
How to use the TSC2 code

Catalin Stoean

October 12, 2011

1 What does the program do?

TSC2 is an evolutionary technique for multimodal function optimization. It is
designed for maximization, but could be easily transformed for minimization. It
finds a collection of the most important optima for a given function. For more
information about TSC2, please see [1].

2 How to run the program

The main file can be found in the package ”multiNationSpecies” and is called
”Main.java”. It uses another class called ”Individual.java” that refers to the
individuals in the EA. Also the Main file has a ”parametersfile.txt” input text
document. For a very simple run, one should set the parameter values in param-
etersfile.txt, in there put useLHDs = false (will get back to this later), and put
the arguments to the Main class as the path to the parametersfile.txt document
and runs = 10 for 10 repeated runs of the current configuration. Surely, one
can put whichever value for the runs argument. In such a case, the results are
printed only at the console and the amount of output data is rather poor, but
it is good to see the code running.

Concerning the variable mentioned above, the algorithm can make use of
the Latin Hypercube Designs (LHDs) when this useLHDs variable is set true.
LHDs are obtained through Latin Hypercube Sampling (LHS), which is a sta-
tistical method for generating a good distribution of collections of parameter
values. For more reading about LHS, please refer to [2]. In most of the cases
we had the useLHDs variable set true. We used LHS as a means for automatic
parameter tuning, having thus a better controlled distribution for the parameter
values involved. In these situations you will have 30 different average results in
the output folder ”TSC” and to the corresponding function folder. Surely, some
of the configurations are not suitable for the problem and it is expected that
not all of them give good results; actually, for some hard functions, there are
only a few configurations that give good output. The user is advised to import
the obtained result ”*.res” file in Excel (or something similar) so that they can
be visualized easily.

1



When the LHDs are used, the number of runs (repeats) is read from the
input file and it is set in all cases to 30. These input files are located in the
Parameters intervals folder and they are distributed depending on the values
for the mutation strength parameter: if the intervals of the input function do-
main are larger, the mutation strength parameter can take higher values. The
following separations were considered:

• [0, 5] for functions: Ursem F1, Ursem F3, Ursem F4, Six-Hump Camel
Back, Shifted 6-hump, Waves, Shubert, Michalewicz

• [0, 15] for functions: De Jong, Branin RCOS, Rastrigin, Composition for
2 dimensions

• [0, 30] for functions: De Jong, Rastrigin, Composition, all 10 dimensions

• [0, 80] for Ackley function.

3 The input parameters file

In the main folder the ”parametersfile.txt” can be found. All the data in this
input file is read from the ”Main” class; even if the same variables appear in the
”Main” class with values, they are overwritten by the values in the parameters
file. The order of the parameters in the input file is not important, the reading
of the value is done corresponding to the variable at the left.

The following parameters can be set:

popSize - the size of the population. In our experiments we had values up to
200.

functionNo - the number of the function that is currently optimized. There
are currently 19 manually added functions and they are followed by the
CEC 2005 benchmark functions [3].

vectorSize - refers to the number of gradations that are used or, more precise,
the number of intermediate points that are used for detecting whether two
points follow the same optimum or not. It is used in the detect-multimodal
method. Depending on the multimodality of the function, this can have
values starting from 1 up to 15 (positive integer). The higher its value,
the more precise the method is in detecting if two individuals follow the
same peak or not, but the more expensive it gets in consuming fitness
evaluations.

pc - the recombination (crossover) probability. It has its value in the interval
[0, 1].

pm - the mutation probability. It has its value in the interval [0, 1].

2



mutationStrength - the mutation strength that is used for controlling the
mutation with normal distribution. Its value is real and its choice depends
on the function to optimize and its definition interval. In experiments we
used values up to 80 when the number of dimensions was also very high.

fitnessEvaluationsTotal - the stop condition given by a fixed number of eval-
uations. It is an integer value and we set it often to 30000.

eps - the error that is allowed when the optimum is said to be reached. We
had it 0.1.

noOfVariables - how many variables the function for optimization has. It is
a positive integer.

selType - the type of selection for reproduction: it can be 0 or 1, meaning
it is performed globally, on the entire population, or locally, within each
subpopulation. This parameter was used especially at the beginning of
the experimentation, we remained with global selection, that is the value
0.

replaceParentAutomaticallyMutation - a boolean variable (true or false).
If true, the offspring obtained after mutation replaces the parent even if
it is not better in terms of its fitness. We let it false in our experiments,
meaning that some sort of elitism was embedded.

useInteriorPoints - there has been an attempt from us to use the evaluated
interior points within the detect-multimodal method in such a way that
when the two initial points follow the same peak, the best interior point
computed is compared to the two points and, if better, it would replace
the worst of the two initial individuals, thus accelerating the convergence
of he population. We found out that the idea was not successful, probably
due to the fact that the population became too early homogenous and
exploration was left out, so we abandoned it, but we did not remove the
parameter. It is only switched of by setting it false.

tournamentSize - the selection for reproduction type is tournament and the
size of the tournament can be set from the parameters file. In our experi-
ments we used a binary tournament, so its value was 2.

