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ABSTRACT

The general structure of the paper is the following:

• We use the formalism of the Recursive Modelling
Method for the purpose of decision theoretic calcula-
tions. The advantage of Recursive Modelling Method,
when used for expected utility calculation, is that it is
able to succinctly represent the content of the agents,
including its preferences, abilities, and beliefs about
the physical world, as well as the agents beliefs about
the other agents, their preferences and abilities, their
beliefs about the world and about other agents, their
beliefs about others beliefs, and so on.

• We consider examples of various types of commu-
nicative acts. The results address the communicative
acts that agents can use to share information about
their environment (I call these modelling agents), acts
used to express the current intention of the user (inten-
tional messages), and acknowledging messages. We
then present results on the agreement between the
method of message selection and messages that hu-
mans choose, and show an experimental validation
of our framework in a simulated multi-agent environ-
ment.

• Open problems and future work
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1 COMMUNICATION BETWEEN
MOBILE AGENTS

The concept of mobile agent is defined in [1]. There
are autonomous objects that migrate from node to node

and provide to user which have executed themselves using
database or computation resources of clients connected by
the network. To migrate the mobile agent, it will be needed
a virtual place so-called the mobile agent system to support
mobility.

Our approach is knowledge-based and relies on a gen-
eral purpose knowledge base (KB)( [2]), in this case imple-
mented as a system of classes of objects and their instantia-
tions. To facilitate effective communication, the agents has
to include information about the possible states of knowl-
edge, abilities and preferences of the other agent(s) present
in the environment.

The need for considering the nestedness of the agents
beliefs for communication has been widely recognized in
the linguistics and AI literatures before ([8]), while re-
search in cognitive science yielded evidence of nested
mental models used by humans for purpose of communi-
cation. Clearly, without a model of the other agents mental
states it would be impossible to properly assess the im-
pact of a communicative act. With each communicative
act we identify its decision-theoretic pragmatics, defined
as the transformation of the state of knowledge about the
decision-making situation the act brings about.

Imagine two agents engaged together in assembling a
bicycle from parts scattered about a garage. A commu-
nicative act The front wheel is in the southwest corner of
the garage, uttered by one of the agents, has the pragmatic
meaning of changing the other agents beliefs about the lo-
cation of the front wheel, if it did not know the location be-
fore. This act also changes the decision-making situation
the agents are in: The other agent is now in the better posi-
tion to get the front wheel and complete the bicycle assem-
bly, and the time saved could be of benefit to both agents.
The above communicative act, therefore, is endowed with
both decision-theoretic pragmatics, as well as pragmatic
meaning.

We now briefly describe a simple interaction between
two agent, and present a compiled representation of a state
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of knowledge of one of them that we will use during further
discussion of communication.

Figure 1. Description

We consider the example of interaction depicted in Fig-
ure 1. It involves two agents, A1 and A2, engaged in a
common mission of gathering information. We take the
perspective of A1 (A1 will be the speaker agent), who can
detect two possible observation points, P1 and P2, allow-
ing observations worth 2 and 4, respectively 5. Point P1 is
closer to A1 and P2 is closer to A2, and the costs of get-
ting to the points are assumed to be 1 or 2, as indicated in
Figure 1. As we mentioned, this information resides in the
agents general purpose KB. A1 has to make a decision as to
whether to pursue the observation from P1 (well label this
option a11 ), from P2 (a12 ), or do neither and just sit still
(a13 ), and would like to do so in a way the maximizes the
total value of information obtained by both agents, since
its a joint mission, reduced by its own cost. We assume
that these two factors are the only ones that determine A1
expected utility in this case. Note that the expected utili-
ties of A1s actions depend what it expects A2 to do. If A2
observes from P2 then A1 is best off observing from P1 for
the total payoff of 2 + 4 - 1 = 5, i.e, total value of obser-
vations minus A1s own cost. But if A2 decides to observe
from P2 or do nothing at all, then its best for R1 to observe
from P2. The expected payoffs of alternative behaviors of
A1 can be assembled into a payoff matrix, and so on for
A2.

In conclusion, I shall follow the steps :

• define the space of the recursive model structures.

