Cooperating Structures Based on Semantic Schemas in Knowledge Representation

Nicolae ŢĂNDĂREANU

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania
ntand@rdslink.ro

Abstract. Based on the concept of semantic schema we describe in this paper three structures, each of them allowing the cooperation between several semantic schemas. The first structure is a master-slave system, the second structure is based on the maximal graphs in semantic schemas and the last structure is obtained by means of a binary operation named cross-product of two schemas. For each structure the semantical computations are defined and the concepts are exemplified on particular cases.

Keywords: labeled graph, semantic schema, cooperating system, interpretation, master schema, slave schema, maximal graph

AMS Subject Classification 2000: 68T30

1 Introduction

The systems of cooperating structures are more and more used to satisfy a common task. A cooperating system is a collection of devices such that based on some strategy of communication between them, a common task can be performed. Various cooperating systems were introduced: cooperating grammar systems ([2]), cooperating mobile robots ([12], [13]), master-slave systems ([14]), neural networks and so on.

In this paper we present three cooperating structures that are based on semantic schemas. The structure of the paper is the following. In Section 2 the basic concepts connected by semantic schemas are presented. In Section 3 we define the concepts of master-schema, slave-schema and the cooperation between them. In Section 4 we define the maximal graph of a semantic schema and the cooperation based on this structure. In Section 5 we introduce a binary operation between semantic schema named the cross-product of two semantic schemas. The last section contains two ideas to extend the subject presented in this paper.

2 Semantic schemas

We consider a finite and nonempty set A_0 and we denote by θ an operator symbol of arity 2. We denote by \overline{A}_0 the Peano θ -algebra generated by A_0 ,

Fig. 1. Cooperating systems

therefore $\overline{A}_0 = \bigcup_{n>0} A_n$ where A_n is defined recursively ([1], [8]) by

$$A_{k+1} = A_k \cup \{ \; \theta(u,v) \; \; | \; \; u,v \in A_k \}, \; k \ge 0$$

If we take

$$B_0 = A_0, \ B_{n+1} = A_{n+1} \setminus A_n \tag{1}$$

then $\overline{A}_0 = \bigcup_{n \geq 0} B_n$ and $B_i \cap B_j = \emptyset$ for $i \neq j$. For $u \in \overline{A}_0$ we write length(u) = n if $u \in B_n$.

In what follows we recall the main results concerning the concept of θ -semantic schema introduced in [3] and developed in [4], [5], [6] and [7]. We mention in this section only those results that are used in this paper.

A θ -semantic schema (shortly, θ -schema) is a system $\mathcal{S} = (X, A_0, A, R)$, where

- ullet X is a finite non-empty set of symbols and its elements are named object symbols
- A_0 is a finite non-empty set of elements named label symbols and $A_0 \subseteq A \subseteq \overline{A_0}$, where $\overline{A_0}$ is the Peano θ -algebra generated by A_0
 - $R \subseteq X \times A \times X$ is a non-empty set which fulfills the following conditions:

$$(x, \theta(u, v), y) \in R \Longrightarrow \exists z \in X :$$

 $(x, u, z) \in R, (z, v, y) \in R$ (2)

$$u \in A \iff \exists (x, u, y) \in R$$
 (4)

We denote $R_0 = R \cap (X \times A_0 \times X)$.

Proposition 1. If $\theta(u, v) \in A$ then $u \in A$ and $v \in A$.

Proof. If $\theta(u, v) \in A$ then by (4) and (2) we deduce that there are $(x, u, y) \in R$ and $(y, v, z) \in R$. Using again (4) we obtain $u \in A$ and $v \in A$.

Let $S = (X, A_0, A, R)$ be a θ -schema. If h is a symbol of arity 1 then we consider the set:

$$M = \left\{ h(x, a, y) \mid (x, a, y) \in R_0 \right\}$$

where we use the notation h(x, a, y) instead of h((x, a, y)).

We consider a symbol σ of arity 2 and let $\mathcal H$ be the Peano σ -algebra generated by M.

We denote by Z the alphabet including the symbol σ , the elements of X, the elements of A, the left and right parentheses, the symbol h and comma. We denote by Z^* the set of all words over Z. We define the following binary relation on Z^* :

Let be $w_1, w_2 \in Z^*$.

- If $a \in A_0$ and $(x, a, y) \in R$ then $w_1(x, a, y)w_2 \Rightarrow w_1h(x, a, y)w_2$
- Let be $(x, \theta(u, v), y) \in R$. If $(x, u, z) \in R$ and $(z, v, y) \in R$ then

$$w_1(x,\theta(u,v),y)w_2 \Rightarrow w_1\sigma((x,u,z),(z,v,y))w_2$$

We denote by \Rightarrow^* the reflexive and transitive closure of the relation \Rightarrow .

The mapping generated by S is the mapping $G_S : R \longrightarrow 2^{\mathcal{H}}$ defined as follows:

- $\mathcal{G}_{\mathcal{S}}(x, a, y) = \{h(x, a, y)\} \text{ for } a \in A_0$
- $\mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y) = \{ w \in \mathcal{H} \mid (x, \theta(u, v), y) \Rightarrow^* w \}$

We denote $\mathcal{F}(S) = \bigcup_{(x,u,y)\in R} \mathcal{G}_{S}(x,u,y)$.

An interpretation ([7]) of S is a system $\mathcal{I} = (Ob, ob, \{Alg_u\}_{u \in A})$, where

- Ob is a finite set of elements named the **objects** of \mathcal{I}
- $ob: X \to Ob$ is a bijective function
- $\{Alg_u\}_{u\in A}$ is a set of algorithms such that each algorithm has two input parameters and one output parameter.

Consider an interpretation $\hat{\mathcal{I}} = (Ob, ob, \{Alg_u\}_{u \in A})$ of \mathcal{S} . The **output space** Y of \mathcal{I} is the set $Y = \bigcup_{u \in A} Y_u$, where

$$Y_a = \{Alg_a(ob(x), ob(y)) | (x, a, y) \in R_0\}$$

if $a \in A_0$ and otherwise

$$Y_{\theta(u,v)} = \{ Alg_{\theta(u,v)}(o_1, o_2) | o_1 \in Y_u, o_2 \in Y_v \}$$

We define recursively the valuation mapping

$$Val_{\mathcal{I}}: \mathcal{F}(\mathcal{S}) \longrightarrow Y$$

as follows:

- $Val_{\mathcal{I}}(h(x, a, y)) = Alg_a(ob(x), ob(y))$
- $Val_{\mathcal{I}}(\sigma(\alpha,\beta)) = Alg_{\theta(u,v)}(Val_{\mathcal{I}}(\alpha),Val_{\mathcal{I}}(\beta))$ if $\sigma(\alpha,\beta)$ is derived from an element of the form $(x,\theta(u,v),y) \in R$ (in fact this element is uniquely determined, [6]).