Except from these parameters, there are other important ones that can be
set directly from the Main.java file. The most important ones are:

percentSeeds refers to the percent of the population that can be included in
the set of seeds. The seeds are copied from one generation to another and if
too many individuals were seeds and the function was highly multimodal,
the entire population could be blocked into seeds and no evolution would
happen. Therefore, only a limited number of individuals can be seeds (20
being a good default value).

3



noOfRuns - how many repeats to be performed for putting some objective
results as average value. 30 is a good value but, just for testing whether
the code runs OK, 1 should be used for getting quickly the results. Note
that when useLHDs is true the noOfRuns is already set 30, as its value is
read from the input LHD file.

useLHDs - whether the LHS are used or not.

findBestFitness is an interesting variable: for multimodal functions one could
search for the best solution found (in which case the findBestF itness
should be set true), or one could be interested in the number of peaks
found when the function has several peaks that are important (findBest-
Fitness = false in that case). Note that the algorithm is insensible to
such modifications, but in the output file the first column gives this result
- the best fitness evaluation when findBestFitness = true and the number
of peaks found when findBestFitness = false.

4 Adding another function

As mentioned above, there are currently 19 manually added functions and they
are followed by the CEC 2005 benchmark functions [3]. Then, there is also the
function with the number 50 which represents the practical application in [1].
The names for the first functions can be found in the ”Main.java” file, just below
the declaration of the functionNo variable, at the beginning of the file. The rest
can be found in [3] - from these we used only Shifted Rastrigin F9 and Rotated
Hybrid Composition Function F21 in [3], that is functionNo = 22 and 34,
respectively. The two functions are calculated in the readParameters(Properties
prop) method inside the Main class.

All the names for the functions are also introduced in the method getFunc-
tionName(); this is used for understanding for which functions are the results
printed. So, it would be a good idea to add the name of the function that you
intend to add in this method.

Next, the function should have a case included in the eval(Individual c)
method. To refer to one position (gene) of the individual c, then the item genes
will be used as c.genes[i] for the i-th gene. The result of the evaluation of the
function should be put into the ret variable.

Next step is to include the positions of the peaks and that means adding
a case in the setPeaks() method for our function. Naturally, the case number
should be identical to the one from functionNo, getFunctionName(), and
eval(Individual c).

Last thing to do when adding another function is to insert in the Individ-
ual(int functionNo, int noOfGenes) constructor (of the Individual class)
the left and right domains in the corresponding case value.

However, if you plan to use the LHDs (and I advise you to do so for finding
fast good parameters and see many output results), there are a couple of things
to be done:

4



• Insert into the getInputFileName() method the path for the current func-
tion to the LHD input file. This selection is based on the values that the
mutation strength should take: below 5, below 15, below 30 or below 80.
Please, read section 2 for details.

• Create in the TSC folder an empty folder for the function with the ex-
act name you previously set for this function in the getFunctionName()
method.

5 Other options

There are many methods implemented in the code that are not used in the
current form of the code but they could be used if necessary. For instance, there
are many output methods for printing results in the proper format for using them
with the R statistical software. Some print the results at the console, others
write them to a file. Here and there in the code, there are (a few) comments that
can help one understand what lies in there. Many other methods are included
in the code and they can called for other observations, e.g. one can see the best,
worst and average fitness evaluation, prepare data for plotting in R individuals
from different species with distinct colors, how many evaluations are spent per
generation, etc.

6 LHD result files

The results files when useLHDs is true are saved in the TSC folder and then in
the corresponding function folder. The extension of the file is res and it should
be printed in a spreadsheet in order to visualize/sort the results properly. If
several runs are done for the same function, the results are saved in the same
file, below the previous values. The user should not pay much attention to the
console output, the interesting part is in the output file.

The first row contains a header with the meanings for the values below.
The first result may represent the best fitness evaluation when the parameter
findBestFitness = true and the number of peaks found when findBestFitness
= false. This is the main result, and it is followed by the important input
parameter names (the ones that have major influence over the results and are
read from the input LHD file) and then some other results follow: number of
peaks or best fitness evaluation, depending on what was the first output, the
peak ratio, number of attraction basins detected, percentage of the runs when
all desired peaks are found, the peak accuracy for all peaks - meaning how close
they are as fitness evaluations to the optima, distance accuracy - how close they
are to the optima as locations, number of generations, runtime, and other input
parameters that are not read from the LHD input file.

5



7 Feedback is welcome!

Hope that this file will get you going with the code. Otherwise please, do not
hesitate to ask for help at catalin.stoean@inf.ucv.ro for setting the program
running.

References

[1] Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D., Multimodal
Optimization by Means of a Topological Species Conservation Algorithm,
IEEE Transactions on Evolutionary Computation, Vol. 14, No. 6, pp. 842-
864, 2010.

[2] Iman, R. L., Latin Hypercube Sampling, vol. 3, Encyclo-
pedia of Statistical Sciences, Wiley, NY, pp. 408-411, 1999,
http://www.swtechcon.com/PDF/appdixa.pdf.

[3] Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P.,
Auger, A., Tiwari, S., Problem Definitions and Evaluation Criteria for
the CEC 2005 Special Session on Real- Parameter Optimization, Technical
Report, Nanyang Technological University, Singapore, 2005.

6


