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1 Introduction

The systems of cooperating structures are more and more used to satisfy a
common task. A cooperating system is a collection of devices such that based
on some strategy of communication between them, a common task can be
performed. Various cooperating systems were introduced: cooperating grammar
systems ([2]), cooperating mobile robots ([12], [13]), master-slave systems ([14]),
neural networks and so on.

In this paper we present three cooperating structures that are based on
semantic schemas. The structure of the paper is the following. In Section 2
the basic concepts connected by semantic schemas are presented. In Section
3 we define the concepts of master-schema, slave-schema and the cooperation
between them. In Section 4 we define the maximal graph of a semantic schema
and the cooperation based on this structure. In Section 5 we introduce a binary
operation between semantic schema named the cross-product of two semantic
schemas. The last section contains two ideas to extend the subject presented
in this paper.

2 Semantic schemas

We consider a finite and nonempty set Ag and we denote by # an operator
symbol of arity 2. We denote by Ag the Peano 0-algebra generated by Ay,
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Fig. 1. Cooperating systems

therefore Ay = U,>0 An where A, is defined recursively ([1], [8]) by
Apy1 = AgU{ 0(u,v) | u,v€ Ag}, k20

If we take
BO = A07 BnJrl = AnJrl \An (1)

then Ay = J,,5¢ Bn and B;NB; = 0 for i # j. For u € A we write length(u) =
nifu € B,.

In what follows we recall the main results concerning the concept of 6-
semantic schema introduced in [3] and developed in [4], [5], [6] and [7]. We
mention in this section only those results that are used in this paper.

A f#-semantic schema (shortly, -schema) is a system S = (X, Ay, 4, R),
where

e X is a finite non-empty set of symbols and its elements are named object
symbols

e Ag is a finite non-empty set of elements named label symbols and Ag C
A C Ay, where Ay is the Peano #-algebra generated by A

¢ R C X X Ax X is a non-empty set which fulfills the following conditions:

(x,0(u,v),y) e R=dz € X :
(z,u,2) € R, (z,0,y) € R (2)
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O(u,v) € A,
(z,u,z) € R, » = (z,0(u,v),y) € R (3)
(z,v,y) € R

u€ A= 3Iz,u,y) €ER (4)

We denote Ry = RN (X x Ap x X).
Proposition 1. If 8(u,v) € A then u € A and v € A.

Proof. If 6(u,v) € A then by (4) and (2) we deduce that there are (z,u,y) € R
and (y,v,z) € R. Using again (4) we obtain u € A and v € A.

Let S = (X, Ao, 4, R) be a #-schema. If h is a symbol of arity 1 then we
consider the set:

M = {h(x7a7y) | (z,a,y) € Ro}

where we use the notation h(z,a,y) instead of h((z,a,y)).

We consider a symbol o of arity 2 and let ‘H be the Peano o-algebra generated
by M.

We denote by Z the alphabet including the symbol o, the elements of X,
the elements of A, the left and right parentheses, the symbol A and comma.
We denote by Z* the set of all words over Z. We define the following binary
relation on Z*:

Let be wy,we € Z*.

o If a € Ag and (z,a,y) € R then w(z,a,y)ws = wih(z,a,y)ws
e Let be (z,0(u,v),y) € R. If (x,u,2) € R and (z,v,y) € R then

w1 ({L’, 9(“’7 U)7 y)w2 = 11}10'((.%'7 u, Z)7 (Z7 v, y))w2

We denote by =* the reflexive and transitive closure of the relation =.
The mapping generated by & is the mapping Gs : R — 27 defined as
follows:

L4 95(1'7(17?/) = {h(x7a7y)} for a € AO
* Gs(2,0(u,v),y) ={w € H | (z,0(u,v),y) =" w}

We denote F(S) = U (4,uy)er Is(@, u,y).
An interpretation ([7]) of S is a system Z = (Ob, ob, { Algy, }ueca), where
e Ob is a finite set of elements named the objects of 7
e 0b: X — Ob is a bijective function
o {Algy}uca is a set of algorithms such that each algorithm has two input
parameters and one output parameter.
Consider an interpretation Z = (Ob, 0b, { Alg, }ueca) of S. The output space
Y of T is the set Y = {J,c4 Yu, where

Yo = {Alga(ob(z), 0b(y))|(x,a,y) € Ro}
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if a € Ap and otherwise
Yo(uw) = {Algo(uv)(01,02)|01 € Vi, 02 € Yy }
We define recursively the valuation mapping
Valz : F(§) — Y

as follows:

e Valz(h(z,,y)) = Alga(ob(), ob(y))

o Valz(a(a, 8)) = Algg(u,v)(Valz(a), Valz(B)) if o(a, 3) is derived from an
element of the form (z,6(u,v),y) € R (in fact this element is uniquely deter-
mined, [6]).