An intuitive representation of the computations is given in Figure 2.

Fig. 2. Intuitive computations

We consider a finite and nonempty set A_0 and we denote by $\Theta = \{\theta_1, \dots, \theta_n\}$ a finite set of operator symbols of arity 2. We denote by \overline{A}_0 the Peano Θ -algebra generated by A_0 , therefore $\overline{A}_0 = \bigcup_{n \geq 0} A_n$ where A_k are defined recursively as follows ([3]):

$$A_{k+1} = A_k \cup \{ \theta(u, v) \mid \theta \in \Theta, \ u, v \in A_k \}, \tag{5}$$

In what follows we introduce the concept of Θ -schema as an extension of θ -semantic schema.

Definition 1. A Θ -semantic schema (shortly, Θ -schema) is a system $S = (X, A_0, A, R)$, where

- X is a finite non-empty set of symbols and its elements are named object symbols
- A_0 is a finite non-empty set of elements named label symbols and $A_0 \subseteq A \subseteq \overline{A_0}$, where $\overline{A_0}$ is the Peano Θ -algebra generated by A_0
- $R \subseteq X \times A \times X$ is a non-empty set which fulfills the conditions (2), (3) and (4).

Remark 1. Obviously a Θ -schema for n=1 is a θ -schema, where $\Sigma = \{\theta\}$.

3 Master-slave cooperation

In this section we define a cooperating system of semantic schemas that uses the general description of a master-slave system. Such a system includes several distinct semantic schemas, each of them being a **slave**-schema. The system contains also a special structure named **master**-schema. The cooperation is described by the formal and semantic computations of the master-schema.

Definition 2. ([9]) We consider the binary symbols $\theta, \theta_1, \dots, \theta_n$. The pair $MS_{n+1} = (S, \{S_i\}_{i=1}^n)$ is a master-slave system (of semantic schemas) with n+1 components if the following conditions are satisfied:

- For $i \in \{1, ..., n\}$ the entity $S_i = (X_i, A_{0i}, A_i, R_i)$ is a θ_i -schema; we say that S_i is a slave-schema of MS_{n+1} .
- $S = (X, A_0, A, R)$ is a θ -schema, named the **master-schema** of MS_{n+1} , such that $R_0 \subseteq \bigcup_{i=1}^n R_i$, where $R_0 = R \cap (X \times A_0 \times X)$.

As a general notation, if $M \subseteq X_1 \times ... \times X_n$ and $i \in \{1,...,n\}$ then

$$pr_i M = \{x \mid \exists (x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) \in M\}$$

It is not difficult to observe that two arbitrary components of MS_{n+1} are distinct schemas because they use distinct binary symbols. Moreover, $A_0 = pr_2R_0 \subseteq pr_2(\bigcup_{i=1}^n R_i) = \bigcup_{i=1}^n A_i$ because $pr_2R_i = A_i$.

In order to exemplify this concept we consider the θ_1 -schema S_1 from Figure 3 and the θ_2 -schema S_2 from Figure 4 as slave schemas ([9]), where $p_1 = \theta_1(b_1, a_1)$, $p_2 = \theta_2(a_3, b_2)$, $p_3 = \theta_2(a_2, b_1)$, $p_4 = \theta_2(a_1, a_2)$, $p_5 = \theta_1(a_1, a_2)$ and $q_1 = \theta_1(a_2, a_1)$.

Take the set R_0 represented in Figure 5. We can obtain the master schema $\mathcal{S} = (X, A_0, A, R)$ if we take

- $\bullet X = pr_1R_0 \cup pr_3R_0; A_0 = pr_2R_0$
- $R = R_0 \cup \{(z_1, \theta(a_1, p_1), z_3), (x_3, \theta(p_2, a_1), y_2), (z_1, \theta(a_1, p_3), z_4), (z_1, \theta(p_4, p_5), x_3), (x_3, \theta(p_2, p_4), x_1), (x_1, \theta(p_5, p_2), z_1), (x_1, \theta(\theta(p_5, p_2), a_1), y_2)\}$
- $\bullet A = pr_2 R$

We obtain the master-slave system $MS_3 = (S, \{S_1, S_2\}).$

6 N.Ţăndăreanu

Fig. 3. θ_1 -schema S_1

Fig. 4. θ_2 -schema S_2

Fig. 5. The set R_0

Definition 3. ([9]) Consider a slave-schema S_i , a symbol σ_i of arity 2 and a symbol h_i of arity 3. We denote $R_{0i} = R_i \cap (X_i \times A_{0i} \times X_i)$. We define the $\textit{direct derivation} \Rightarrow_i \textit{as follows: if } w_1 \textit{ and } w_2 \textit{ are arbitrary words then}$

• for $(x, a, y) \in R_{0i}$ we write

$$w_1(x, a, y)w_2 \Rightarrow_i w_1h_i(x, a, y)w_2$$

• for $(x, \theta_i(u, v), y) \in R_i$, $(x, u, z) \in R_i$ and $(z, v, y) \in R_i$ we write

$$w_1(x, \theta_i(u, v), y)w_2 \Rightarrow_i w_1\sigma_i((x, u, z), (z, v, y))w_2$$

We write $\alpha \Rightarrow_i^* \beta$ if either $\alpha = \beta$ or there are $\gamma_1, \ldots, \gamma_{k+1}$ such that $\gamma_1 = \alpha$, $\gamma_{k+1} = \beta$ and $\gamma_i \Rightarrow \gamma_{i+1}$ for $i \in \{1, ..., k\}$. If this is the case then the sequence $\gamma_1, \ldots, \gamma_{k+1}$ is a **derivation** of β from α in S_i . If $M_i = \{h_i(x, a, y) \mid (x, a, y) \in A_i\}$ R_{0i} and \mathcal{H}_i is the Peano σ_i -algebra generated by M_i then we take

$$\mathcal{F}(\mathcal{S}_i) = \{ w \in \mathcal{H}_i \mid \exists (x, u, y) \in R_i : (x, u, y) \Rightarrow_i^* w \}$$

A formal computation for $w \in \mathcal{F}(S_i)$ is a derivation of w from an element

Remark 2. If $w \in \mathcal{F}(S_i)$ then there is an element and only one $(x, \theta_i(u, v), y) \in$ R_i such that $(x, \theta_i(u, v), y) \Rightarrow_i^* w$. This property allows us to denote type(w) = $\theta_i(u,v)$.

The elements of the set $\mathcal{F}(S_i)$ are abstract entities. In order to obtain the meaning of these elements we use a semantical computation. This computation is obtained by means of an interpretation.

