) =
∑m

i,j=1(αi − α∗
i )(αj − α∗

j )K(xi, xj)

−ε∑m
i=1(αi + α∗

i ) +
∑m

i=1 yi(αi − α∗
i )

subject to

⎧⎨
⎩

∑m
i=1(αi − α∗

i ) = 0

0 ≤ αi(
∗) ≤ C, i = 1, 2, ...,m

and the predicted target for a test sample follows from:

y = f(x) =
m∑

i=1

(αi − α∗
i )K(x, xi)− b,
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where b is computed in:

b = ε− yi +
m∑

j=1

(αj − α∗
j )K(xj, xi) + ξi, i = 1, 2, ...,m.

Finally, in order to verify the accuracy of the technique, the value of the root mean square

error (RMSE) is computed as in (4.11) :

RMSE =

√√√√1

p

p∑
i=1

(y
(pred)
i − yi)2 (4.11)

4.7 Remarks

Although very efficient, the original SVM training remains too elaborated and subject to numer-

ous constraints and convergence requirements that stand in the way of possibly better performing,

although nonstandard, decision functions. It is the purpose of this thesis to bring forward a sim-

pler and unbound alternative that uses a direct search strategy for training.



Chapter 5

An Evolutionary Resemblant of Support

Vector Machines

5.1 Aims of This Chapter

Evolutionary optimization allows the adaptation of the decision hyperplane to the available train-

ing data, which therefore can be treated directly as the (primal) optimization problem . The basic

geometric idea of SVMs is considered, but the proposed approach deviates from the standard

mathematical treatment. Additionally, the suggested evolutionary technique opens the way for

generalizations involving nonlinear, nonstandard decision surfaces .

A new resembling approach is thus proposed; learning proceeds as in standard SVMs , while

the optimal values for the coefficients of the hyperplane (w and b) are directly determined by an

EA with respect to the equilibrium between accuracy and generalization ability [Stoean et al., 2006d],

[Stoean et al., 2007a], [Stoean et al., 2007b], [Stoean and Dumitrescu, 2005b], [Stoean et al., 2006e].

Although the evolutionary resembling support vector machines (ERSVMs) appear to be straight-

forward, determining several other technique details, such as interpretation, operators and param-

eters, is not.

The chapter is structured as follows. Section 5.2 describes the existing evolutionary ap-

proaches towards enhancing the performance of the classical SVM architecture. Section 5.3 intro-

duces the proposed evolutionary training together with a reformulation of the primal problem for

the most general case of nonlinear learning within the context of the envisaged evolution. Section

5.4 puts forward a first considered constitution of an EA inside proposed ERSVMs. Validation is

65
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achieved on real world examples. An alternative version of the ERSVM which is endowed with

a new mechanism for reducing problem size in case of large data sets is additionally presented in

subsection 5.4.9.

5.2 Previous Evolutionary Interactions with Support Vector

Machines

Note that this is not the first attempt to bring SVMs and EAs close together. Existing alternatives

are numerous and recent, of which some are presented further on. Strict hybridization towards

different purposes is envisaged through: model and feature selection, kernel evolution and evolu-

tionary detection of the Lagrange multipliers. Model selection concerns adjustment of hyperpa-

rameters (free parameters) within SVMs, i.e. the penalty for errorsC and parameters of the kernel

which, in standard variants, is performed through grid search or gradient descent methods. Evolu-

tion of hyperparameters can be achieved through evolution strategies [Friedrichs and Igel, 2004].

When dealing with high dimensional problems, feature selection regards the choice of the most

relevant features as input for a SVM. The optimal subset of features can be evolved using ge-

netic algorithms [de Souza et al., 2005] and genetic programming [Eads et al., 2002]. Evolu-

tion of kernel functions to model training data is performed by means of genetic programming

[Howley and Madden, 2004]. Finally, the Lagrange multipliers involved in the expression of the

dual problem can be evolved by means of evolution strategies and particle swarm optimization

[Mierswa, 2006a]. Inspired by the geometrical SVM learning, [Jun and Oh, 2006] reports the

evolution of w and C while using erroneous learning ratio and lift values as the objective func-

tion. The thesis, however, focuses on the evolution of the coefficients of the decision function in

learning resemblance to SVMs; to the best of our knowledge, this has not been accomplished yet.

5.3 Proposed Evolutionary Resembling Support Vector Ma-

chines

The alternative concept can be modeled through the following evolutionary algorithm.
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5.3.1 Representation

An individual encodes the coefficients of the hyperplane, w and b .

After termination of the EA, the approximately optimal values for the coefficients of the de-

cision hyperplane are obtained.

5.3.2 Initial population

Individuals are randomly generated such that wi ∈ [−1, 1], i = 1, 2, ..., n, b ∈ [−1, 1] .

5.3.3 Reformulation of the Primal Optimization Problem

Prior to decide upon the manner to evaluate individuals, the objective function must be estab-

lished.

Since the proposed method departs from the standard SVMs, a different way to move into a

higher dimensional space must be found [Stoean et al., 2007b] . Accordingly, w is also mapped

through Φ into H. As a result, the squared norm that is involved in the generalization condition is

now ‖Φ(w)‖2. Also, the equation of the hyperplane consequently changes to (5.1):

〈Φ(w),Φ(xi)〉 − b = 0. (5.1)

We employ the scalar product in the form (5.2):

〈u,w〉 = uTw, (5.2)

and we additionally force the usage of the kernel to also transform the norm in its simplistic

equivalence to the scalar product.