An intuitive representation of the computations is given in Figure 2.

olaf{x.a,z,(21,b,22)).(22,5.))
Wagpsineg i
A W .

Alg, | |Algs Alg,

Fig. 2. Intuitive computations

We consider a finite and nonempty set Ay and we denote by © = {64,...,0,}

a finite set of operator symbols of arity 2. We denote by Ag the Peano ©-algebra

generated by A, therefore Ay = U0 An where Ay are defined recursively as
follows ([3]):

At :AkU{ 9(71711) | 0eo, u,’UGAk}7 (5)

In what follows we introduce the concept of ©-schema as an extension of 8-
semantic schema.
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Definition 1. A ©-semantic schema (shortly, ©-schema) is a system & =
(X, Ao, A, R), where

o X is a finite non-empty set of symbols and its elements are named object
symbols

e Ay is a finite non-empty set of elements named label symbols and Ay C
A C Ay, where Ay is the Peano ©-algebra generated by Ay

¢ RC X x AXX is a non-empty set which fulfills the conditions (2), (3)
and (4).

Remark 1. Obviously a ©-schema for n = 1 is a 6-schema, where X' = {6}.

3 Master-slave cooperation

In this section we define a cooperating system of semantic schemas that uses
the general description of a master-slave system. Such a system includes several
distinct semantic schemas, each of them being a slave-schema. The system
contains also a special structure named master-schema. The cooperation is
described by the formal and semantic computations of the master-schema.

Definition 2. ([9]) We consider the binary symbols 6,64, ...,8,. The pair
MSpi1 = (8, {8;}",) is a master-slave system (of semantic schemas)
with n + 1 components if the following conditions are satisfied:

e Forie {1,...,n} the entity S; = (X, Aoi, Ai, R;) is a 0;-schema; we say
that S; is a slave-schema of M Sy .

e S = (X, Ao, A, R) is a 8-schema, named the master-schema of M Sy 41,
such that Ry C UZL:1 Ri, where R = RN (X x Ag x X).

As a general notation, if M € X; x ... x X,, and 7 € {1,...,n} then
priM ={z | Wz, .., 21,2, Ti41,...,Tn) € M}

It is not difficult to observe that two arbitrary components of MS, 1 are
distinct schemas because they use distinct binary symbols. Moreover, Ag =
proRo Cpro(Ul_; Ri) = U;_, Ai because proR; = A;.

In order to exemplify this concept we consider the 8;-schema &; from Figure
3 and the fy-schema Sy from Figure 4 as slave schemas ([9]), where p; =
01(b1,a1), p2 = Oa2(as, b2), p3 = O2(az, b1), pa = Oa(a1, az), ps = #1(a1, a2) and
a1 = 1 (az, a1).

Take the set Ry represented in Figure 5. We can obtain the master schema
S = (X, Ao, A, R) if we take
* X =priRoUprsRo; Ag = praRy
e = RyU {(Zlv 6(0’171)1)7 23)7 (:L'g, 09([)27 0/1)7 y2)7 (Zlv 9(0’171)3)7 24)7 (Zlv 9(p47p5)7
x3), (23,0(p2,p4), 1), (21,0(ps,p2), 21), (21, 0(0(ps, p2), a1), y2) }
e A=praR
We obtain the master-slave system M S3 = (S, {S1,S2}).
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Definition 3. ([9/) Consider a slave-schema S;, a symbol o; of arity 2 and
a symbol h; of arity 8. We denote Ry; = R; N (X; x Ag; X X;). We define the
direct derivation =; as follows: if w1 and wa are arbitrary words then

e for (z,a,y) € Roi we write
wy (z, a,y)wy = wihi(z, a,y)ws
o for (z,0,(u,v),y) € R, (xz,u,z) € R; and (z,v,y) € R; we write
wi(z, 0;(u, v), y)ws = wio;((x,u, 2), (z,v,y))ws

We write o =} B if either o = 3 or there are 71, ..., Vg1 Such that y1 = o,
Vi1 = B and v; = Yiq1 fori € {1,...,k}. If this is the case then the sequence
Y- Vi1 08 a derivation of B from o in S;. If M; = {hi(z,a,y) | (z,a,y) €
Ro;} and H; is the Peano o;-algebra generated by M; then we take

‘7:(81) = {w € Hi | E'(.’L‘7 U, y) € Rl : (.’L‘7 u, y) :>:< w}
A formal computation for w € F(S;) is a derivation of w from an element
Of Rl

Remark 2. If w € F(S;) then there is an element and only one (z,8;(u,v),y) €
R; such that (z,6;(u,v),y) = w. This property allows us to denote type(w) =
0; (u,v).