Definition 4. ([9]) An interpretation \mathcal{J}_i of \mathcal{S}_i is a system

$$\mathcal{J}_i = (Ob_i, ob_i, \{Alg_u^i\}_{u \in A_i})$$

where

- Ob_i is a finite set of elements named **objects**;
- $ob_i: X_i \to Ob_i$ is a bijective function;
- $\{Alg_u^i\}_{u\in A_i}$ is a set of algorithms such that each algorithm has two input parameters and one output parameter.

The **output space** Y_i of \mathcal{J}_i is defined by $Y_i = \bigcup_{u \in A_i} Y_u^i$, where

- $\bullet \ Y_a^i = \left\{ Alg_a^i(ob_i(x), ob_i(y)) \mid (x, a, y) \in R_{0i} \right\}$ $\bullet \ Y_{\theta_i(u, v)}^i = \left\{ Alg_{\theta_i(u, v)}^i(o_1, o_2) \mid o_1 \in Y_u^i, o_2 \in Y_v^i \right\}$

We define recursively the valuation mapping

$$Val_{\mathcal{T}_i}: \mathcal{F}(\mathcal{S}_i) \longrightarrow Y_i$$

as follows:

• $Val_{\mathcal{J}_i}(h_i(x, a, y)) = Alg_a^i(ob_i(x), ob_i(y))$

•
$$Val_{\mathcal{J}_i}(\sigma_i(\alpha,\beta)) = Alg_{\theta_i(u,v)}(Val_{\mathcal{J}_i}(\alpha), Val_{\mathcal{J}_i}(\beta))$$

if $type(\sigma_i(\alpha, \beta)) = \theta_i(u, v)$.

The **meaning** of $w \in \mathcal{F}(\mathcal{S}_i)$ is $Val_{\mathcal{I}_i}(w)$.

The formal computation in a master-schema is based on some specific **derivation** and this concept is introduced in the next definition.

Definition 5. ([9]) Let $S = (X, A_0, A, R)$ be a master-schema. Consider a symbol σ of arity 2. If $(x, \theta(u, v), y) \in R$, $(x, u, z) \in R$ and $(z, v, y) \in R$ then

$$w_1(x, \theta(u, v), y)w_2 \mapsto w_1\sigma((x, u, z), (z, v, y))w_2$$

for any words w_1, w_2 . We write $\alpha \mapsto^* \beta$ if either $\alpha = \beta$ or there are $\gamma_1, \ldots, \gamma_{m+1}$ such that $\gamma_1 = \alpha, \gamma_{m+1} = \beta$ and $\gamma_i \mapsto \gamma_{i+1}$ for $i \in \{1, \ldots, m\}$. If this is the case then the sequence $\gamma_1, \ldots, \gamma_{m+1}$ is a **derivation** of β from α in S.

We denote by \mathcal{H} the Peano σ -algebra generated by R_0 . We define

$$\mathcal{F}(\mathcal{S}) = \{ w \in \mathcal{H} \mid \exists (x, u, y) \in R : (x, u, y) \mapsto^* w \}$$

A formal computation for $w \in \mathcal{F}(\mathcal{S})$ is a derivation of w from an element of R.

Proposition 2. In a master-slave system we have $\mathcal{F}(S) \supseteq R_0$ and $X \subseteq \bigcup_{i=1}^n X_i$.

Proof. \mathcal{H} is generated by R_0 , therefore $R_0 \subseteq \mathcal{H}$. Taking $(x, u, y) \in R_0$ we have $(x, u, y) \in \mathcal{H}$ and by the reflexivity of \mapsto^* we have $(x, u, y) \mapsto^* (x, u, y)$. Thus $(x, u, y) \in \mathcal{F}(\mathcal{S})$. The second part is obvious.

Remark 3. If $w \in \mathcal{F}(\mathcal{S})$ then there is an element and only one $(x, \theta(u, v), y) \in R$ such that $(x, \theta(u, v), y) \mapsto^* w$. This property allows us to denote $type(w) = \theta(u, v)$.

An example of computation is described below for the master-slave system MS_3 :

$$(x_1, \theta(\theta(\theta_1(a_1, a_2), \theta_2(a_3, b_2)), a_1), y_2) \mapsto \\ \sigma((x_1, \theta(\theta_1(a_1, a_2), \theta_2(a_3, b_2)), z_1), (z_1, a_1, y_2))$$

On the other hand

$$(x_1, \theta(\theta_1(a_1, a_2), \theta_2(a_3, b_2)), z_1) \mapsto \sigma((x_1, \theta_1(a_1, a_2), x_3), (x_3, \theta_2(a_3, b_2), z_1))$$

therefore

$$(x_1, \theta(\theta(\theta_1(a_1, a_2), \theta_2(a_3, b_2)), a_1), y_2) \mapsto^+ \sigma(\sigma((x_1, \theta_1(a_1, a_2), x_3), (x_3, \theta_2(a_3, b_2), z_1)), (z_1, a_1, y_2))$$

This computation proves that the element

$$\sigma(\sigma((x_1, \theta_1(a_1, a_2), x_3), (x_3, \theta_2(a_3, b_2), z_1)), (z_1, a_1, y_2))$$

belongs to $\mathcal{F}(\mathcal{S})$.

The semantical computations in a master-schema are defined taking into account the semantical computations in the slave-schemas of the system. First we introduce the concept of interpretation for a master-schema.

Suppose that $(S, \{S_i\}_{i=1}^n)$ is a master-slave system of semantic schemas, where $S = (X, A_0, A, R)$ and $S_i = (X_i, A_{0i}, A_i, R_i)$ for $i \in \{1, ..., n\}$. For each $i \in \{1, ..., n\}$ $\{1,\ldots,n\}$ consider an interpretation $\mathcal{I}_i = (Ob_i,ob_i,\{Alg_u^i\}_{u\in A_i})$ for \mathcal{S}_i such that if $x \in X_i \cap X_j$ for $i \neq j$ then $ob_i(x) = ob_j(x)$. An interpretation of S is a system $\mathcal{I} = (Ob, ob, \{Alg_u\}_{u \in A})$ such that $ob : X \longrightarrow Ob$ is defined by $ob(x) = ob_i(x)$ if $x \in X_i$ and Alg_u is an algorithm with two input arguments and one output argument.

