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Conditional graphs generated by conditional schemas

N.Ţăndăreanu and M.Colhon

Abstract. In this paper we introduce the following concepts: conditional knowledge piece,
conditional binary relation, conditional schema and conditional graph. We prove that every
conditional schema generates one and only one conditional graph. A conditional knowledge
piece includes sentences of the form if-then. A conditional schema can represent a conditional
knowledge piece. The reasoning mechanism in a conditional schema is based on the paths in
the corresponding conditional graph. This mechanism is described in a forthcoming paper.
All the concepts presented in this paper are exemplified.
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1. Introduction

The rule-based reasoning was used successfully by various deductive systems. The
inference engine of such systems combines the rules to obtain a final conclusion.
Two main combination methods can be used: the backward method and the forward
method ([5], [6], [7]). Several appreciated systems, such as MYCIN, JESS and GURU,
were developed based on these ideas ([1], [2], [3], [4]).

An inference engine for a rule-based reasoning uses a given set R of rules of the form
IF-THEN. In general a rule is defined by a proper syntax of the reasoning system.
Various fields can be specified by the knowledge engineer: the name of a rule, the
priority, the cost, an access code etc. Every time these fields are the same.

In this paper we try to initiate a research line concerning the representation of
conditional knowledge. We propose a structure named conditional schema, that can
represent this kind of knowledge. In order to prepare the reasoning mechanism for this
structure, the concept of conditional graph is introduced. We prove that a conditional
schema generates one and only one conditional graph. Intuitively a conditional graph
is a directed labeled graph with additional information on the arcs. The reasoning
mechanism for a conditional schema is a path-driven reasoning in the corresponding
conditional graph.

The structure of this article is the following. In Section 2 we define what we mean
by a conditional knowledge piece and we exemplify the basic concepts by an intuitive
presentation. In the same section we define the concept of conditional binary relation
and we develop the algebra of these relations. Our representation method uses some
rules to help the reasoning process. The syntax of these rules is given in Section
3. We introduce the definition of the conditional schema in Section 4. In Section
5 we present the manner in which a conditional graph can be constructed based on
the components of a conditional schema. The last section summarizes the theoretical
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concepts of this article and describes the future directions for our research in the
domain of conditional knowledge representation and reasoning.

2. Conditional binary relations

By a knowledge piece KP we understand a text in a natural language that contains
a description of some objects and the relations between them. In general nothing
about the reasoning rules is specified in KP. We shall suppose that the relations be-
tween objects are binary ones, that is, each relation is a subset of some Cartesian
product of two sets. The information specified in a knowledge piece is named ini-
tial knowledge. The start point of the research concerning the representation of the
conditional knowledge can be considered the paper [8], where the most concepts are
treated by an intuitive manner. In this paper we develop the ideas presented in [8].

An inference engine can combine the entities of the initial knowledge in order to
obtain new properties for the objects, that are not specified in KP.

Definition 2.1. A conditional knowledge piece consists of some initial knowledge
and a set of sentences of the form if-then, each sentence representing a rule that can
be used by the reasoning process.

In general, from a knowledge piece KP some directed graph can be obtained. The
nodes of this graph are the objects of KP and the arcs are given by the binary relations
specified in KP.

A binary relation ρ on the set X is a subset ρ ⊆ X × X and a binary relation
from X to Y is a subset of X × Y . The binary relations of a knowledge piece KP
are obtained by extracting from KP all the ordered pairs of objects satisfying some
property. For example, if Peter is John’s brother and Mike is George’s brother are
two sentences of KP then, the following binary relation is obtained:

is−brother = {(Peter, John), (Mike, George)}
Let us now consider the following sentences:

If Bob lives in a fish bowl then it is a fish.
If Peter obtains the best score then he is a winner.

In order to describe this situation we consider the representation:
((Bob, fish), p1),
((Peter, winner), p2)

where p1 is the condition Bob lives in a fish bowl and p2 represents the condition
Peter obtains the best score. In this way, for the set:

X = {Bob, fish, Peter, winner}
we obtain the binary relation:

ρ = {(Bob, fish), (Peter, winner)}
and if we denote P = {p1, p2} then the following relation from X×X to P is obtained:

θ = {((Bob, fish), p1), ((Peter, winner), p2)}
We shall say that θ is a conditional binary relation. In the intuitive meaning we have:

(Bob, fish) belongs to ρ
(Bob, fish) belongs to θ if p1 is true

In other words, by the conditional relation θ we represent the following rules:
If p1 then (Bob, fish) ∈ θ
If p2 then (Peter, winner) ∈ θ
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In order to understand the rôle of the conditional binary relations in the reasoning
mechanism we present in an intuitive manner this mechanism. Let us consider the
following knowledge piece: Peter is a winner if Peter obtains the best score. Peter is
a teacher if Peter is graduated in higher teaching. John is a winner. Every winner
obtains a diploma. Every teacher obtains a special prize if he is under 35 years old.
Let us denote by X the set of all objects described by the knowledge piece:

X = {Peter, John, winner, teacher, diploma, special−prize}
We consider the following mappings:

p3 : X −→ {true, false}
p3(x) =

{
true if x obtains the best score
false otherwise

p4 : X −→ {true, false}
p4(x) =

{
true if x is graduated in higher teaching
false otherwise

p5 : X −→ {true, false}
p5(x) =

{
true if x is under 35 years old
false otherwise

Let us consider the following conditional binary relations:
ρ1 = {((Peter, winner), p3(Peter)), ((John, winner), T ),

((Peter, teacher), p4(Peter))}
ρ2 = {((winner, diploma), T ), ((teacher, special−prize), p5(teacher))}

It is not difficult to observe that the semantics of the fact that ((x, y), p(x)) ∈ ρ1 is
”x is a y if p(x)”. This is a property for all pairs of ρ1. In a similar manner, each
tuple ((x, y), p(x)) ∈ ρ2 has the meaning ”every x obtains a y if p(x)”.
A natural reasoning mechanism that uses the above knowledge piece obtains the
following conclusions:

• ”John obtains a diploma” because ”John is a winner” and ”Every winner obtains
a diploma”.

• ”Peter obtains a diploma if Peter obtains the best score” because ”Peter is a
winner if Peter obtains the best score” and ”Every winner obtains a diploma”.

• ”Peter obtains a special prize if he is under 35 years old and if Peter is graduated
in higher teaching” because ”Peter is a teacher if Peter is graduated in higher
teaching” and ”Peter is under 35 years old”.

The above reasoning can be modeled by means of a binary algebraic operation defined
for conditional relations. This is a partial operation and for the example of above we
obtain:

ρ1 ◦ ρ2 = {((Peter, diploma), p3(Peter)), ((John, diploma), T ),

((Peter, special−prize), p5(Peter) ∧ p4(Peter))}
In the remainder of this section we formalize all the theoretical aspects.

Definition 2.2. Let us consider a set X of objects and a set P such that every
element p ∈ P is a mapping p : X −→ {true, false}. An (X, P )-conditional bi-
nary relation (shortly, a conditional relation) is a finite set of elements of the form
((x, y), p(x)), where x, y ∈ X.

Definition 2.3. If p : X −→ {true, false} and q : X −→ {true, false} are two
arbitrary mappings we define the mapping p ∧ q : X −→ {true, false} as follows:

p ∧ q(x) = true

if and only if p(x) = true and q(x) = true.
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Proposition 2.1. The structure ({true, false}X,∧) is a semigroup.

Proof. The binary operation ∧ is associative because (p ∧ q) ∧ r = p ∧ (q ∧ r).
Really, the following sentences are equivalent:

• (p ∧ q) ∧ r(x) = true
• p(x) = q(x) = r(x) = true
• p ∧ (q ∧ r)(x) = true

Remark 2.1. In what follows we suppose that P ⊆ {true, false}X is a closed set
with respect to the operation ∧.

Remark 2.2. Every binary relation can be considered a conditional binary re-
lation. Really, the above relation ρ can be written:

ρ = {((Bob, fish), T ), ((Peter, winner), T )}
where T is the mapping T (x) = true for all x ∈ X.

Remark 2.3. In order to have a single representation for both types of relations we
shall consider that both are conditional relations with the difference that the classical
relations are unconditionally true.

Definition 2.4. We define the following binary operation on the set of all (X,P)-
conditional relations:

ρ1 ◦ ρ2 = {((x, z), p1 ∧ p2(x)) | ∃y : ((x, y), p1(x)) ∈ ρ1, ((y, z), p2(y)) ∈ ρ2}
Proposition 2.2. The operation ◦ is associative: (ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3) for
every (X,P)-conditional relations ρ1, ρ2, ρ3.