The elements of the set F(S;) are abstract entities. In order to obtain the
meaning of these elements we use a semantical computation. This computation
is obtained by means of an interpretation.

Definition 4. ([9/) An interpretation J; of S; is a system
Ji = (Ob;, 0b;, {Algi}ue a,)
where

o Ob; is a finite set of elements named objects;

e 0b; : X; — Ob; is a bijective function;

o {AlgiYuca, is a set of algorithms such that each algorithm has two input
parameters and one output parameter.

The output space Y; of J; is defined by Y; =

o V) = {Algl(obi(x),0bi(y)) | (x,a,y) € Roi}
. Yeli(uw) = {Algéi(um)(Ol’OQ) | o1 € Y 00 €Y}

i
wea, Yo, where

We define recursively the valuation mapping
Valg, : F(S;) — Y,

as follows:
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o Valg, (hi(z,a,y)) = Algh(ob;(x), 0b;(y))
o Valg (0i(a, B) = Algs,(uv)(Valg,(a), Valz(3))

if type(oi(a, B)) = 0;(u,v).
The meaning of w € F(S5;) is Val 7, (w).

The formal computation in a master-schema is based on some specific
derivation and this concept is introduced in the next definition.

Definition 5. ([9]) Let S = (X, Ao, A, R) be a master-schema. Consider a
symbol o of arity 2. If (z,0(u,v),y) € R, (x,u,z) € R and (z,v,y) € R then

wi(,0(u, v), y)wz = wio((z, u, 2), (2,0,y) w2

for any words w1, ws. We write o —* 3 if either o = 3 or there are v, ...,
Ym+1 such that v1 = a, Ym41 = B and v; — vip1 for i € {1,...,m}. If this is
the case then the sequence ¥1i,...,VYm+1 8 a derivation of 3 from o in S.

We denote by H the Peano o-algebra generated by Ry. We define

F(S) ={weH|IHz,u,y) € R: (z,u,y) —" w}
A formal computation for w € F(S) is a derivation of w from an element of
R.

Proposition 2. In a master-slave system we have F(S) 2 Ry and X C

Proof. H is generated by Ry, therefore Ry C H. Taking (x,u,y) € Ro we have
(z,u,y) € H and by the reflexivity of —* we have (z,u,y) —* (z,u,y). Thus
(z,u,y) € F(S). The second part is obvious.

Remark 3. If w € F(S) then there is an element and only one (z, 8(u,v),y) € R
such that (z,6(u,v),y) —* w. This property allows us to denote type(w) =
O(u,v).

An example of computation is described below for the master-slave system
M Ss:
(21,0(0(61 (a1, a2),02(as, b2)), a1),y2)

o((x1,0(01(a1,a2),02(as3,b2)), 21), (21,01, y2))
On the other hand
(1,0(01(a1,a2),02(as,b2)), z1) — a((z1,01(a1, a2), x3), (x3,02(as, b2), 21))

therefore
(21,0(0(61 (a1, az),02(as, ba)),a1),y2) —+

o(o((w1,01(a1,a2),3), (x3,02(a3, b2), 21)), (21, a1,y2))

This computation proves that the element

o(o((w1,01(a1,a2),23), (x3,02(a3,b2), 21)), (21, a1,y2))
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belongs to F(S).

The semantical computations in a master-schema are defined taking into
account the semantical computations in the slave-schemas of the system. First
we introduce the concept of interpretation for a master-schema.

Definition 6. (/9/)

Suppose that (S,{S;}1—,) is a master-slave system of semantic schemas, where
S = (X,40,A,R) and S; = (X;, Agi, Ai, R;) for i € {1,...,n}. For each i €
{1,...,n} consider an interpretation T; = (Ob;,ob;, { Algi }ueca,) for S; such
that if x € X; N X, for i # j then obj(x) = ob;j(x). An interpretation of
S is a system T = (Ob, 0b, { Algy }uca) such that ob : X — Ob is defined by
ob(z) = ob;(z) if x € X; and Alg, is an algorithm with two input arguments
and one output argument.