In conclusion, we reformulate the general primal form to further consider learning in the

feature space and with the use of a kernel function. The classification task then becomes (5.3) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

find w and b as to minimize K(w,w) + C
∑m

i=1 ξi,

C > 0

subject to yi(K(w, xi)− b) ≥ 1− ξi, ξi ≥ 0,

i = 1, 2, ...,m,

(5.3)
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while the regression one is transposed to (5.4) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

find w and b as to minimize K(w,w) + C
∑m

i=1(ξi + ξ∗i )

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yi −K(w, xi) + b ≤ ε+ ξi

K(w, xi)− b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

, i = 1, 2, ...,m
(5.4)

5.3.4 Multi-class Reconsideration

The ERSVMs targeting multi-class situations must undergo similar transformation with respect

to the expression of the optimization problem [Stoean et al., 2008b], [Stoean et al., 2006a],

[Stoean et al., 2006f]. As 1aa is concerned, the aim of every ith ERSVM is expressed as to de-

termine the optimal coefficients, w and b, of the decision hyperplane which best separates the

samples with outcome i from all the other samples in the training set, such that (5.5) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize K(wi, wi) + C
∑m

j=1 ξ
i
j,

subject to yj(K(wi, xj)− b) ≥ 1− ξi
j,

ξi
j ≥ 0

j = 1, 2, ...,m, i = 1, 2, ..., k.

(5.5)

Within the 1a1 and DDAG approaches, the aim of every ERSVM becomes to find the optimal

coefficients w and b of the decision hyperplane which best separates the samples with outcome i

from the samples with outcome j, such that (5.6) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize K(wij, wij) + C
∑m

l=1 ξ
ij
l ,

subject to yl(K(wij, xl)− b) ≥ 1− ξij
l ,

ξij
l ≥ 0

l = 1, 2, ...,m, i, j = 1, 2, ..., k, i �= j.

(5.6)

5.3.5 Fitness assignment

The fitness assignment derives from the objective function of the optimization problem and is

minimized. Constraints are handled by penalizing the infeasible individuals through appointing
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t : R→ R which returns the value of the argument, if negative, while zero otherwise.

Classification and regression variants simply differ in terms of objectives and constraints,

thus the expression of the fitness function for the former is as follows (5.7) [Stoean et al., 2006b],

[Stoean and Dumitrescu, 2005a], [Stoean and Dumitrescu, 2006], [Stoean and Dumitrescu, 2005c]

:

f(w, b, ξ) = K(w,w) + C
m∑

i=1

ξi +
m∑

i=1

[t(yi(K(w, xi)− b)− 1 + ξi)]
2, (5.7)

while is defined for the latter in the form (5.8) [Stoean et al., 2006c], [Stoean et al., 2006d],

[Stoean, 2006] :

f(w, b, ξ) = K(w,w) + C

m∑
i=1

(ξi + ξ∗i ) +
m∑

i=1

[t(ε+ ξi − yi+

K(w, xi)− b)]2 +
m∑

i=1

[t(ε+ ξ∗i + yi −K(w, xi) + b)]2, (5.8)

5.3.6 Stop condition

The EA stops after a predefined number of generations .

5.3.7 Test step

As the coefficients of the hyperplane are found, the target for a new, unseen test data sample can

be determined directly following (5.9) for classification :

class(x) = sgn(K(w, x)− b) (5.9)

or (5.10) for regression :

y = f(x) = K(w, x)− b. (5.10)

As for the multi-class tasks, the label is found by employing the same mechanisms, only this

time the resulting decision function applied to the current sample takes the form :

f(x) = K(wi, x)− bi.
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5.4 A Naı̈ve Construction - a Proposal

We target at attaining a suitable EA for solving the general primal problem of finding the decision

hyperplane .

5.4.1 Research question

In achieving the proposed task, the following issue had to be addressed. How does one treat slack

variables in the optimization problem? Can one depart from the SVM geometrical strict meaning

of a deviation and simply evolve the factors of indicators for errors?

5.4.2 The Naive Evolutionary Algorithm

The particularities of the proposed construction are further presented.

Representation

As already stated, the coefficients of the hyperplane, w and b, are encoded into the structure of an

individual. Since indicators for errors , ξi, i = 1, 2, ...,m, appear in the conditions for hyperplane

optimality, ERSVM may handle them through inclusion in the structure of an individual, as well

(5.11) :

c = (w1, ..., wn, b, ξ1, ...., ξm). (5.11)

After termination of the EA, the approximately optimal values for the coefficients of the de-

cision hyperplane are obtained.

Initial population

The genes denoting indicators for errors in the individuals of the initial population are randomly

generated again such that ξj ∈ [0, 1], j = 1, 2, ...,m .

Fitness assignment

The evolved values of the indicators for errors can now be addressed in the proposed expression

for fitness evaluation.
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Selection and variation operators

Mutation of errors is constrained, preventing the ξis from taking negative values .

5.4.3 Preexperimental Planning

First experiments have been conducted on five data sets (with no missing values) concerning real-

world problems, coming from the UCI Repository of Machine Learning Databases1, i.e. diabetes

mellitus diagnosis [Stoean et al., 2006i] , spam detection [Stoean et al., 2006g] , [Stoean et al., 2007c],

iris recognition [Stoean et al., 2008b] , soybean disease diagnosis [Stoean et al., 2006h] and Boston

housing [Stoean et al., 2006c], [Stoean et al., 2006d] . The motivation for the choice of test cases

was manifold. Diabetes and spam are two-class problems, while soybean and iris are multi-class.

Differentiating, on the one hand, diabetes diagnosis is a better-known benchmark, but spam filter-

ing is an issue of current major concern; moreover, the latter has a lot more features and samples,

which makes a huge difference for classification as well as for optimization. On the other hand,

while soybean has a high number of attributes, iris has only four, but a larger number of samples.

Finally, Boston housing is a representative regression task. For all reasons mentioned above, the

selection of test problems certainly contains all the variety of situations that is necessary for the

objective validation of the new approach of ERSVM. Brief information on the tasks is given in

Table 5.1, while details are provided in chapter 7.

Table 5.1: Data set properties.

Diabetes Iris Soybean Spam Boston

Data

Number of samples 768 150 47 4601 506

Number of attributes 8 4 35 57 13

Number of classes 2 3 4 2 -

1Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
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5.4.4 Task

It is desired to be evaluated whether the suggested ERSVM with evolved errors produces a viable

learning machine when compared to the standard approach (results are given in section 6.11) and

how to determine appropriate parameters for the EA.