Proof. Really, if ((x, y), p1∧p2(x)) ∈ (ρ1◦ρ2)◦ρ3 then there are ((x, z1), p1(x)) ∈
ρ1 ◦ ρ2 and ((z1, y), p3(z1)) ∈ ρ3. From ((x, z1), p1(x)) ∈ ρ1 ◦ ρ2 we deduce that there
are m ∈ X and p11, p12 ∈ P such that p1(x) = p11 ∧ p12(x), ((x, m), p11(x)) ∈ ρ1

and ((m, z1), p12(m)) ∈ ρ2. From ((m, z1), p12(m)) ∈ ρ2 and ((z1, y), p3(z1)) ∈ ρ3 we
deduce that ((m, y), p12 ∧ p3(m)) ∈ ρ2 ◦ ρ3. Similarly, from ((x, m), p11(x)) ∈ ρ1 and
((m, y), p12∧p3(m)) ∈ ρ2◦ρ3 we deduce that ((x, y), p11∧(p12∧p3(x))) ∈ ρ1◦(ρ2◦ρ3).
But ((x, y), p1 ∧ p2(x)) = ((x, y), (p11 ∧ p12) ∧ p3(x)) and (p11 ∧ p12) ∧ p3(x) = p11 ∧
(p12∧p3(x)). Thus ((x, y), p1∧p2(x)) ∈ ρ1 ◦ (ρ2 ◦ρ3) and the inclusion (ρ1 ◦ρ2)◦ρ3 ⊆
ρ1 ◦ (ρ2 ◦ ρ3) is proved. The converse inclusion is proved in a similar manner.

Remark 2.4. Frequently, the condition p ∈ P can be expressed in terms of initial
knowledge about the used objects. The initial knowledge for some object will be specified
in the following form:

(attribute−name, value)
that is, an attribute for the specified object and its corresponding value.

3. The syntax of rules and their aims

As we mentioned in the previous sections, the reasoning process uses a set of rules.
In this section we define the syntax of these rules and we describe the aim of these
entities.

In comparison with other methods that use a rule-based reasoning, in our method
the rules are extracted from the knowledge piece, a path-driven reasoning is used and
the rules help the reasoning process by assigning to some ”semaphores” the values
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”on” or ”off”. All the concepts are exemplified on the following knowledge piece,
named KP2:

Meitner, Astoria, Pax, Transilvania House, Medina and Alina are names of hotels
or pensions of 2 or 3 stars as follows. Meitner and Astoria are hotels of 3 stars
located in Predeal and Iaşi. Pax is a hotel of 2 stars in Cluj Napoca.

Transilvania House and Medina are pensions of 3 stars while Alina has 2 stars.
These pensions are located in Predeal, Iaşi and Sinaia respectively.

A tourist considers that a hotel of 2 or 3 stars offers good conditions if the double
room’s surface is greater than 14 square meters, each room has telephone or access to
internet and the hotel has its own parking.

For a pension, good conditions imply having access to a sauna, pool or hydro-
massage.

A double room in a hotel of 2 or 3 stars has good price if it does not exceed 200
USD, while for a pension of the same class the limit is 150 USD.

The accommodation of these hotels and pensions consist of:
Meitner Hotel: double room - price: 170 USD, surface: 19-33 sqm, internet,

free guarded parking, garden
Astoria Hotel: double room - price: 275 USD, surface: 15 sqm., phone and net,

pay parking
Pax Hotel: double room - price: 160 USD, surface: 12,5 sqm, phone
Transilvania House Pension: double room - price: 180 USD, pool, sauna, jacuzzi
Alina Pension: double room - price: 80 USD
Medina Pension: double room - price: 140 USD, hydro-massage

From the above text we extract the following objects:
• individual objects: Meitner, Astoria, Pax, Transilvania House, Alina, Med-
ina
• abstract objects: hotel, pension, good conditions, good prices

We consider the following attributes for the individual objects:
• price: to represent the price of a double room
• surface: to represent the surface of the hotel’s double room
• communication (comm.): indicates if there is a telephone and/or access to
Internet in the hotel’s rooms
• parking: indicates if the hotel has its own parking and of what kind
• garden: indicates if the hotel has its own garden
• leisure: indicates the leisure activities offered at the pension.

In order to avoid a possible confusion we shall use the following notation:

a ⇔ {(x1, y1), . . . , (xn, yn)}

to specify that the classical binary relation {(x1, y1), . . . , (xn, yn)} is represented by
the symbol a. A similar notation will be used for conditional binary relations.