We define the space Yand the valuation mapping
Valg : F(S) — 2Y
as follows:

o If (z,a,y) € U, (Ro; N Ro) then
Valz(z,a,y) U{Alya (obi(x), 0bi(y))}

Take Y, = U, , Valz(z,a,y).
o If (z,0;(u, U)7y) € RiNRy, (z,0;(u,v),y) =F 0;(wi,wz) and o;(w1,ws2) €
F(S;) then
VG,ZI(Z', 0; (uv U)v y) = {VaZIi (Ui (wh wQ)}
Take Yy, (u,0) = U, ValI(w 0;(u,v),y).
s Ifo(a, ) € F(S ) and type(o (e, 8)) = O(u,v) then

Valz(o(a, B)) = U {Algo(u,)(01,02)}
01 € V(],ZI(Oz)7
09 € VG,ZI(B)7

Take Yp(u,0) = {Algg(uw)(ol7 02) |01 €Yy,00 €Y, and Y = UuEA Y.
As an example of computation we consider the following cases for M Ss:

o Valz(z1,a1,y2) = {Algy, (obi(z1),0b1(y2)), Algz, (oba(21), 0ba(y2))}

o Valz(y2,02(az, b1) 1) = {Algo,(as,01) (01, @2) }, where q1 = Alg2, (0ba(y2),
Obg(xl)) Algb (Obg(xl) Obg( 4))

o If we denote 01 = Algal(obl(zl) ob1(y2))

03 = AZQQQ(@J)I)( Alga2(0b(y2) Obg(xl)) Al

on the derivation

, 02 = Alg2 (0by(z1),0b2(y2)),
9, (0ba(x1), 0b2(24))) then based
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(21,0(a1,02(az2,b1)), za) = o((21, 01, y2), (Y2, 02(az, b1), z4))
we obtain
Valz(z1,6(a1,602(az2,b1)),24) =

{Alge(a1792(a27bl))(017 03)7 Alg@(al,QQ(aLbl))(OQ? 03)}

Definition 7.  We consider a master-slave system MS,11 = (S,{S;i}1,),
an interpretation L of M S, 11 and the interpretation Z; for S;, i € {1,...,n}.
An interrogation of the master-slave system M Sy11 is a pair (z,y) of nodes
from §. The answer given by S is the entity

Anss(z,y) = U U Valz(o(a, 3))

u€A  o(a,f)eD(x,uy)

where D(z,u,y) = {o(c,8) € H | (z,u,y) =" o(a, B)}

4 Cooperating based on maximal graphs

In this section we define another kind of cooperation, which is based on the
concept of maximal graph of a semantic schema.

A labeled graph is a tuple G = (S, Lo, To, fo), where

e S is a finite set, an element of S is a node of G;

e [ is a set of elements named labels;

¢ Tp is a set of binary relations on S;

e fo: Lo — Tp is a surjective mapping,.

We use in what follows the union of two labeled graphs. In order to define
this operation we consider the labeled graphs G1 = (S, Lo, T, fo) and G2 =
(Q, My, Ko, go), where Ty € 25% and Koy € 29%?. The union of Gy and G is
the labeled graph G; U Gy = (SUQ, Lo U My, Wy, hg), where

fo(a) if o € Lo \ My
ho(a) = go(a) if o € 1\/10 \ LO
fo(a) U go(a) if o € LoN Mg

Obviously we have Wy = ho(Lo U Mp).

For a #-semantic schema S = (X, Ay, A, R) we can build the labeled graph
Gs = (X,A,T, f), named the labeled graph associated to S, where

o flo)={(z,y) € X x X [ (z,a,9) € R}

T {f(a)]ac A}
We introduce now a partial relation on the component R of S.

Definition 8. For two elements (y1,u1,y2) € R and (x1,v1,22) € R we write
(y1,u1,y2) < (x1,v1,22) if one of the following conditions is verified:

o vy = 0(uy,uz), y1 = 1, (Y2,u2,22) € R
o vy = O(ug,u1), y2 = T2, (T1,u2,9y1) € R
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The transitive closure of < is denoted by —<T. This means that o <t g if
there are aq,...,0, € R such that o = a1, o, = 8 and o; < a;41 for every
ie{l,...,n—1}.

Remark 4. Suppose o = (y1, u, y2) and 8 = (z1,v,z2). lf @ < B then length(u) <
length(v). Consequently, if v <+ 3 then length(u) < length(v).