To handle the issue of predicting the other agents ac-
tion, while the other agent attempting to do the same,
we suggest a knowledge-based approach. Intuitively,
instead of attempting to guess what the other agent
will do, based on what its guess is as to what the orig-
inal agent will do, etc., the agent should simply repre-
sent all of the information is has about the other agent,
about what the other agent knows about the original
agent, and so on. We argue that in realistic situations
the information the agent has is finite and has to ter-
minate at some finite level of nesting. Thus, the rep-
resentation of this information is a finitely nested hi-
erarchy of models that can be processed bottom-up.

For the purpose of the current example we assumed
that the agent A1 knows that A2 has no informa-
tion it can use to model A1. That means that the
recursive model structure representing A1s decision-
making situation in this scenario, terminates at the
leaves with, what we call, no-information models.
Thus, A2s lack of any information about A1 is rep-
resented as uniform probability distributions on the
third level of the structure. They precisely correspond
to A2s lack of knowledge about A1, since they con-
tain no information about A1s action. The two models
that A1 has of R2s decision-making situation reflect
A1s uncertainty as to A2s being able to see point P2.
In this case we assumed that A1, given the density
of the foliage between A2 and P2, assigns a proba-
bility 0.1 to A2s being able to see through the trees,
and a probability of 0.9 to it not being able to see
P2. We call them modelling probabilities. In gen-
eral, modelling probabilities are associated with alter-
native models, or branches, on any level of the recur-
sive model structure. The bottom-up solution of the
structure in Figure 2 amounts to computing the ex-
pected behaviors of agents given what they, in turn,
expect of other agents. In the right branch, for exam-
ple, given that A2 assigns equal probabilities of 1/3,
the expected utilities of A2s actions can be computed
as:

1/3(0 + 4 + 0) = 3/4

1/3(5 + 3 + 3) = 11/3

and 1/3(2 + 4 + 0) = 6/3,

for the consecutive alternatives. Thus, if A2 can see
P2, its best alternative is a2

2 to pursue the observa-
tion from P2. Analogous analysis of the other model
shows that if A2 cannot see P2 then its a2

3 is best and it
will remain stationary. These two predictions can be
probabilistically mixed with weights equal to 0.9 and
0.1 yielding an overall estimate of what actions A1
can expect A2 to perform, which will be called the
intentional probability distribution, or the conjecture.
In this case, the intentional probability distribution is:

pA1
A2 = [0, 0.1, 0.9]

where A1 is certain A2 will not pursue observation
from P1, estimates that there is 10% probability that
A2 will observe from P2, and that there is 90% prob-
ability that R2 will stay put.
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Figure 2. Recursive model

• representing the decision-making situation of the
speaker agent, Ai.

Our modelling communicative acts update the hearers
and the speakers model of the multi-agent world. The
close correspondents of these type of communicative
acts in speech act theory are the inform, assert, and
tell acts. rational communication in multi-agent envi-
ronments.

Definition 1.1 Modelling communicative acts are
ones that contain information about the modelling
probabilities, which represent Ais beliefs about the
other agents in the environment.

The modelling probabilities in the above definition
are the probabilities associated with different models,
or branches, in the recursive model structure.

Consider again the example of interaction depicted in
Figure 1, and the recursive model structure represent-
ing A1s decision-making situation in this scenario in
Figure 2. Assume, for the time being, that both agents
can understand and generate communicative acts in
English. Consider what would happen if A1 were to
send a message, M1, stating There is an observation
point P2, twice as high as P1, behind the trees. As-
suming that A1 estimates that the M1 is certain to
reach A2.

The projected structure can be easily solved, showing
that A1 would be sure that A2 would observe from
point P2, taking action a2

2. Thus, the projected con-
jecture that A1 ascribes to A2 is pM1;A1

A2 = [0, 1, 0].
The best alternative for A1 according to projected
structure is to make an observation from P1, but the
expected payoff has increased to 5. Thus, by send-
ing the message M1 to A2, A1 was able to increase
the expected utility it gets from the interaction from
2 to 5. The utility of sending the message M1 is
U(M1) = 5 − 2 = 3. This illustrates how our ap-
proach implements the fundamental function of com-
munication, which is to confer some advantage to the

speaker by influencing what the hearer knows and in-
tends to do.