5.4.5 Evolutionary Algorithm Setup

Operators were chosen experimentally . Tournament selection, intermediate crossover and muta-

tion with normal perturbation are applied.

5.4.6 Problem Setup

For each data set, 30 runs of the ERSVM were conducted; in every run approximately 70% ran-

dom cases were appointed to the training set and the remaining 30% went into test. Experiments

showed the necessity for data normalization in diabetes, spam and iris. No further modification

of the data was carried out and all data was used in the experiments.

SVM parameters were manually chosen and can be found in ERSVMs section of Table 5.2.

The error penalty C was invariably set to 1. For certain (e.g. radial, polynomial) kernels, the opti-

mization problem shall be relatively simple, due to Mercer’s theorem, and is implicitly solved by

classical SVMs [Mierswa, 2006b]. Note that ERSVMs are not restricted to using the traditional

kernels, but we employ them here to enable comparison with classical SVMs.

Table 5.2: Manually tuned SVM parameter values for the evolutionary and canonical approach.

Diabetes Iris 1a1/1aa Soybean Spam Boston

ERSVMs

p or σ p = 2 σ = 1 p = 1 p = 1 p = 1

SVMs

p or σ p = 1 σ = 1/m p = 1 p = 1 σ = 1/m

For the iris data set, a radial kernel was used, for diabetes, a polynomial one was employed,

while for spam, soybean and Boston, we applied a linear surface. In the regression case, ε was set

to 0.
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Manually determined EA parameter values are given in Table 5.3.

Table 5.3: Manually tuned EA parameter values for the naı̈ve construction.

Diabetes Iris 1a1/1aa Soybean Spam Boston

p or σ p = 2 σ = 1 p = 1 p = 1 p = 1

Population size 100 100/100 100 100 200

Generations 250 100/100 100 250 2000

Crossover prob. 0.40 0.30/0.70 0.30 0.30 0.50

Mutation prob. 0.40 0.50/0.50 0.50 0.50 0.50

ξ mutation prob. 0.50 0.50 0.50 0.50 0.50

Mutation strength 0.10 0.10/4 0.10 0.10 0.10

ξ mutation strength 0.10 0.10/0.10 0.10 0.10 0.10

In order to validate the manually found EA parameter values, the tuning method of Sequential

Parameter Optimization (SPO) [Bartz-Beielstein, 2006] was applied. Parameter bounds were set

as follows:

• Population size - 5/2000

• Number of generations - 50/300

• Crossover probability - 0.01/1

• Mutation probability - 0.01/1

• Error mutation probability - 0.01/1

• Mutation strength - 0.001/5

• Error mutation strength - 0.001/5

Since the three multi-class techniques behave similarly in all our manual multi-class experi-

ments (Table 5.5), we run automatic tuning only for the most widely used case of 1a1. The best

parameter configurations as determined by SPO are depicted in Table 5.4.
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Table 5.4: SPO tuned EA parameter values for the naı̈ve representation.

Diabetes Iris Soybean Spam Spam Boston

+Chunks

Population size 198 46 162 154 90 89

Generations 296 220 293 287 286 1755

Crossover prob. 0.87 0.77 0.04 0.84 0.11 0.36

Mutation prob. 0.21 0.57 0.39 0.20 0.08 0.5

ξ mutation prob. 0.20 0.02 0.09 0.07 0.80 0.47

Mutation strength 4.11 4.04 0.16 3.32 0.98 0.51

ξ mutation strength 0.02 3.11 3.80 0.01 0.01 0.12

5.4.7 Results/Visualization

Test accuracies/errors obtained by manual tuning are presented in Table 5.5. Differentiated

(spam/non spam for spam filtering and ill/healthy for diabetes) accuracies are also depicted.

A visualization of ERSVM for classification can be exhibited for simple artificial bidimen-

sional data sets separated by various kernels (Figures 5.1, 5.2 and 5.3).

Illustration of ERSVM for regression is depicted in Figure 5.4, where the obtained function

to be fitted to bidimensional data is drawn.

Table 5.6 holds performances and standard deviations of the best configuration of an initial

Latin hypersquare design (LHS) sample and of the SPO.

5.4.8 Observations

SPO indicates that for all cases, except for the soybean data, crossover probabilities were dramat-

ically increased, while often reducing mutation probabilities, especially for errors. However, the

relative quality of SPO’s final best configurations against the ones found during the initial LHS

phase increases with the problem size. It must be stated that in most cases, results achieved with

manually determined parameter values are only improved by SPO – if at all – by increasing effort

(population size or number of generations).
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Figure 5.1: Visualization of naı̈ve ERSVMs for classification on bidimensional data. Errors of

classification are squared. An odd polynomial kernel is employed
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Figure 5.2: Visualization of naı̈ve ERSVMs for classification on bidimensional data. Errors of

classification are squared. An even polynomial kernel is employed
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Figure 5.3: Visualization of naı̈ve ERSVMs for classification on bidimensional data. Errors of

classification are squared. A radial polynomial kernel is employed
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Table 5.5: Accuracy/RMSE of the manually tuned naı̈ve ERSVM version on the considered test

sets, in percent.

Average Worst Best StD

Diabetes (overall) 76.30 71.35 80.73 2.24

Diabetes (ill) 50.81 39.19 60.27 4.53

Diabetes (healthy) 90.54 84.80 96.00 2.71

Iris 1aa (overall) 95.85 84.44 100.0 3.72

Iris 1a1 (overall) 95.18 91.11 100.0 2.48

Iris DDAG (overall) 94.96 88.89 100.0 2.79

Soybean 1aa (overall) 99.22 88.24 100 2.55

Soybean 1a1 (overall) 99.02 94.11 100.0 2.23

Soybean DDAG (overall) 98.83 70.58 100 5.44

Spam (overall) 87.74 85.74 89.83 1.06

Spam (spam) 77.48 70.31 82.50 2.77

Spam (non spam) 94.41 92.62 96.30 0.89

Boston 4.78 5.95 3.96 0.59

5.4.9 A Chunking Mechanism

A problem appears for large data sets, i.e. spam filtering, where the amount of runtime needed

for training is very large. This stems from the large genomes employed, as indicators for errors of

every sample in the training set are included in the representation. Consequently, we tackle this

problem with an adaptation of a chunking procedure [Perez-Cruz et al., 2004] inside ERSVM.