Proposition 3. The relation <T is a strict partial order. In other words, for
every o, 3,y € R the following properties are satisfied:

aAta

a<TB=pB AT a

a=tB3,8<Ty=a<ty

Proof. The first two conditions are verified by Remark 4. The last condition
is verified by the transitivity of the relation <.

Definition 9. An element o € R is a maximal element if o AT 3 for all
B € R. We denote by R™** the set of all maximal elements of R.

Definition 10. (/10]) IfS = (X, Ao, A, R) is a 8-semantic schema then the
labeled graph G'&** = (Y, L, T, h) is the maximal graph associated to S if the
following conditions are verified:

'Y Y — pT.lRmax U p7.3Rmax

o [ = proRmax

o hia) ={(z,y) | (z,0,y) € R™*} for o € L

o T={h(a)| € L}

Definition 11. (/10]) A cooperating system of semantic schemas is
a pair ({8}, E), where
o S; = (X, Ao, Aiy R;) is a 0;-semantic schema for i € {1,...,n};
e £ =(X,Lo,L,R) is a 8-semantic schema such that
i) X and Lo are the nodes and respectively the labels of the graph UZL:1 Gs*™
1) R satisfies the condition

(z,0(u,v),y) € R, (z,u,2) € R""", (z,v,y) € R]" =i # j (6)

At this point we emphasize an aspect concerning the formal computations
performed in a semantic schema. Let us denote by & = (X, Ag, A, R) an arbi-
trary #-semantic schema and Rp = RN (X x Ag x X). If Rg = R then A = Ay
and in this case no deduction is modeled by &. Such a schema can be used
only to store the facts of a knowledge piece and to retrieve this information. In
view of this remark one might say that a semantic schema S = (X, Ag, A, R)
satisfying the property A = Aj (or equivalently, R = Ry) is a trivial semantic
schema.

The concept introduced in Definition 11 can be analyzed from various points
of view. As a particular case we can consider a cooperating system containing
only trivial semantic schemas. Obviously such a system becomes a #-semantic
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schema. In order to specify this case we consider the trivial schemas defined as
follows:

* 5 = ({1'7 Y, Zl}7 {(17 b}7 {(17 b}7 {(1'7 a7y)7 (y7 b7 Zl)})

d 82 = ({1'7 Y, 22}7 {(17 b}7 {(17 b}7 {(1'7 a7y)7 (y7 b7 22)})

Only two cooperating systems can be obtained by means of these schemas:

1. The trivial system given by E = ({z,y,21, 22}, {a,b},{a,b}, Ry), where

RO = {(1'7 a7y)7 (y7 b7 Zl)7 (y7 b7 22)}
2. The non trivial cooperating system given by

E= ({xv Y, 21, 32}7 {av b}7 {av b, 9((17 b)}7 R)

where Ry = {(z,a,y), (y,b,21), (y,b,22)} and R = Ro U {(2,0(a,b), z1), (,
0(a,b), z2)}. The structure E is obviously a f-schema.

Remark 5. If Sl = (Xi7AOi7Ai7Ri) and F = ()(7 L07L7R) then X C UZL:1 Xl
and Ly € ., Ai. Really, if G@% = (Y;, L;, T;, h;) then by Definition 10
we have Y; = pri R U prsR"* C X; and L; = proR™** C A; for every
ie{l,...,n}.

Proposition 4. If C = ({S;}7, E) is a cooperating system then either n > 2
or C is a trivial schema.

Proof. We can write L = |J;~(L N By), where By, is defined as in (1). If n =1
then (6) can not be applied, therefore L N By = §. Using Proposition 1 we can
verify by induction on k that L N By, = 0. It follows that L = LN By = Ly and
C is a trivial schema.

In connection with Definition 11 we relieve the following aspects:

1. A cooperation system is based on several distinct semantic schemas because
each schema &; is built by means of a symbol ¢; and 0; # 6 for i # j.

2. By Remark 5 we observe that L is a subset of the Peano #-algebra generated
by a finite set that contains some elements taken from the Peano 8;-algebras
of the schemas &y, ..., S,.

Remark 6. The condition (6) was introduced because a cooperating system
({8}, E) is not able to extend the deduction of some component S;. As a
matter of fact the task of E is to model the collaboration of its components.