The above analysis assumes that A2 is guaranteed to
receive and properly decode the content of A1’s com-
municative act. However, it may be that A2 does
not understand English, or that A1 used an unreliable
communication channel. As we mentioned, A1’s at-
tempt to transmit the content above would then, for-
mally, constitute a different communicative act, M1.1.
M1.1 also has a different, although still well defined,
DT pragmatics. Let us represent the imperfections in
M1.1 transmission by assigning a probability, pc, to
properly receiving and understanding the content of
M1.1.

Solving the projected structure in Figure 3 reveals
that the intentional probability distribution describing
A2’s action is 0, 0.1+0.9pc, 0.9−0.9pc. The expected
utilities of A1’s alternatives can now be computed as:

uA1
a1
1

= 1.4 + 3.6P − c

uA1
a1
2

= 2

uA1
a1
3

= 0.4 + 3.6pc

From the above we can see that, if pc > 1/6, the value
of the message depends on pc as:

U(M1.1) = 3.9pc − 0.6

If pc < 1/6, A1 would prefer to choose a12 and ob-
serve from P2, with its payoff of 2. This is the same as
without communication, so, if pc < 1/6, the expected
utility of is zero.

• define the set of the communicative acts agent Ai can
perform.

We will assume for simplicity that this set is finite and
it consists of alternatives generated, for example, by a
communication planning module.

The elements of the set are communicative acts that
differ in the content of the communicated informa-
tion, but also differ in the way this content is en-
coded (the language used), and in the communication
medium used for its transmission.

The purpose of intentional communicative acts is to
inform other agents about the speakers current inten-
tions. These acts loosely correspond to promise acts
in the speech act theory, but they do not imply the
notion of commitment. For example, an agent may
inform another agent of its current intention to per-
form some action, but, say in view of newly acquired
information, it is free to change its intention. Note,
however, that it would be in this agents best interest
to inform the other agent about the change of plans by
sending another intentional message.

Definition 1.2 Intentional communicative acts con-
tain information about the intentional probabilities
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pAi,Aj
Ak , that represent Ais belief about an agent Aj ex-

pectation as to another agents, Ak, actions.

In the simplest and most intuitive case, the speaker de-
clares its own intentions and, in the above definition,
Ai and Ak are the same speaker agent. In general, the
intentional probabilities are conjectures the agents use
to describe the expected actions of other agents.

For the purpose of the present discussion we assume
that the truthfulness of these messages is guaranteed
(as we mentioned the agents intentions may change,
but it is in their best interest to inform others of such
changes. Thus, a hearer can use an intentional mes-
sage to predict what the speaker will do. In modelling
the hearer, therefore, the speaker can truncate the pro-
jected recursive structure, because it knows that the
hearers conjecture of the speakers actions correspond
exactly to the content of the intentional message.

Let us take again the interaction in Figure 1, and sup-
pose that A1 considers using a perfect communica-
tion channel to transmit a message I will observe from
point P2 to A2. Let us denote this communicative act
as M2.

If A2 is not aware of the point P2 and receives M2, it
models R1 as pursuing its a1

3 option doing something
other than observing from P1 and so, for A2, the op-
tions a2

1 and a2
3 are equally good and equally likely. If

A2 can see the point P2 and receives M2, its options
a2
1 and a2

3 are also equally good. Thus, the new overall
intentional probability distribution over A2s options
is pM2,A2

A2 . Now, the expected utility of A1s action a1
2

increased to 3. The utility of M2 is UM2 = 3−2 = 1.

The above analysis assumes that A2 is guaranteed to
receive and properly decode M2. If the reliability of
the communication used is characterized by the prob-
ability pc instead, the intentional probabilities A1 as-
cribes to A2 will be:

pc[0.5, 0, 0.5] + (1 − pc)[0, 0.1, 0.9] = [0.5pc, 0.1 −
0.1pc, 0.9− 0.4pc]

The expected utilities of A1s alternatives can now be
computed as:

uA1
a1
1

= 1.4− 0.4pc

uA1
a1
2

= 2 + pc

uA1
a1
3

= 0.4 + 0.6pc

Thus, the expected utility of sending this message
over an unreliable channel is equal to the probability
pc.

2 AN APPLICATION WHICH
USES COMMUNICATION BE-
TWEEN MOBILE AGENTS

This section describes some of my experiments of coordi-
nation with communication in the air defense domain, in
which two defense batteries have to coordinate their ac-
tions of intercepting multiple incoming threats.