We define the space Y and the valuation mapping

$$Val_{\mathcal{I}}: \mathcal{F}(\mathcal{S}) \longrightarrow 2^{Y}$$

as follows:

• If $(x, a, y) \in \bigcup_{i=1}^{n} (R_{0i} \cap R_0)$ then

$$Val_{\mathcal{I}}(x, a, y) = \bigcup_{i=1}^{n} \{Alg_a^i(ob_i(x), ob_i(y))\}$$

Take $Y_a = \bigcup_{x,y} Val_{\mathcal{I}}(x,a,y)$. • If $(x,\theta_i(u,v),y) \in R_i \cap R_0$, $(x,\theta_i(u,v),y) \Rightarrow_i^* \sigma_i(w_1,w_2)$ and $\sigma_i(w_1,w_2) \in R_i \cap R_i$ $\mathcal{F}(\mathcal{S}_i)$ then

$$Val_{\mathcal{I}}(x,\theta_i(u,v),y) = \{Val_{\mathcal{I}_i}(\sigma_i(w_1,w_2))\}$$

Take $Y_{\theta_i(u,v)} = \bigcup_{x,y} Val_{\mathcal{I}}(x,\theta_i(u,v),y)$. • If $\sigma(\alpha,\beta) \in \mathcal{F}(\mathcal{S})$ and $type(\sigma(\alpha,\beta)) = \theta(u,v)$ then

$$Val_{\mathcal{I}}(\sigma(\alpha,\beta)) = \bigcup_{\begin{subarray}{c} o_1 \in Val_{\mathcal{I}}(\alpha), \\ o_2 \in Val_{\mathcal{I}}(\beta), \end{subarray}} \{Alg_{\theta(u,v)}(o_1,o_2)\}$$

Take
$$Y_{\theta(u,v)}=\{Alg_{\theta(u,v)}(o_1,o_2)\mid o_1\in Y_u,o_2\in Y_v\}$$
 and $Y=\bigcup_{u\in A}Y_u.$

As an example of computation we consider the following cases for MS_3 :

- $$\begin{split} \bullet \ Val_{\mathcal{I}}(z_1,a_1,y_2) &= \{Alg^1_{a_1}(ob_1(z_1),ob_1(y_2)),Alg^2_{a_1}(ob_2(z_1),ob_2(y_2))\} \\ \bullet \ Val_{\mathcal{I}}(y_2,\theta_2(a_2,b_1),z_4) &= \{Alg_{\theta_2(a_2,b_1)}(q_1,q_2)\}, \text{ where } q_1 = Alg^2_{a_2}(ob_2(y_2),ob_2(x_1)),\ q_2 = Alg^2_{b_1}(ob_2(x_1),ob_2(z_4)). \\ \bullet \ \text{If we denote } o_1 = Alg^1_{a_1}(ob_1(z_1),ob_1(y_2)),\ o_2 = Alg^2_{a_1}(ob_2(z_1),ob_2(y_2)),\ o_3 = Alg_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1)),Alg^2_{b_1}(ob_2(x_1),ob_2(z_4))) \text{ then based } \\ \bullet \ Val_{\mathcal{I}}(z_1,a_1,y_2) &= \{Alg^1_{a_1}(ob_1(z_1),ob_1(y_2)),\ o_2 = Alg^2_{a_1}(ob_2(z_1),ob_2(y_2)),\ o_3 = Alg_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1)),Alg^2_{b_1}(ob_2(x_1),ob_2(z_4))) \text{ then based } \\ \bullet \ Val_{\mathcal{I}}(z_1,a_1,y_2) &= \{Alg^1_{a_1}(ob_1(z_1),ob_1(y_2)),\ o_2 = Alg^2_{a_1}(ob_2(z_1),ob_2(y_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1)),Alg^2_{b_1}(ob_2(x_1),ob_2(z_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1)),Alg^2_{b_1}(ob_2(x_1),ob_2(z_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1)),Alg^2_{b_1}(ob_2(x_1),ob_2(z_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1)),Alg^2_{b_1}(ob_2(x_1),ob_2(z_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1)),Alg^2_{b_1}(ob_2(x_1),ob_2(x_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1),ob_2(x_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1),ob_2(x_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{a_2}(ob(y_2),ob_2(x_1),ob_2(x_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{\theta_2(a_2,b_1)}(a_2,b_2(a_2,b_2(a_2,b_2),ob_2(a_2)),\ o_3 = Alg^2_{\theta_2(a_2,b_1)}(Alg^2_{\theta_2(a_2,b_1)}(a_2,b_2(a_2,b_2),ob_2(a_2),ob_2(a_2)),\ o_3 = Alg^2_{\theta_2(a_$$
 on the derivation

$$(z_1,\theta(a_1,\theta_2(a_2,b_1)),z_4)\mapsto \sigma((z_1,a_1,y_2),(y_2,\theta_2(a_2,b_1),z_4))$$
 we obtain
$$Val_{\mathcal{I}}(z_1,\theta(a_1,\theta_2(a_2,b_1)),z_4)=$$

$$\{Alg_{\theta(a_1,\theta_2(a_2,b_1))}(o_1,o_3),Alg_{\theta(a_1,\theta_2(a_2,b_1))}(o_2,o_3)\}$$

Definition 7. We consider a master-slave system $MS_{n+1} = (S, \{S_i\}_{i=1}^n)$, an interpretation \mathcal{I} of MS_{n+1} and the interpretation \mathcal{I}_i for S_i , $i \in \{1, \ldots, n\}$. An interrogation of the master-slave system MS_{n+1} is a pair (x, y) of nodes from S. The answer given by S is the entity

$$Ans_{\mathcal{S}}(x,y) = \bigcup_{u \in A} \quad \bigcup_{\sigma(\alpha,\beta) \in D(x,u,y)} Val_{\mathcal{I}}(\sigma(\alpha,\beta))$$

where
$$D(x, u, y) = \{ \sigma(\alpha, \beta) \in \mathcal{H} \mid (x, u, y) \mapsto^* \sigma(\alpha, \beta) \}$$

4 Cooperating based on maximal graphs

In this section we define another kind of cooperation, which is based on the concept of maximal graph of a semantic schema.

A labeled graph is a tuple $G = (S, L_0, T_0, f_0)$, where

- S is a finite set, an element of S is a *node* of G;
- L_0 is a set of elements named *labels*;
- T_0 is a set of binary relations on S;
- $f_0: L_0 \longrightarrow T_0$ is a surjective mapping.

We use in what follows the *union* of two labeled graphs. In order to define this operation we consider the labeled graphs $G_1 = (S, L_0, T_0, f_0)$ and $G_2 = (Q, M_0, K_0, g_0)$, where $T_0 \subseteq 2^{S \times S}$ and $K_0 \subseteq 2^{Q \times Q}$. The union of G_1 and G_2 is the labeled graph $G_1 \cup G_2 = (S \cup Q, L_0 \cup M_0, W_0, h_0)$, where

$$h_0(\alpha) = \begin{cases} f_0(\alpha) \text{ if } \alpha \in \mathcal{L}_0 \setminus \mathcal{M}_0 \\ g_0(\alpha) \text{ if } \alpha \in \mathcal{M}_0 \setminus \mathcal{L}_0 \\ f_0(\alpha) \cup g_0(\alpha) \text{ if } \alpha \in \mathcal{L}_0 \cap \mathcal{M}_0 \end{cases}$$

Obviously we have $W_0 = h_0(L_0 \cup M_0)$.