A chunk of N training samples is repeatedly considered. Within each chunking cycle, the

EA (with a population of half random individuals and half previously best evolved individuals)

runs and determines the coefficients of the hyperplane. All training samples are tested against

the obtained decision function and a new chunk is constructed based on N/2 randomly (equally

distributed) incorrectly placed samples and half randomly samples from the current chunk. The

chunking cycle stops when a predefined number of iterations with no improvement in training

accuracy passes (Algorithm 2) .

ERSVM with chunking was applied to the spam data set. Manually tuned parameters had
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Algorithm 2 ERSVM with Chunking
Require: The training samples

Ensure: Best obtained coefficients and corresponding accuracy

begin

Randomly choose N training samples set, equally distributed, to make a chunk;

while a predefined number of iterations passes with no improvement do

if first chunk then

Randomly initialize population of a new EA;

else

Use best evolved hyperplane coefficients and random indicators for errors to fill half of the popu-

lation of a new EA and randomly initialize the other half;

end if

Apply EA and find coefficients of the hyperplane;

Compute side of all samples in the training set with evolved hyperplane coefficients;

From incorrectly placed, randomly choose (if exist) N/2 samples, equally distributed;

Randomly choose the rest up to N from the current chunk and add all to new;

if obtained training accuracy if higher than the best one obtained so far then

Update best accuracy and hyperplane coefficients; set improvement to true;

end if

end while

Apply best obtained coefficients on the test set and compute accuracy

return accuracy

end
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Figure 5.4: Visualization of naı̈ve ERSVMs for regression on bidimensional data.

the same values as before, except the number of generations for each run of the EA which is

now set to 100. The chunk size, i.e N , was chosen as 200 and the number of iterations with no

improvement (repeats of the chunking cycle) was designated to be 5. Values derived from the

SPO tuning are presented in the chunking column from Table 5.4.

Results of manual and SPO tuning are shown in Tables 5.7 and 5.8. The novel approach of

ERSVM with chunking reached its goal, running 8 times faster than the previous one, at a cost of

a small loss in accuracy. Besides solving the EA genome length problem, proposed mechanism

additionally reduces the large number of computations that derives from the reference to the many

training samples in the expression of the fitness function.

5.5 Remarks

The computational results have shown that the proposed technique produces good accuracies as

compared to the canonical SVMs (see section 6.11). As concerns the difficulty in setting the

EA, SPO confirms: Distinguishing the performance of different configurations is difficult even

after computing a large number of repeats. Consequently, the ”parameter optimization potential”
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Table 5.6: Accuracies of the SPO tuned naı̈ve ERSVM version on the considered test sets, in

percent.

LHSbest StD SPO StD

Diabetes (overall) 75.82 3.27 77.31 2.45

Diabetes (ill) 49.35 7.47 52.64 5.32

Diabetes (healthy) 89.60 2.36 90.21 2.64

Iris (overall) 95.11 2.95 95.11 2.95

Soybean (overall) 99.61 1.47 99.80 1.06

Spam (overall) 89.27 1.37 91.04 0.80

Spam (spam) 80.63 3.51 84.72 1.59

Spam (non spam) 94.82 0.94 95.10 0.81

Boston 5.41 0.65 5.04 0.52

Table 5.7: Accuracy/RMSE of the manually tuned ERSVM with chunking version on the consid-

ered test sets, in percent.

Average Worst Best StD

Spam (overall) 87.30 83.13 90.00 1.77

Spam (spam) 83.47 75.54 86.81 2.78

Spam (non spam) 89.78 84.22 92.52 2.11

justifies employing a tuning method only for the larger problems, diabetes, spam and Boston.

Especially for the small problems, well performing parameter configurations are seemingly easy

to find.

It must be stated that for the standard kernels, one cannot expect ERSVM to be better than

standard SVMs, since it draws its roots from the latter. However, in future work, it can be profited

from the flexibility of the EAs as optimization tools, by being able to additionally evolve kernels

that achieve a better learning, regardless of whether they are positive (semi-)definite or not.
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Table 5.8: Accuracies of the SPO tuned ERSVM with chunking version on the considered test

sets, in percent.

LHSbest StD SPO StD

Spam (overall) 87.52 1.31 88.37 1.15

Spam (spam) 86.26 2.66 86.35 2.70

Spam (non spam) 88.33 2.48 89.68 2.06



Chapter 6

A Pruned Evolutionary Resemblant

6.1 Aims of This Chapter

Although already a viable alternative approach, the ERSVM may still be improved concerning

simplicity . The current optimization problem requires to treat the error values, which in the

present EA variant are included in the representation. These can be expected to severely com-

plicate the problem by increasing the genome length (variable count) by the number of training

samples. Moreover, such a methodology strongly drifts away from the canonical SVM concept.

In this chapter, it is proposed to resolve this issue by investigating whether one can only represent

the hyperplane coefficients and compute the indicators for errors instead of evolving them.

The chapter has the following structure. Section 6.2 brings a second, pruned representation

of the proposed EA, which also speeds up runtime; a crowding variant is subsequently illustrated

in subsection 6.8. An all-in-one evolution for the practical use is generalized in subsection 6.9.

In order to validate the aim of this work, that is to offer a simpler, liberated and yet performing

alternative to SVM training, section 6.11 exhibits the comparison with results of canonical SVMs

implemented in R on the same data sets and in equivalent conditions.

6.2 The Pruned Evolutionary Algorithm

Since ERSVM directly and interactively provide hyperplane coefficients at all times, we propose

to drop the indicators for errors from the EA representation and, instead, compute their values.

Consequently, this time, individual representation contains only w and b (6.1) :

83
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c = (w1, ..., wn, b). (6.1)

Additionally, all indicators ξi, i = 1, 2, ...,m will have to be computed in order to be referred

in the fitness function.