We define now the computations in a cooperating system introduced in
this section. We consider a cooperating system C = ({S;}7,, E), where E =
(X, Lo, L, R). In order to describe the computation in C we consider the symbols
0,01,...,0, of arity 2. Two kinds of computations can be described in C:

e A regular formal computation for the 8;-schema &;. This computation was
described in the first section for the general case of a semantic schema, with
the remark that for S; the symbol o; instead of o is used.

e A proper formal computation for the #-schema E. The derivation in E is
given in the next definition.
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Definition 12. Suppose (z,0(u,v),y) € R. If (z,u,z) € R and (z,v,y) € R
then
w1y (:L'v 9(“’7 /U)7 y)lLUQ F /wla(("a u, Z)7 (Z7 v, y))

for every words wi,ws. We denote by b* the reflexive and transitive closure of
k. We denote by Hg the Peano o-algebra generated by Ry = RN (X X Ly x X).
We define

F(E)={w € Hg | Iz,u,y) € R: (z,u,y) -* w}

Remark 7. Because HE is generated by Ry and F* is a reflexive relation we have
F(E) 2 Ry. This inclusion is used further to define the valuation mapping of
a cooperating system.

In order to exemplify this computation and other concepts which follow in this
section we consider the semantic schemas &1 and Ss represented respectively
in Figure 6 and Figure 7. We remark that (z2,b, z3) is a maximal element both
in & and Ss. In other words we have RJ** N RJ¥® =£ ().

Remark 8. The general case, R;"*" N R7*** # § for some ¢ # j, implies some
feature of the valuation mapping given in Definition 14.

The graph G7** U G5*** is represented in Figure 8. From this figure we deduce
that the following entities are used to specify E:
* X = {IL’17 L2,T3, L4, yl}
o Lo=1{b,01(a,a),01(b,a),02(a,b),02(b,b), 02(b,a),02(a,02(a,b))}
* Ry = {(wlv th (0’7 U’)v wQ)v (wlv '92(0’7 b)7 wQ)v (w% '92(b7 (],)7 y1)7 (:L'27 b, :L'3)7
(z3,01(b,a),y1), (x3,02(D,b),74), (y1,02(a,b2(a,b)), v4)}
In order to finish the definition of E we take
R \ Ry = {(wlv 6(91 (0’7 U’)v b)7 :L'3)7 (wlv 9(9(61 (0’7 U’)v b)? el(bv (1,))7 y1)7
(wlv 6(92(0’7 b)7 b)7 :L'3)7 (w179(9(92(0’7 b)7 b)? 1(b7 (1,))7 y1)7
(wlv 6(9(92 (0’7 b)7 b)? 92(b7 b))7 ‘L4)}
and therefore

01(a,a) 01(b,a)
a a b b a

Fig. 6. Schema &
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92((1, 02((1, b))

02(a,b) 02(b,a) 02(a,b)
%“zﬁgb%bzﬁ“w“%“wb
b 73 b =
02(b, b)
Fig. 7. Schema &>
01(a,a)
=1 02(a,b) R 02(b, a) ’T‘ 02(a,02(a,b))
[ [
b 01(b,a)
o &2(b, )

Fig. 8. G1"** U Gy*
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L\ Ly = {0(61(a, a)7b),6(9(91 (a,a),b),0:(b, )), 8(62(a,b),b),
We observe the condition (6) is satlsﬁed by R. As an example of derivation in
C we have the following sequence:

3

(:L'l, 6(9(91 (av U’)v b)v Hl(bv (1,))7 yl) F

U((:L'h '9('91(0/7 U’)v b)7 :L'3)7 (:L'g, el(bv (],)7 yl)) F
U(U((wlv 91(0’7 U’)v :E2)7 (:L'27 b7 :L'3))7 (:L'g, el(bv (],)7 yl))

By a similar computation we obtain also
(wlv 9(6(92(0’7 b)7 b)v o (b7 (1,))7 yl) F

U((wlv 9(92((1,7 b)7 b)7 :L'3)7 (w3791(b7 (],)7 yl)) =
U(U((wlv 92(0’7 b)7 :E2)7 (:L'27 b7 :L'3))7 (:L'g, Hl(bv (],)7 yl))

In order to define the valuation mapping of a cooperating system C = ({S;}7, E)
we denote S; = (X, Ao, Ai, R;) and consider an interpretation J; = (Ob;, ob;,
{Algi}uea,) of S;, i € {1,...,n}. We suppose that for z,y € X; N X; we have
x =y if and only if 0b;(z) = ob;(y).

Definition 13. An interpretation of the cooperating system C is a system
T = (Ob,0b,{Alg,}uca) such that Ob = |J_, ob;(X N X;), ob(z) = ob;(x) if
€ XNX; 0ob: X — Ob and Alg, is an algorithm accepting two input
arguments and one output argument.