For a θ -semantic schema $\mathcal{S} = (X, A_0, A, R)$ we can build the labeled graph $G_{\mathcal{S}} = (X, A, T, f)$, named the **labeled graph associated** to \mathcal{S} , where

- $\bullet \ f(\alpha) = \{(x, y) \in X \times X \mid (x, \alpha, y) \in R\}$
- $T = \{ f(\alpha) \mid \alpha \in A \}$

We introduce now a partial relation on the component R of S.

Definition 8. For two elements $(y_1, u_1, y_2) \in R$ and $(x_1, v_1, x_2) \in R$ we write $(y_1, u_1, y_2) \prec (x_1, v_1, x_2)$ if one of the following conditions is verified:

- $v_1 = \theta(u_1, u_2), y_1 = x_1, (y_2, u_2, x_2) \in R$
- $v_1 = \theta(u_2, u_1), y_2 = x_2, (x_1, u_2, y_1) \in R$

The transitive closure of \prec is denoted by \prec^+ . This means that $\alpha \prec^+ \beta$ if there are $\alpha_1, \ldots, \alpha_n \in R$ such that $\alpha = \alpha_1, \alpha_n = \beta$ and $\alpha_i \prec \alpha_{i+1}$ for every $i \in \{1, \ldots, n-1\}$.

Remark 4. Suppose $\alpha = (y_1, u, y_2)$ and $\beta = (x_1, v, x_2)$. If $\alpha \prec \beta$ then length(u) < length(v). Consequently, if $\alpha \prec^+ \beta$ then length(u) < length(v).

Proposition 3. The relation \prec^+ is a strict partial order. In other words, for every $\alpha, \beta, \gamma \in R$ the following properties are satisfied:

```
\begin{array}{c} \alpha \not\prec^+ \alpha \\ \alpha \prec^+ \beta \Rightarrow \beta \not\prec^+ \alpha \\ \alpha \prec^+ \beta, \beta \prec^+ \gamma \Rightarrow \alpha \prec^+ \gamma \end{array}
```

Proof. The first two conditions are verified by Remark 4. The last condition is verified by the transitivity of the relation \prec^+ .

Definition 9. An element $\alpha \in R$ is a maximal element if $\alpha \not\prec^+ \beta$ for all $\beta \in R$. We denote by R^{max} the set of all maximal elements of R.

Definition 10. ([10]) If $S = (X, A_0, A, R)$ is a θ -semantic schema then the labeled graph $G_S^{max} = (Y, L, T, h)$ is the maximal graph associated to S if the following conditions are verified:

- $\bullet \ Y = pr_1 R^{max} \cup pr_3 R^{max}$
- $\bullet \ L = pr_2 R^{max}$
- $h(\alpha) = \{(x,y) \mid (x,\alpha,y) \in R^{max}\} \text{ for } \alpha \in L$
- $T = \{h(\alpha) \mid \alpha \in L\}$

Definition 11. ([10]) A cooperating system of semantic schemas is a pair $(\{S_i\}_{i=1}^n, E)$, where

- $S_i = (X_i, A_{0i}, A_i, R_i)$ is a θ_i -semantic schema for $i \in \{1, \dots, n\}$;
- $E = (X, L_0, L, R)$ is a θ -semantic schema such that
- i) X and L_0 are the nodes and respectively the labels of the graph $\bigcup_{i=1}^n G_{S_i}^{max}$ ii) R satisfies the condition

$$(x, \theta(u, v), y) \in R, (x, u, z) \in R_i^{max}, (z, v, y) \in R_i^{max} \Rightarrow i \neq j$$
 (6)

At this point we emphasize an aspect concerning the formal computations performed in a semantic schema. Let us denote by $S = (X, A_0, A, R)$ an arbitrary θ -semantic schema and $R_0 = R \cap (X \times A_0 \times X)$. If $R_0 = R$ then $A = A_0$ and in this case no deduction is modeled by S. Such a schema can be used only to store the facts of a knowledge piece and to retrieve this information. In view of this remark one might say that a semantic schema $S = (X, A_0, A, R)$ satisfying the property $A = A_0$ (or equivalently, $R = R_0$) is a **trivial** semantic schema

The concept introduced in Definition 11 can be analyzed from various points of view. As a particular case we can consider a cooperating system containing only trivial semantic schemas. Obviously such a system becomes a θ -semantic

schema. In order to specify this case we consider the trivial schemas defined as follows:

- $S_1 = (\{x, y, z_1\}, \{a, b\}, \{a, b\}, \{(x, a, y), (y, b, z_1)\})$ • $S_2 = (\{x, y, z_2\}, \{a, b\}, \{a, b\}, \{(x, a, y), (y, b, z_2)\})$
- Only two cooperating systems can be obtained by means of these schemas:
- 1. The trivial system given by $E=(\{x,y,z_1,z_2\},\{a,b\},\{a,b\},R_0)$, where $R_0=\{(x,a,y),(y,b,z_1),(y,b,z_2)\}$.
- 2. The non trivial cooperating system given by

$$E = (\{x, y, z_1, z_2\}, \{a, b\}, \{a, b, \theta(a, b)\}, R)$$

where $R_0 = \{(x, a, y), (y, b, z_1), (y, b, z_2)\}$ and $R = R_0 \cup \{(x, \theta(a, b), z_1), (x, \theta(a, b), z_2)\}$. The structure E is obviously a θ -schema.

Remark 5. If $S_i = (X_i, A_{0i}, A_i, R_i)$ and $E = (X, L_0, L, R)$ then $X \subseteq \bigcup_{i=1}^n X_i$ and $L_0 \subseteq \bigcup_{i=1}^n A_i$. Really, if $G_{S_i}^{max} = (Y_i, L_i, T_i, h_i)$ then by Definition 10 we have $Y_i = pr_1 R_i^{max} \cup pr_3 R_i^{max} \subseteq X_i$ and $L_i = pr_2 R_i^{max} \subseteq A_i$ for every $i \in \{1, \ldots, n\}$.

Proposition 4. If $C = (\{S_i\}_{i=1}^n, E)$ is a cooperating system then either $n \geq 2$ or C is a trivial schema.

Proof. We can write $L = \bigcup_{k \geq 0} (L \cap B_k)$, where B_k is defined as in (1). If n = 1 then (6) can not be applied, therefore $L \cap B_1 = \emptyset$. Using Proposition 1 we can verify by induction on k that $L \cap B_k = \emptyset$. It follows that $L = L \cap B_0 = L_0$ and \mathcal{C} is a trivial schema.

In connection with Definition 11 we relieve the following aspects:

- 1. A cooperation system is based on several distinct semantic schemas because each schema S_i is built by means of a symbol θ_i and $\theta_i \neq \theta_j$ for $i \neq j$.
- 2. By Remark 5 we observe that L is a subset of the Peano θ -algebra generated by a finite set that contains some elements taken from the Peano θ_i -algebras of the schemas S_1, \ldots, S_n .