In case of classification, the procedure follows [Bosch and Smith, 1998]. We take the current

individual (which is the current separating hyperplane) and supporting hyperplanes are deter-

mined through the mechanism below. One first computes (6.2) :

⎧⎪⎨
⎪⎩
m1 = min{K(w, xi)|yi = +1}

m2 = max{K(w, xi)|yi = −1}
(6.2)

Then (6.3):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p = |m1 −m2|

w′ = 2
p
w

b′ = 1
p
(m1 +m2)

(6.3)

For every training sample xi, we obtain the deviation to its corresponding supporting hyper-

plane (6.4):

δ(xi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K(w′, xi)− b′ − 1, yi = +1,

K(w′, xi)− b′ + 1, yi = −1,

i = 1, 2, ...,m.

(6.4)

If sign of deviation equals class, corresponding ξi = 0; else, the (normalized) absolute de-

viation is returned as the indicator for error. Experiments showed the need for normalization of

the computed deviations in the cases of diabetes, spam and iris, while, on the contrary, soybean

requires without. The different behavior can be explained by the fact that the first three data sets

have a larger number of training samples. The sum of deviations is subsequently added to the

expression of the fitness function. As a consequence, in the early generations, when the gener-

ated coefficients lead to high deviations, their sum, considered from 1 to the number of training

samples, takes over the whole fitness value and the evolutionary process is driven off the course to

the optimum. The discussed diverse choices of actions concerning the normalization of data and

errors and the kernel selection bring experimental evidence for the crucial importance of proper
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data preparation prior to SVM learning. The form of the fitness function (5.7) remains as before,

obviously without taking the ξis as arguments.

The method we propose for acquiring the errors for the regression situation is as follows.

For every training sample, one firstly calculates the difference between the actual target and the

predicted value that is obtained following the coefficients of the current individual (regression

hyperplane), as in (6.5):

δi = |K(w, xi)− b− yi|, i = 1, 2, ...,m (6.5)

Secondly, one tests the difference against the ε threshold, following (6.6):

⎧⎪⎨
⎪⎩

if δi < ε then ξi = 0,

else ξi = δi − ε.
i = 1, 2, ...,m (6.6)

The newly obtained indicators for errors can now be employed in the fitness evaluation of the

corresponding individual, which changes from (5.8) to (6.7):

f(w, b) = K(w,w) + C

m∑
i=1

ξi (6.7)

The function to be fitted to the data is thus still required to be as flat as possible and to

minimize the errors of regression that are higher than the permitted ε. Experiments on the Boston

housing problem demonstrated that the specific method for computing the deviations does not

require any additional normalization.

6.3 Preexperimental Planning

For all earlier mentioned reasons and for comparison between the two constructions, we keep the

same data sets for application.

6.4 Task

It will be investigated if a representation without errors can perform as well as the naı̈ve repre-

sentation of section 5.4 [Stoean et al., 2007a], [Stoean et al., 2007b].
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6.5 Problem Setup

The problem related settings and SVM parameters are kept the same as for naı̈ve, except ε which

is now set to 5 for the regression problem. This change tells that the pruned representation appar-

ently needs a more generous ε allowance within training.

The EA proceeds with the manual values for parameters from Table 6.1.

Table 6.1: Manually tuned parameter values for the pruned approach.

Diabetes Iris Soybean Spam Boston

Population size 100 100/100 100 150 200

Generations 250 100/100 100 300 2000

Crossover prob. 0.4 0.30/0.70 0.30 0.80 0.50

Mutation prob. 0.4 0.50/0.50 0.50 0.50 0.50

Mutation strength 0.1 4/4 0.1 3.5 0.1

Resulting parameter values for SPO on the pruned variant are shown in Table 6.2.

Table 6.2: SPO tuned parameter values for the pruned representation.

Diabetes Iris Soybean Spam Boston

Population size 190 17 86 11 100

Generations 238 190 118 254 1454

Crossover prob. 0.13 0.99 0.26 0.06 0.88

Mutation prob. 0.58 0.89 0.97 0.03 0.39

Mutation strength 0.15 3.97 0.08 2.58 1.36

6.6 Results

Results obtained after manual and SPO tuning are depicted in Tables 6.3 and 6.4.

The automated performance values are generated by 30 validation runs for the best found

configurations after initial design and SPO, respectively.
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Table 6.3: Accuracy/RMSE of the manually tuned pruned ERSVM version on the considered test

sets, in percent.

Average Worst Best StD

Diabetes (overall) 74.60 70.31 82.81 2.98

Diabetes(ill) 45.38 26.87 58.57 6.75

Diabetes (healthy) 89.99 86.89 96.75 2.66

Iris 1aa (overall) 93.33 86.67 100 3.83

Iris 1a1 (overall) 95.11 73.33 100 4.83

Iris DDAG (overall) 95.11 88.89 100 3.22

Soybean 1aa (overall) 99.22 88.24 100 2.98

Soybean 1a1 (overall) 99.60 94.12 100 1.49

Soybean DDAG (overall) 99.60 94.12 100 1.49

Spam (overall) 85.68 82 88.26 1.72

Spam (spam) 70.54 62.50 77.80 4.55

Spam (non spam) 95.39 92.66 97.44 1.09

Boston 5.07 6.28 3.95 0.59

6.7 Observations

Results of automated tuning came similar to those of manual regulation which brings once again

evidence of the easy adjustability of the ERSVM. Additionally, we plotted the performance spec-

tra of LHS to compare the hardness of finding good parameters for our two representations on

the spam and soybean problems (Figures 6.1 and 6.2). The Y axis represents the fractions of

all tried configurations; therefore the Y value corresponding to each bar denotes the percent of

configurations that reached the accuracy of the X axis where the bar is positioned.