First, I shall show that Recursive Modelling Method
cases agrees with selections chosen by human subjects in
four simple defense scenarios. Then, i shall show results
of scaled up defense episodes in which agents perform
slightly better than the human subjects.

The results obtained can improve effectively the prob-
lem of performance in communication between mobile
agents.

In the simple scenarios below, we will consider optimal
communicative behavior of Battery1 (triangle on the left
in our scenarios) only, and assume that Battery2 is silent
but can receive messages. Further, for simplicity, in all of
the anti-air defense scenarios considered below Battery1 is
assumed to have a choice of six communicative behaviors,
generated by a communication planning module:

No Communication: No communication
M1: Ill intercept Missile A.
M2: Ill intercept Missile B.
M3: I have both long and short range interceptors.
M4: There is a missile A, whose position and warhead

size are PA and WA, respectively.
M5: There is a missile B, whose position and warhead

size are PB and WB , respectively. We wanted to investi-
gate how RMM agents rank the messages in the above list,
and whether there is an agreement between the commu-
nicative behavior advocated by RMM and human commu-
nicative behavior. As human subjects we used 32 CSE and
EE graduate students. Each of them was presented with a
scenario, and was given a description of what was known
and what was uncertain in that scenario. The students were
then asked to indicate which of the six messages was the
most appropriate in each case, and which one was the sec-
ond choice.

Consider the scenario depicted on the left in Figure 3.
Here, the defense batteries face an attack by missiles A
and B. A has a larger warhead size than B, but it is farther
from the defended territory. The state of Battery1s knowl-
edge before communication is summarized as a two-level
recursive model structure on the left. Assume that Battery1
assigns the probability of to Battery2s being fully opera-
tional (having both long and short range interceptors and
thus being able to target both missiles), and the probability
of to Battery2s being incapacitated (in which case it cannot
do anything). The remaining probability of is assigned to
the No-Information model representing all of the possible
remaining unknown cases. In this scenario Battery1 is as-
sumed to have no more information. In particular, Battery1
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does not know what action Battery2 expects of Battery1.
To compute the value of communication we solve both

model structures and compare results. Before communica-
tion, Battery1 computes that if Battery2 is operational then
the probability distribution over Battery2s possible actions
A, B, and S is [0.85, 0.15, 0.0]. Using dynamic program-
ming one can now easily compute that Battery1s best op-
tion is to shoot at missile A, with an expected utility Up(A)
of 30.83.

After sending the message M1, the probability distribu-
tion over Battery1s actions at Level 2 is [1, 0, 0]. Thus, if
Battery2 is fully operational, it will choose to shoot at mis-
sile B the probability distribution over Battery2s actions
becomes [0,1,0]. This probability distribution is combined
with the model of Battery2 being incapacitated and with
the third No-Information model:

(0.9 × [0, 1, 0] + 0.05 × [0, 0, 1] + 0.05 ×
[1/3, 1/3, 1/3]) = [0.02, 0.92, 0.06]

The resulting distribution is Battery1s overall expecta-
tion of Battery2s actions, given all of the remaining uncer-
tainty. The combined probability distribution describing
Battery2s actions is used to compute the expected utility
of Battery1s action of shooting A.

The expected utilities of the other messages are com-
puted analogously, and the results are shown in Figure 3.
As expected, some of the messages have no value in this
situation, and their computed expected utility is zero, since
they do not convey anything useful and novel. Note that
message M2 has a negative expected utility; it is a bad idea
for Battery1 to announce its intention to shoot at missile B
in this scenario.

Figure 3. Results of the example

The results of human choices are also summarized in
Figure 3. Twenty four, out of thirty two 75% of the sub-
jects chose message M1 as the best in this situation, while
five subjects judged it as a second best. This shows a con-
siderable agreement between RMMs calculations and se-
lections of the human subjects.

3 OPEN PROBLEMS AND FU-
TURE WORK

The following open problems arise from this paper:

• Comparative study concerning these modelling: com-
pared the performance of the automated agents with
that of communicating humans and showed that
agents are more competent ([2]).

• Study the case when an mobile agent has toured for all
nodes having no faults before that it does re-connect
with the faulty nodes.

• investigate techniques that can be used to compile
the results of full-blown Recursive Modelling Method
into situation/communication pairs, to be used to ur-
gent situations. This naturally gives rise to the estab-
lishment of protocols.
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