Remark 6. The condition (6) was introduced because a cooperating system $(\{S_i\}_{i=1}^n, E)$ is not able to extend the deduction of some component S_i . As a matter of fact the task of E is to model the collaboration of its components.

We define now the computations in a cooperating system introduced in this section. We consider a cooperating system $\mathcal{C} = (\{S_i\}_{i=1}^n, E)$, where $E = (X, L_0, L, R)$. In order to describe the computation in \mathcal{C} we consider the symbols $\sigma, \sigma_1, \ldots, \sigma_n$ of arity 2. Two kinds of computations can be described in \mathcal{C} :

- A regular formal computation for the θ_i -schema S_i . This computation was described in the first section for the general case of a semantic schema, with the remark that for S_i the symbol σ_i instead of σ is used.
- ullet A proper formal computation for the heta-schema E. The derivation in E is given in the next definition.

Definition 12. Suppose $(x, \theta(u, v), y) \in R$. If $(x, u, z) \in R$ and $(z, v, y) \in R$ then

$$w_1(x,\theta(u,v),y)w_2 \vdash w_1\sigma((x,u,z),(z,v,y))$$

for every words w_1, w_2 . We denote by \vdash^* the reflexive and transitive closure of \vdash . We denote by \mathcal{H}_E the Peano σ -algebra generated by $R_0 = R \cap (X \times L_0 \times X)$. We define

$$\mathcal{F}(E) = \{ w \in \mathcal{H}_E \mid \exists (x, u, y) \in R : (x, u, y) \vdash^* w \}$$

Remark 7. Because \mathcal{H}_E is generated by R_0 and \vdash^* is a reflexive relation we have $\mathcal{F}(E) \supseteq R_0$. This inclusion is used further to define the valuation mapping of a cooperating system.

In order to exemplify this computation and other concepts which follow in this section we consider the semantic schemas S_1 and S_2 represented respectively in Figure 6 and Figure 7. We remark that (x_2, b, x_3) is a maximal element both in S_1 and S_2 . In other words we have $R_1^{max} \cap R_2^{max} \neq \emptyset$.

Remark 8. The general case, $R_i^{max} \cap R_j^{max} \neq \emptyset$ for some $i \neq j$, implies some feature of the valuation mapping given in Definition 14.

The graph $G_1^{max} \cup G_2^{max}$ is represented in Figure 8. From this figure we deduce that the following entities are used to specify E:

- $\bullet \ X = \{x_1, x_2, x_3, x_4, y_1\}$
- $L_0 = \{b, \theta_1(a, a), \theta_1(b, a), \theta_2(a, b), \theta_2(b, b), \theta_2(b, a), \theta_2(a, \theta_2(a, b))\}$
- $R_0 = \{(x_1, \theta_1(a, a), x_2), (x_1, \theta_2(a, b), x_2), (x_2, \theta_2(b, a), y_1), (x_2, b, x_3), (x_3, \theta_1(b, a), y_1), (x_3, \theta_2(b, b), x_4), (y_1, \theta_2(a, \theta_2(a, b)), x_4)\}$

In order to finish the definition of E we take

$$R \setminus R_0 = \{ (x_1, \theta(\theta_1(a, a), b), x_3), (x_1, \theta(\theta(\theta_1(a, a), b), \theta_1(b, a)), y_1), (x_1, \theta(\theta_2(a, b), b), x_3), (x_1, \theta(\theta(\theta_2(a, b), b), \theta_1(b, a)), y_1), (x_1, \theta(\theta(\theta_2(a, b), b), \theta_2(b, b)), x_4) \}$$

and therefore

Fig. 6. Schema S_1

Fig. 7. Schema \mathcal{S}_2

Fig. 8. $G_1^{max} \cup G_2^{max}$

$$L \setminus L_0 = \{\theta(\theta_1(a, a), b), \theta(\theta(\theta_1(a, a), b), \theta_1(b, a)), \theta(\theta_2(a, b), b), \theta(\theta(\theta_2(a, b), b), \theta_1(b, a)), \theta(\theta(\theta_2(a, b), b), \theta_2(b, b))\}$$

We observe the condition (6) is satisfied by R. As an example of derivation in \mathcal{C} we have the following sequence:

$$(x_1, \theta(\theta(\theta_1(a, a), b), \theta_1(b, a)), y_1) \vdash \\ \sigma((x_1, \theta(\theta_1(a, a), b), x_3), (x_3, \theta_1(b, a), y_1)) \vdash \\ \sigma(\sigma((x_1, \theta_1(a, a), x_2), (x_2, b, x_3)), (x_3, \theta_1(b, a), y_1))$$

By a similar computation we obtain also

$$(x_1, \theta(\theta(\theta_2(a, b), b), \theta_1(b, a)), y_1) \vdash \\ \sigma((x_1, \theta(\theta_2(a, b), b), x_3), (x_3, \theta_1(b, a), y_1)) \vdash \\ \sigma(\sigma((x_1, \theta_2(a, b), x_2), (x_2, b, x_3)), (x_3, \theta_1(b, a), y_1))$$

In order to define the valuation mapping of a cooperating system $C = (\{S_i\}_{i=1}^n, E)$ we denote $S_i = (X_i, A_{0i}, A_i, R_i)$ and consider an interpretation $\mathcal{J}_i = (Ob_i, ob_i, \{Alg_u^i\}_{u \in A_i})$ of S_i , $i \in \{1, \ldots, n\}$. We suppose that for $x, y \in X_i \cap X_j$ we have x = y if and only if $ob_i(x) = ob_j(y)$.

Definition 13. An interpretation of the cooperating system C is a system $\mathcal{I} = (Ob, ob, \{Alg_u\}_{u \in A})$ such that $Ob = \bigcup_{i=1}^n ob_i(X \cap X_i)$, $ob(x) = ob_i(x)$ if $x \in X \cap X_i$, $ob : X \longrightarrow Ob$ and Alg_u is an algorithm accepting two input arguments and one output argument.

Proposition 5. The mapping $ob: X \longrightarrow Ob$ is well defined and is bijective.

Proof. If $x \in X \cap X_i \cap X_j$ for $i \neq j$ then $ob(x) = ob_i(x)$ and $ob(x) = ob_j(x)$ by the definition of ob. But $ob_i(x) = ob_j(x)$, therefore ob is well defined. If $y \in Ob$ then by Definition 13 there is i such that $y \in ob_i(X \cap X_i)$. Thus there is $x \in X \cap X_i$ such that $y = ob_i(x)$. But $ob(x) = ob_i(x)$, therefore y = ob(x).