The plots illustrate the fact that naı̈ve ERSVM is harder to parameterize than the pruned

approach: When SPO finds a configuration for the latter, it is already a promising one, as it can

be concluded from the higher corresponding bars.
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Figure 6.1: Comparison of EA parameter spectra, LHS with size 100, 4 repeats, for the naı̈ve

(left, 7 parameters) and the pruned (right, 5 parameters) representation on the spam problem.
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Figure 6.2: Comparison of EA parameter spectra, LHS with size 100, 4 repeats, for the naı̈ve

(left, 7 parameters) and the pruned (right, 5 parameters) representation on the soybean problem.
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Table 6.4: Accuracies of the SPO tuned pruned ERSVM version on the considered test sets, in

percent.

LHSbest StD SPO StD

Diabetes (overall) 72.50 2.64 73.39 2.82

Diabetes(ill) 35.50 10.14 43.20 6.53

Diabetes (healthy) 92.11 4.15 89.94 3.79

Iris (overall) 95.41 2.36 95.41 2.43

Soybean (overall) 99.61 1.47 99.02 4.32

Spam (overall) 89.20 1.16 89.51 1.17

Spam (spam) 79.19 3.13 82.02 3.85

Spam (non spam) 95.64 0.90 94.44 1.42

Boston 4.99 0.66 4.83 0.45

6.8 A Crowding Variant

In addition to the direct pruned representation, a crowding [DeJong, 1975] variant of the EA is

also tested. Here, test for replacement is done against the most similar parent of the current

population . Crowding based EAs are known to provide good global search capabilities. This is

of limited value for the kernel types employed in this study, but it is important for nonstandard

kernels. For now however, it is desired to investigate whether the employment of a crowding-

based EA on the pruned representation would maintain the performance of the technique or not.

All the other elements of the EA remain the same and the values for parameters as determined

by SPO are shown in Table 6.5. The crowding experiment was chosen to be run only on the

representative tasks for many samples (diabetes and spam), features (spam) and classes (iris).

Note that only automated tuning is performed for the pruned crowding ERSVM and results

can be found in Table 6.6.

Automated tuning revealed that for the crowding variant, some parameter interactions dom-

inate the best performing configurations: For larger population size, smaller mutation step sizes

and larger crossover probability are better suited, and with greater run lengths, performance in-

creases with larger mutation step sizes. For the original pruned variant, no such clear interactions

can be attained. However, in both cases, many good configurations are detected.
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Table 6.5: SPO tuned parameter values for the pruned representation with crowding.

Diabetes Iris Spam

Population size 92 189 17

Generations 258 52 252

Crossover prob. 0.64 0.09 0.42

Mutation prob. 0.71 0.71 0.02

Mutation strength 0.20 0.20 4.05

Table 6.6: Accuracies of the SPO tuned pruned version with crowding on the considered test sets,

in percent.

LHDbest StD SPO StD

Diabetes (overall) 74.34 2.30 74.44 2.98

Diabetes(ill) 43.68 6.64 45.32 7.04

Diabetes (healthy) 90.13 3.56 90.17 3.06

Iris (overall) 95.63 2.36 94.37 2.80

Spam (overall) 88.72 1.49 89.45 0.97

Spam (spam) 80.14 5.48 80.79 3.51

Spam (non spam) 94.25 1.66 95.07 1.20

6.9 An All-in-One Enhancement

In order to offer a complete solution for practical usage, it is further proposed to also include in the

representation an immediate manner for a dynamic choice of model hyperparameters . Deriving

from performed experiments, the parameter expressing the penalty for errors C seems of no

significance within the ERSVM technique; it will consequently be dropped from the parameters

pool. Further on, by simply inserting one more variable to the genome, the kernel parameter (p

or sigma) can be also evolved. In this way, profiting from the evolutionary solving of the primal

problem, model selection is actually performed at the same time.

The idea was tested through an immediate manual tuning of the EA parameters; the values

are depicted in Table 6.7. For reasons of generality with respect to the new genomic variable, an
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extra mutation probability and mutation strength respectively, were additionally appointed. The

corresponding gene also had a continuous encoding, the hyperparameter being rounded at kernel

application. The soybean task was not considered anymore for this experiment, as very good

results were already provided for it.

Table 6.7: Manually tuned parameter values for all-in-one pruned representation.

Diabetes Iris Boston Spam

Population size 100 50 100 5

Generations 250 280 2000 480

Crossover prob. 0.4 0.9 0.5 0.1

Mutation prob. 0.4 0.9 0.5 0.1

Mutation prob. hyperparam. 0.4 0.9 0.9 0.1

Mutation strength 0.1 1 0.1 3.5

Mutation strength hyperparam. 0.5 0.1 0.1 0.1

The resulting values for the hyperparameters were identical to our previous manual choice

(Table 5.2), with one exception in the diabetes task, where sometimes a linear kernel is obtained.

Results of the all-inclusive technique (Table 6.8), similar in accuracy/regression error to the

prior ones and obtained at no additional cost, sustain the inclusion of model selection and point

to the next step, the coevolution of nonstandard kernels.

6.10 Discussion

It is interesting to remark that the pruned representation is not that much faster. Although the

genome length is drastically reduced, the runtime consequently gained is however partly lost

again when computing the values for the slack variables. This draws from the extra number of

dot products that must be calculated due to (6.2) and (6.5). As run length itself is a parameter

in present studies, an upper bound of the necessary effort is rather obtained. Closer investigation

may lead to a better understanding of suitable run lengths, e.g. in terms of fitness evaluations.

However, the pruned representation has its advantages. Besides featuring smaller genomes, less

parameters are needed, because the slack variables are not evolved and thus two parameters van-
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Table 6.8: Accuracy/RMSE of the manually tuned all-in-one pruned ERSVM version on the

considered test sets, in percent.

Average Worst Best StD

Diabetes (overall) 74.20 66.66 80.21 3.28

Diabetes(ill) 46.47 36.99 63.08 6.92

Diabetes (healthy) 89.23 81.40 94.62 3.46

Iris (overall) 96.45 93.33 100 1.71

Spam (overall) 88.92 85.39 91.48 1.5

Spam (spam) 79.98 68.72 94.67 5.47

Spam (non spam) 94.79 84.73 96.91 2.22

Boston 5.06 6.19 3.97 0.5

ish. As a consequence, it can be observed that this representation is easier to tune.