Proposition 5. The mapping ob : X — Ob is well defined and is bijective.

Proof. If z € X N X; N X; for i # j then ob(x) = ob;(x) and ob(x) = ob;(x)
by the definition of ob. But ob;(x) = ob;(x), therefore ob is well defined. If
y € Ob then by Definition 13 there is ¢ such that y € ob;(X N X;). Thus there
is x € X N X; such that y = ob;(x). But ob(x) = 0b;(x), therefore y = ob(x).

In what follows we consider the following decomposition of R: R = Dy U
Dy U Dy, where Dy = Ry, D1 = {(z,0(u,v),y) € R | u,v € Dy} and D; =
R\(DoUD1). We obtain a corresponding decomposition for F(E): F(E) = RyU
F1(E) U Fo(E), where F1(E) = {w € F(E) | A=, u,y) € D1 : (z,u,y) H* w}
and Fo(F) = {w € F(E) | I(z,u,y) € Dz : (x,u,y) -* w}.

Definition 14. ([10/) The valuation mapping of the cooperating system
C is the function Valy : F(E) — 2Y, where Y is the oulput space of the
semantic schema E, defined as follows:

o If (z,a,y) € DyN (U;L:1 jo) then

n

Valz(z,a,y) = U{Alyé(obz‘ (x),0bi(y))}

i=1
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s Valz(z,0;(u,v),y) =

{Valzi (Ui(whwg)) | ai(whwg) S f(Si)7 (w,@i(qh U)7y) =>: (Ti(whwg)}

o Let be oo, B) € F1(E). Thereis (z,0(u,v),y) € Dy such that (z,0(u,v),y) F*
o(a, B). We take

Valz(o(e, 8)) = U {Algo(u,v)(01,02) } (7)
01 € V(],ZL (Oz)7
09 € VG,ZI], (6)7
i ]

o Let be o (o, B) € Fo(E). Thereis (z,8(u,v),y) € Dy such that (z,0(u,v),y) F*
o(a, B). We take

Valz(o(a, B) = U {Algeguw (o, 02)}
01 € VG,ZI(O[)7
09 € Valz(ﬁ)7

Remark 9. The condition ¢ # j in (7) is connected by Remark 8.

5 Cooperating by cross-product of schemas

In this section we define a binary operation on the set of semantic schemas,
which obtains from two semantic schemas another cooperating structure.

Definition 15. We consider a symbol 8 € ..

e An element (v,u,y) € R["** \ R]"*® is a 0-accepted element of type
(i,1) and we denote type(z,u,y) = (i,1).

o If (z,u,y) is a B-accepted element, type(z,u,y) = (i,i) and (y,v,z) is
a G-accepted element, type(y,v,z) = (4,7), j # &, then (z,0(u,v),z) is a
B-accepted element of type(z, 8(u,v), z) = (i, ).

o If (x,u,y) is a B-accepted element of type(x,u,y) = (i,k1), (y,v,2) is a
f-accepted element of type(y,v, z) = (k2,7) and k1 # ko then (x,8(u,v), 2)
is B-accepted element of type(x,8(u,v), z) = (i,7).

In order to exemplify this concept we consider the semantic schemas repre-
sented in Figure 9 and Figure 10.
We observe that:

e (21,a,x2) is not an accepted element because it belongs to R{*** N Ry***.

o (z9,b,x3) is an accepted element of type (1,1), (z3,62(a,b),z2) is an ac-
cepted element of type (2,2) and therefore (x2,6(b,82(a,b)), 22) is an ac-
cepted element of type (1,2).
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01(c,a)

92 (a, b)

Fig. 10. Schema S»

e The element (x2,0(b,61(c,a)),y2) is an accepted element of type (2,1).

Definition 16. (/11]) Consider a 81-schema S1 and a 82-schema Sa. Suppose
G and G3*** are the corresponding mazimal labeled graphs of Si, respec-
tively Sz. The 8-schema S = (Z,Cy,C, R) is a cross-product of 81 and Sy if
the following conditions are satisfied:

o The labeled graph of S is GT'** U GJ***.
e R is a set of O-accepted elements.

We denote by S1 @c Sa this structure.

Remark 10. If lenax = (X17A07T17f0)7 Ganax = (X27B()7T27h0) and § =
(Z,Cy, C,R) is a cross-product of S; and Sy then

o /=X1UX>
e Cyp=ApU By
o C=praR

Remark 11. Obviously we have &1 @c S2 = So ®c¢ S1.