In what follows we consider the following decomposition of $R: R = D_0 \cup D_1 \cup D_2$, where $D_0 = R_0$, $D_1 = \{(x, \theta(u, v), y) \in R \mid u, v \in D_0\}$ and $D_1 = R \setminus (D_0 \cup D_1)$. We obtain a corresponding decomposition for $\mathcal{F}(E): \mathcal{F}(E) = R_0 \cup \mathcal{F}_1(E) \cup \mathcal{F}_2(E)$, where $\mathcal{F}_1(E) = \{w \in \mathcal{F}(E) \mid \exists (x, u, y) \in D_1 : (x, u, y) \vdash^* w\}$ and $\mathcal{F}_2(E) = \{w \in \mathcal{F}(E) \mid \exists (x, u, y) \in D_2 : (x, u, y) \vdash^* w\}$.

Definition 14. ([10]) The valuation mapping of the cooperating system C is the function $Val_{\mathcal{I}}: \mathcal{F}(E) \longrightarrow 2^Y$, where Y is the output space of the semantic schema E, defined as follows:

• If
$$(x, a, y) \in D_0 \cap \left(\bigcup_{j=1}^n R_{0j}\right)$$
 then

$$Val_{\mathcal{I}}(x, a, y) = \bigcup_{i=1}^{n} \{Alg_a^i(ob_i(x), ob_i(y))\}$$

• $Val_{\mathcal{I}}(x, \theta_i(u, v), y) =$

$$\{Val_{\mathcal{I}_i}(\sigma_i(w_1, w_2)) \mid \sigma_i(w_1, w_2) \in \mathcal{F}(\mathcal{S}_i), (x, \theta_i(u, v), y) \Rightarrow_i^* \sigma_i(w_1, w_2)\}$$

• Let be $\sigma(\alpha, \beta) \in \mathcal{F}_1(E)$. There is $(x, \theta(u, v), y) \in D_1$ such that $(x, \theta(u, v), y) \vdash^* \sigma(\alpha, \beta)$. We take

$$Val_{\mathcal{I}}(\sigma(\alpha,\beta)) = \bigcup_{\begin{subarray}{c} o_{1} \in Val_{\mathcal{I}_{i}}(\alpha), \\ o_{2} \in Val_{\mathcal{I}_{j}}(\beta), \\ i \neq j \end{subarray}} \{Alg_{\theta(u,v)}(o_{1},o_{2})\}$$
 (7)

• Let be $\sigma(\alpha, \beta) \in \mathcal{F}_2(E)$. There is $(x, \theta(u, v), y) \in D_2$ such that $(x, \theta(u, v), y) \vdash^* \sigma(\alpha, \beta)$. We take

$$Val_{\mathcal{I}}(\sigma(\alpha,\beta)) = \bigcup_{ \begin{subarray}{c} O_1 \in Val_{\mathcal{I}}(\alpha), \\ o_2 \in Val_{\mathcal{I}}(\beta), \end{subarray} } \{Alg_{\theta(u,v)}(o_1,o_2)\}$$

Remark 9. The condition $i \neq j$ in (7) is connected by Remark 8.

5 Cooperating by cross-product of schemas

In this section we define a binary operation on the set of semantic schemas, which obtains from two semantic schemas another cooperating structure.

Definition 15. We consider a symbol $\theta \in \Sigma$.

- An element $(x, u, y) \in R_i^{max} \setminus R_j^{max}$ is a θ -accepted element of type (i, i) and we denote type(x, u, y) = (i, i).
- If (x, u, y) is a θ -accepted element, type(x, u, y) = (i, i) and (y, v, z) is a θ -accepted element, type(y, v, z) = (j, j), $j \neq i$, then $(x, \theta(u, v), z)$ is a θ -accepted element of $type(x, \theta(u, v), z) = (i, j)$.
- If (x, u, y) is a θ -accepted element of $type(x, u, y) = (i, k_1)$, (y, v, z) is a θ -accepted element of $type(y, v, z) = (k_2, j)$ and $k_1 \neq k_2$ then $(x, \theta(u, v), z)$ is θ -accepted element of $type(x, \theta(u, v), z) = (i, j)$.

In order to exemplify this concept we consider the semantic schemas represented in Figure 9 and Figure 10.

We observe that:

- (x_1, a, x_2) is not an accepted element because it belongs to $R_1^{max} \cap R_2^{max}$.
- (x_2, b, x_3) is an accepted element of type (1, 1), $(x_3, \theta_2(a, b), z_2)$ is an accepted element of type (2, 2) and therefore $(x_2, \theta(b, \theta_2(a, b)), z_2)$ is an accepted element of type (1, 2).

Fig. 9. Schema S_1

Fig. 10. Schema S_2

• The element $(x_2, \theta(b, \theta_1(c, a)), y_2)$ is an accepted element of type (2, 1).

Definition 16. ([11]) Consider a θ_1 -schema S_1 and a θ_2 -schema S_2 . Suppose G_1^{max} and G_2^{max} are the corresponding maximal labeled graphs of S_1 , respectively S_2 . The θ -schema $S = (Z, C_0, C, R)$ is a **cross-product** of S_1 and S_2 if the following conditions are satisfied:

- The labeled graph of S is $G_1^{max} \cup G_2^{max}$.
- R is a set of θ -accepted elements.

We denote by $S_1 \otimes_C S_2$ this structure.

Remark 10. If $G_1^{max}=(X_1,A_0,T_1,f_0),\ G_2^{max}=(X_2,B_0,T_2,h_0)$ and $\mathcal{S}=(Z,C_0,C,R)$ is a cross-product of \mathcal{S}_1 and \mathcal{S}_2 then

- $\bullet \ Z = X_1 \cup X_2$
- $\bullet \ C_0 = A_0 \cup B_0$
- $C = pr_2R$

Remark 11. Obviously we have $S_1 \otimes_C S_2 = S_2 \otimes_C S_1$.

Let us consider the schema S_1 from Figure 11, schema S_2 from Figure 12. We can take the set R that contains the elements of R_0 taken from Figure 15 and the following θ -accepted elements:

```
\begin{array}{l}(z_1,\theta(\theta_2(a_1,a_2),\theta_1(a_1,a_2)),x_3)\\(z_1,\theta(\theta(\theta_2(a_1,a_2),\theta_1(a_1,a_2)),\theta_2(a_3,b_2)),z_1)\\(z_1,\theta(\theta(\theta_2(a_1,a_2),\theta_1(a_1,a_2)),b_1),y_2)\end{array}
```

We obtain $C_0 = \{\theta_1(a_1, a_2), b_1, \theta_1(b_1, a_1), \theta_1(b_1, \theta_1(\theta_1(a_2, a_3), a_1)), \theta_2(a_3, b_2), b_1, \theta_2(a_2, b_1), \theta_2(a_1, a_2)\}$ and therefore $C \setminus C_0 = \{\theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), \theta(\theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), \theta_2(a_3, b_2)), \theta(\theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), b_1)\}.$

Fig. 11. Schema S_1

Fig. 12. Schema S_2

Fig. 13. G_1^{max}

Fig. 14. G_2^{max}

Fig. 15. $G_1^{max} \cup G_2^{max}$

Definition 17. We suppose $S = (Z, C_0, C, R)$ is a cross-product of the θ_i -schemas S_i , $i \in \{1, 2\}$. If we substitute each element $(x, \theta_i(u, v), y)$ in S by all the paths generated in S_i by this element then we obtain a Θ -schema, where $\Theta = \{\theta, \theta_1, \theta_2\}$. This schema is named the Θ -schema associated to the cross-product S and is denoted by S_{Θ} .