The best configurations for the pruned representation perform similarly and not significantly

worse as compared to the results recorded for the naı̈ve representation, except for the diabetes

test case, where they are weaker. Parameter tuning beyond a large initial design appears to be

infeasible, as performance is not significantly improved in most cases. If at all, it is successful

for the larger problems of diabetes, spam and Boston. This indicates that parameter setting for

the ERSVM is rather easy, because there is a large set of good performing configurations (Figure

6.1). Nevertheless, there seems to be a slight tendency towards fewer good configurations (harder

tuning) for the large problems.

6.11 Evolutionary Resemblant versus Canonical Support Vec-

tor Learning

In order to make a direct comparison with the results of the canonical SVMs, we used the R

environment and available related packages (e1071, mlbench and kernlab) for application to all

considered data sets. The results, obtained after 30 runs, are illustrated in Table 6.9. After per-

forming manual tuning for the SVM parameters, the best results were obtained as in the corre-

sponding row of Table 5.2. It is worthy to note a couple of differences between our ERSVM and
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the SVM implementation: In the Boston housing case, despite the employment of a linear kernel

in the former, the latter produces better results for a radial function, while, in the diabetes task,

the ERSVMs employ a degree two polynomial and SVMs target it linearly.

Table 6.9: Accuracy/RMSE of canonical SVMs on the considered test sets, in percent, as opposed

to those obtained by ERSVM.

∅SVM StD ∅ERSVM StD p-value

Diabetes 76.82 1.84 77.31 2.45 < 10−3

Iris 95.33 3.16 95.63 2.36 0.663

Spam 92.67 0.64 91.04 0.80 < 10−3

Soybean 92.22 9.60 99.80 1.06 < 10−3

Boston 3.82 0.7 4.78 0.59 < 10−3

The results for each problem were compared via a Wilcoxon rank-sum test. The p-values (see

Table 6.9) suggest to detect significant differences in all cases but the Iris data set. However,

the absolute difference is not large for Diabetes (ERSVM better) and for Boston housing (SVM

better), rendering each a slight advantage. It may be more relevant for the Spam problem (SVM

better) and the Soybean task (ERSVM better).

Although, in terms of accuracy, our approach has not achieved better results for some of

the test problems, it has many advantages: The decision surface is always transparent even when

working with kernels whose underlying transformation to the feature space cannot be determined.

The simplicity of the EA makes the solving process easily explained, understood, implemented

and tuned for practical usage. Most importantly, any function can be used as a kernel and no

additional constraints or verifications are necessary.

From the opposite perspective, the training is relatively slower than that of SVM, as the evalu-

ation always relates to the training data. However, in practice (often, but not always), it is the test

reaction that is more important. Nevertheless, by observing the relationship between each result

and the corresponding size of the training data, it is clear that SVM performs better than ERSVM

for larger problems; this is probably due to the fact that, in these cases, much more evolutionary

effort would be necessary. The problem of handling large data sets is thus worth investigating in

future work.



Chapter 7

Application of the Evolutionary

Resembling Support Vector Machines to

Real-World Problems

7.1 Aims of This Chapter

The intricate and vital tasks that arise in different practical domains are of great preoccupation

to both practitioners and researchers . This chapter reinforces the reference to several real-world

problems from various fields with the purpose of highlighting the applied side and success of the

newly developed ERSVM. In order to fulfill the purpose of this chapter, comparison to other state-

of-the-art techniques is conducted, even if the conditions of experimentation were not similar and

thus not truly objective.

7.2 Pima Indians Diabetes

The diabetes data set was given by the Johns Hopkins University. Prior to that, the university

selected cases from a larger database owned by the National Institute of Diabetes and Digestive

and Kidney Diseases to create it. All patients in the data set are females of at least 21 years old, of

Pima Indian heritage, living near Phoenix, Arizona, USA. There are 8 attributes (either discrete

or continuous) containing personal data, e.g., age, number of pregnancies, and medical data, e.g.,

blood pressure, body mass index, result of glucose tolerance test etc (see Table 7.1).

94
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Table 7.1: Description of attributes for each sample in the Pima Indians diabetes problem.

Attribute Interval

Number of times pregnant 0-5

Plasma glucose concentration in an oral glucose tolerance test [0,199]

Diastolic blood pressure [0,122]

Triceps skin fold thickness [0,99]

2-Hour serum insulin [0,846]

Body mass index [0,67]

Diabetes pedigree function [0.078,2.42]

Age 21-81

The last attribute is a discrete one and it offers the diagnosis, which is either 0 (negative) or 1

(positive). 34.9% of the patients in the data set are assigned diabetes positive. The total number

of cases is 768. The data is complete, according to its documentation; however, there are some 0

values of attributes that were not reported as missing data, but look peculiar.

ERSVMs resulted in 77.31% accuracy as opposed to SVMs that achieved a value of 76.82%.

Obtained results were compared to others reported by literature, with respect to the diabetes

diagnosis problem. In [Smith et al., 1988] a neural network algorithm to forecast the onset of

diabetes mellitus was used. The mean of 5 runs of the best neural configuration was 75.12%.

Using a neural networks heuristic, the mean accuracy in [Smithies et al., 2004] was obtained

as 65.55%. A new evolutionary system to evolve artificial neural networks was proposed in

[Yao and Liu, 1997] and the obtained mean accuracy on the test set was of 77.6%.

7.3 Spam Filtering

The data contains 4601 instances and 39.4% of them represent spam e-mails . For each e-mail in

the data set there are 58 attributes, 57 of them of continuous nature while the last one is binary and

represents the class. If the class of an e-mail is 0, then it is considered spam and, if the class is 1,

it is seen as regular e-mail. For each e-mail, most of the attributes show the frequency with which

some words or characters appear within it. The frequency of a word (or character) is computed by
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the percentage of words (or characters) in the e-mail that match it exactly. Three of the attributes

measure the length of sequences that contain only capital letters:

• One of them gives the average length of uninterrupted sequences of capital letters;

• Another one indicates the length of longest uninterrupted sequence of capital letters;

• The last one gives the total number of capital letters in the e-mail.