Let us consider the schema &; from Figure 11, schema Sy from Figure 12.
We can take the set R that contains the elements of Ry taken from Figure 15
and the following f-accepted elements:

(21,0(02(a1,a2),01(a1,a2)), x3)
(21,0(0(02(a1,a2),01(a1,a2)),02(as, b2)), 21)
(21,0(0(092(a1, az), 61 (a1, a2)),b1), y2)

We obtain Cy = {61 (a1, az),b1,01(b1,a1),61(b1, 61(01(az,as),a1)),f2(as, ba),
b1,t92((/L27 b1),92(a17a2)} and therefore C \ O() = {9(92(@17(12),91 ((/L17(/L2))7
0(0(02(ar, az),01 (a1, az)),02(as, b2)), 8(0(02(a1, az),01 (a1, az)),b1)}
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01(a1,a2) 01(b1, a1)
| e
— o e s —{ v
by b
[ 2[5 |2 | 76 | - [2 ]
01 (a2, as) “

01(01(a2,a3),a1)

01(b1,01(61(az,as), a1))

Fig. 11. Schema S

02(as, b2)

[ }

li

b1

ai

02(az,b1) yu

az

N

o]

Fig. 12. Schema S»

02(a1, az)

@ fa(o1, 02) oy Y2

01(b1,01(61(az,a3), a1))

Fig. 13. G
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(2
T lent)l e ]

02(&1,&2) 92(&2,{71)

Lz ] =N

Fig. 14. Gpor

01(b1,601(61(az, as), a1))

b1
[ 01(b
Emg 2(as, b2) } o I by I 2 I 1(b1,a1)
02(a1, az) 02(az, b1)
2 0 N S R N

Fig. 15. GT"*" U G5

Definition 17. We suppose S = (Z,Cy,C, R) is a cross-product of the ;-
schemas S;, i € {1,2}. If we substitute each element (x,0;(u,v),y) in S by all
the paths generated in S; by this element then we obtain a ©-schema, where
O ={0,01,02}. This schema is named the ©-schema associated to the cross-
product S and is denoted by So.

Definition 18. (/11]) A cross-deduction from &1 and S is a formal deriva-
tion in Se. If (z,0(u,v),y) =* w and w € Feomp(Se) then w is a cross-
conclusion.

The following computation is an example of cross-deduction from &; and
So:
(21,0(0(02(a1, az), 01 (a1, az)), 2(as, b2)), 21) =

a((z1,0(02(a1,a2),01(a1,a2)), x3), (x3,02(as, b2), 21))
But
(21,0(02(a1, a2),01(ay, a2)), x3) = o((21,02(a1, a2), 1), (1,01 (a1, a2), 23))

therefore
(21,0(0(02(a1, az),01 (a1, a2)), 02(az, ba)), 21) =~
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a(o((z1,02(a1,az2), v1), (x1,01(a1, a2), 23)), (v3,02(as, b2), 21))

On the other hand in &; we have
(1,01(a1, a2), w3) =" o(h(z1,a1,22), (M(22, a2, 73)))
and from Sy we obtain
(21,02(a1, a2), 21) =" o(h(x1, a1,42), h(y2, az, x1))

and
(x3,02(as, b2), 21)) =" o(h(w3,a3,y1), h(y1, b2, 21))

We obtain the following cross-deduction
(21,0(0(02(a1, az2),01(a1,a2)),02(as, b)), z1) =" o(u,v)
where
u=o(o(h(z1,a1,y2), h(y2, a2, 1)), o(h(x1, a1, z2), (h(zx2, az,x3)))

V= U(h(.’L'37 as, y1)7 h(y17 b27 Zl))

and thus we obtained a cross-conclusion.

6 Future research

The research line containing the cooperating systems based on semantic
schemas can be developed. We relieve the following two ways by which we can
develop this subject.

e Introduce a structure S that receives partial conclusions from two semantic
schemas S and Ss. A partial conclusion is obtained from a deductive path.
Introduce a rule to combine the conclusion of a deductive path from S;
with the conclusion of a deductive path from S5. This rule can extend the
cooperation based on maximal paths. This is a problem connected by the
transfer of knowledge between semantic schemas.

e Study the transfer of knowledge between several semantic schemas and
define a structure organized on levels such that the partial conclusions are
transferred bottom up. This structure can be used to model distributed
knowledge.
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