Definition 18. ([11]) A cross-deduction from S_1 and S_2 is a formal derivation in S_{Θ} . If $(x, \theta(u, v), y) \Rightarrow^* w$ and $w \in \mathcal{F}_{comp}(S_{\Theta})$ then w is a cross-conclusion.

The following computation is an example of cross-deduction from \mathcal{S}_1 and \mathcal{S}_2 :

$$\begin{split} &(z_1, \theta(\theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), \theta_2(a_3, b_2)), z_1) \Rightarrow \\ &\sigma((z_1, \theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), x_3), (x_3, \theta_2(a_3, b_2), z_1)) \end{split}$$

But

$$(z_1, \theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), x_3) \Rightarrow \sigma((z_1, \theta_2(a_1, a_2), x_1), (x_1, \theta_1(a_1, a_2), x_3))$$

therefore

$$(z_1, \theta(\theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), \theta_2(a_3, b_2)), z_1) \Rightarrow^*$$

$$\sigma(\sigma((z_1, \theta_2(a_1, a_2), x_1), (x_1, \theta_1(a_1, a_2), x_3)), (x_3, \theta_2(a_3, b_2), z_1))$$

On the other hand in S_1 we have

$$(x_1, \theta_1(a_1, a_2), x_3) \Rightarrow^* \sigma(h(x_1, a_1, x_2), (h(x_2, a_2, x_3)))$$

and from S_2 we obtain

$$(z_1, \theta_2(a_1, a_2), x_1) \Rightarrow^* \sigma(h(x_1, a_1, y_2), h(y_2, a_2, x_1))$$

and

$$(x_3, \theta_2(a_3, b_2), z_1)) \Rightarrow^* \sigma(h(x_3, a_3, y_1), h(y_1, b_2, z_1))$$

We obtain the following cross-deduction

$$(z_1, \theta(\theta(\theta_2(a_1, a_2), \theta_1(a_1, a_2)), \theta_2(a_3, b_2)), z_1) \Rightarrow^* \sigma(u, v)$$

where

$$u = \sigma(\sigma(h(x_1, a_1, y_2), h(y_2, a_2, x_1)), \sigma(h(x_1, a_1, x_2), (h(x_2, a_2, x_3)))$$
$$v = \sigma(h(x_3, a_3, y_1), h(y_1, b_2, z_1))$$

and thus we obtained a cross-conclusion.

6 Future research

The research line containing the cooperating systems based on semantic schemas can be developed. We relieve the following two ways by which we can develop this subject.

- Introduce a structure S that receives partial conclusions from two semantic schemas S_1 and S_2 . A partial conclusion is obtained from a deductive path. Introduce a rule to combine the conclusion of a deductive path from S_1 with the conclusion of a deductive path from S_2 . This rule can extend the cooperation based on maximal paths. This is a problem connected by the transfer of knowledge between semantic schemas.
- Study the transfer of knowledge between several semantic schemas and define a structure organized on levels such that the partial conclusions are transferred bottom up. This structure can be used to model distributed knowledge.

References

- 1. **V.Boicescu, A.Filipoiu, G.Georgescu, S.Rudeanu**, Lukasiewicz-Moisil Algebras, Annals of Discrete Mathematics 49, North-Holland, 1991
- J. Dassow, Cooperating Grammar Systems (definition, Basic results, Open Problems), in Gheorghe Păun (Ed.), Artificial Life, Grammatical Models, (Black Sea University Press, Bucharest, Romania, 1995), 40-52.

- N. Ţăndăreanu, Semantic Schemas and Applications in Logical Representation of Knowledge, Proceedings of the 10th Int. Conf. on CITSA, July 21-25, Orlando, Florida, Vol. III, p.82-87, 2004
- N. Ţăndăreanu and M.Ghindeanu, A Three-Level Distributed Knowledge System Based on Semantic Schemas, 16th Int. Workshop on Database and Expert Systems Applications, Proceedings of DEXA'05, Copenhagen, p.423-427, 2005
- N. Ţăndăreanu, Transfer of knowledge via semantic schemas, 9th World Multi-Conference on Systemics, Cybernetics and Informatics, July 10-13, Vol. IV, p.70-75, 2005
- N. Ţăndăreanu and M.Ghindeanu, Properties of derivations in a Semantic Schema, Annals of University of Craiova, Math. Comp. Sci. Ser., Vol.33, p.147-153, 2006
- N. Ţăndăreanu, Semantic Schemas: The Least Upper Bound of Two Interpretations, 10th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, USA, July 16-19, Vol. III, p.150-155, 2006
- N. Ţăndăreanu, Lecture Notes on Universal Algebra, Basic Concepts of Peano Algebras and Lattices, Research Report in Artificial Intelligence 301, Universitaria Publishing House, 2006
- N. Ţăndăreanu, Master-Slave Systems of Semantic Schemas and Applications, The 10th IASTED International Conference on Intelligent Systems and Control (ISC 2007), November 19-21, 2007, Cambridge, Massachusetts, USA, p.150-155, ISBN 978-0-88986-707-9
- 10. N. Ţăndăreanu, Cooperating Systems Based on Maximal Graphs in Semantic Schemas, Proceedings of the 11th WSEAS International Multiconference CSCC (Circuits, Systems, Communications, Computers), Vol. 4, p.517-522, Crete Island, Greece, July 23-28, 2007, ISSN: 1790-5117, ISBN: 978-960-8457-92-8
- N. Ţăndăreanu, Cross-Deduction Based on Maximal Elements in Semantic Schemas, 11th World Multiconference on Systemics, Cybernetics and Informatics (WMSCI 2007), Orlando, USA, July 8-11, Vol.I, p. 97-102, 2007
- 12. Cooperating mobile robots, United States patent 6687571, http://www.patentstorm.us/patents, February, 2004.
- 13. N. Tsuda, M. Ando, T. Nishino, Development of Master-Slave system for Magnetic Levitation, http://www.robot.mach.mie-u.ac.jp/research/ms/ems.html.
- R. Bundgen, M. Gobel, W. Kuchlin, A master-slave approach to parallel term rewriting on a hierarchical multiprocessor, Lecture Notes in Computer Science, Springer, Proceedings International Symposium DISCO'96, J. Calmet and C. Limongelli (Ed.), Vol.1128, 1996, 184-194.