There are no missing attributes in the data set.

ERSVMs obtained an accuracy of 91.04% in comparison to SVMs that reached 92.67%. Lit-

erature reports accuracy on the UCI spam classification task in [Wang and Witten, 2002], where a

SVM enhanced by random projections to reduce the dimensionality of data resulted in 88% accu-

racy. [Fradkin and Madigan, 2003] contains another boosting of a SVM by principal components

analysis and presents a 92.3% efficiency. In [Tax, 2005], Naive Parzen achieved 76.8%, while

k-Nearest Neighborhood reached only 66.5%.

7.4 Iris Classification

The Iris data set contains 3 classes of 50 instances each, where each class refers to a type of iris

plant, namely Iris Setosa, Iris Versicolour and Iris Virginica. There are 4 attributes referring to

sepal length ([4.3, 7.9]), sepal width ([2, 4.4]), petal length ([1, 6.9]) and petal width ([0.1, 2.5]).

ERSVMs achieved a 95.63% accuracy value and the canonical SVMs reached 95.33%. In

comparison, in [Veenman, 1996], a genetic programming model was tested on the Iris database

and obtained 92.7%, while in [Yang and Honavar, 1991], some neural networks techniques (back-

propagation algorithm and cascade-correlation algorithm) were applied in this direction and re-

sulted in 93.2% and 92.6%, respectively.

7.5 Soybean Disease Diagnosis

The small soybean collection contains 47 plant instances, each recording 35 attributes plus one

attribute reflecting the corresponding disease. There are no missing values. The first 35 attributes

enclose information pertaining to the description of the environmental attributes (e.g. normality

of air temperature, precipitation), the plant’s global attributes (e.g. seed treatment, plant height)
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and the local attributes (i.e. condition of leaves, stem, fruits - pods, seed and roots). A list of

these attributes is given in Table 7.2 [Michalski and Chilausky, 1980]. The last attribute of every

record shows the disease of the current soybean sample. There are 4 considered diseases: Canker

(10 samples), rot (10 samples), Phytophtora rot (10 samples), Rhizoctonia root rot (17 samples).
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While ERSVMs obtained 99.80% on the soybean task (Table 6.9), the standard SVMs reached

a 92.22% accuracy. Comparison to other known techniques applied to the same problem was also

conducted. Accuracy for the soybean disease diagnosis was reported by [Bailey et al., 2003],

where classification with constraint emerging patterns and the Naive Bayes method were em-

ployed. The former method provided an accuracy of 95.50% (reaching 100% when a pair-wise

classification strategy was employed) while the latter resulted in 98% accuracy.

7.6 Boston Housing

This regression task deals with the prediction of the median price of housing in 1970 in the

Boston area based on socio-economic and environmental factors, such as crime rate, nitric oxide

concentration, distance to employment centers and age of a property (Table 7.3). There are 506

samples, 13 continuous attributes (including the target attribute) and one binary-valued attribute.

There are no missing values.
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ERSVMs provided a prediction error of 4.78, while SVMs exhibited a result of 3.82. Addi-

tionally, a linear regression model was implemented in R, with the same training/test set sizes and

random manner of appointment, and reached an error of 4.76.

7.7 Remarks

The proposed ERSVMs prove to be very useful also from the practical point of view, as they

are strong competitors to well-known and imposed techniques for classification and regression.

In addition to this respect, apart from the functional perspective, the all-in-one enhancement is a

simple and efficient tool in the hands of the specialists.



Chapter 8

Conclusions and Future Work

The evolutionary learning technique proposed in this thesis resembles the vision upon learning of

SVMs but solves the inherent optimization problem by means of an EA.

8.1 Achievements

The thesis puts forward an easier and more flexible alternative to SVMs that undergoes several

enhacements in order to truly stand as a worthy competitive substitute to the classical paradigm.

• Two possible representations for the EA (one simpler, and a little faster, and one more

complicated, but also more accurate) that determines the coefficients are imagined.

• In order to boost the suitability of the new technique for any issue, a novel chunking mech-

anism for reducing size in large problems is also proposed; obtained results support its

employment.

• The use of a crowding-based EA is inspected in relation to the preservation of the perfor-

mance. Crowding would be highly necessary in the immediate coevolution of nonstandard

kernels.

• Finally, an all-inclusive ERSVM construction for the practical perspective is developed and

validated.

• On a different level, an additional aim was to address and solve real-work tasks of high

importance, like disease diagnosis and prevention or spam filtering. The proposed ERSVM
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tool manages to successfully provide a means of assisting the medical decision-making as

well as a way to prevent loss of time and money in e-mail communication.

8.2 Remarks

Several conclusions can be eventually drawn and the potential of the technique can be further

completed through a couple of enhancements.

• As opposed to SVMs, ERSVMs are definitely much easier to understand and use.

• ERSVMs do not impose any kind of constraints or requirements.

• Moreover, the evolutionary solving of the optimization problem enables the acquirement of

function coefficients directly and at all times within a run.

• SVMs, on the other hand, are somewhat faster, as the kernel matrix is computed only once.

• Performances are comparable, for different test cases ERSVMs and SVMs take the lead, in

turn.

8.3 Future Directions

Although already competitive, the novel ERSVM can still be enhanced in several ways:

• The requirement for an optimal decision function actually involves two criteria: the surface

must fit to training data but simultaneously generalize well. So far, these two objectives are

combined in a single fitness expression. As a better choice for handling these conditions, a

multicriterial approach could be tried instead.

• Additionally, the simultaneous evolution of the hyperplane and of nonstandard kernels will

be achieved. This approach is highly difficult by means of SVM standard methods for

hyperplane determination, whereas it is straightforward for ERSVMs.

• The employment of the competitive ERSVM approach towards the solving of further prac-

tical problems is also desired.
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