The following relations are extracted from KP2:
is−a ⇔ {((Meitner, hotel), T ), ((Astoria, hotel), T ), ((Pax, hotel), T ),

((Transilvania House, pension), T ), ((Alina, pension), T ),
((Medina, pension), T )}

offers ⇔ {((hotel, good conditions), p(hotel)), ((pension, good conditions),
q(pension))}

has ⇔ {((hotel, good prices), r(hotel)), ((pension, good prices), s(pension))}
where p, q, r, s are symbols that specify some conditions, as will be explained below.
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Figure 1. Graphical representation of KP2

For an object x if (attr, value) represents an initial knowledge about it, then we
shall denote:

Vx(attr) = value

in order to specify that value is referred to x for the property attr. Using these
notations for KP2 we have:

• VMeitner(price) = 170USD, VMeitner(surface) = 19−33sqm, VMeitner(parking)
= free and guarded, VMeitner(communication) = {net}, VMeitner(garden) =
yes

• VAstoria(price) = 275USD, VAstoria(surface) = 15sqm, VAstoria(parking) =
pay, VAstoria(communication) = {phone, net}, VAstoria(garden) = no

• VPax(price) = 160USD, VPax(surface) = 12.5sqm, VPax(parking) = no,
VPax(communication) = {phone}, VPax(garden) = no

• VTransilvania House(price) = 180USD, VTransilvania House(leisure) = {pool,
sauna, jacuzzi}

• VAlina(price) = 80USD, VAlina(leisure) = ∅
• VMedina(price) = 140USD, VMedina(leisure) = {hydro-massage}

Remark 3.1. As we can easily observe, the notation Vx(attr) designates an attribute
value for the individual object x.

The conditions are denoted by the symbols p, q, r, s. They are named conditional
symbols and they are represented by mappings defined on the objects set. We denote
by Cs the set of these symbols. Thus, for KP2 we have Cs = {p, q, r, s}. Some logical
condition is attached to every element of Cs.
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Intuitively, for each symbol t ∈ Cs and for an arbitrary object x we say that ”t is
on” for x if the condition attached to t is satisfied for x and ”t is off” otherwise. We
shall write t(x) = true or t(x) = false.

The conditions attached to each symbol of Cs can be transposed in IF-THEN-ELSE
rules using the above notations. Thus, for KP2 we obtain the following rules:

R1(x) : IF Vx(surface) ≥ 15sqm ∧ Vx(communication) ∩ {phone, net} �= ∅ ∧
Vx(parking) �= no THEN p(x) = true ELSE p(x) = false

R2(x) : IF Vx(leisure) ∩ {sauna, pool, hydro − massage} �= ∅ THEN q(x) =
true ELSE q(x) = false
R3(x) : IF Vx(price) ≤ 200USD THEN r(x) = true ELSE r(x) = false
R4(x) : IF Vx(price) ≤ 150USD THEN s(x) = true ELSE s(x) = false

where Rj is the name of the rule and Rj(x) denotes the fact that the rule Rj is applied
for the object x, j = 1, 4.

It remains to formalize all these aspects and to define the reasoning based on this
formalism. This is the aim of the next section.

Remark 3.2. The graphical representation given in Figure 1 specifies a conditional
schema. We shall refer to this figure later and we shall give all details concerning
this representation after the formal treatment of this structure. We observe that the
entities of the form (attribute, value) corresponding to some individual object are
introduced into a rounded rectangle that is linked by object.

Also some pictures are attached to the representation, without having a meaning
for the mechanism we want to introduced.

Remark 3.3. The main task of the rules is to assign values for conditional symbols.
These entities can be considered as ”semaphores” that allow to use some parts of a
path in the graphical representation of a knowledge piece.

4. The components of a conditional schema

Let us summarize the components introduced in the previous section, components
that will be used to define the concept of conditional schema:

• Ob is the set of the individual and abstract objects names extracted from the
knowledge piece such that

- Ob = Obind ∪ Obabstr , where Obind gives all the individual objects names
and Obabstr represents the set of all abstract objects names;

- Obind ∩ Obabstr = ∅
• Cs is the set of the conditional symbols, for every t ∈ Cs we have t : Ob −→
{true, false}

• Er is the set of symbols for conditional binary relations; a conditional binary
relation is a subset of (Ob × Ob) × (Cs ∪ {T })

• A is the set of attribute names for the objects of Ob;
• I = {i, a}, where i is used to designate individual objects and a is used to specify

abstract objects.
Thus, every element x of the set Obind will be designated in what follows by (x, i).
Similarly, an element x ∈ Obabstr is designated by (x, a).

Remark 4.1. If r ∈ Er then the conditional relation designated by r is denoted by
Relc(r).

In what concerns the conditional symbols, the following notation is used:

((n, w1), (m, w2)) ∈c Relc(r) (1)
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to relieve the fact that the element (((n, w1), (m, w2)), p(n)) belongs to Relc(r) for
some p ∈ Cs and we denote

p(n) = Condr((n, w1), (m, w2)) (2)

For the knowledge piece KP2 we obtain:
• Ob = {Meitner, Astoria, Pax, Transilvania House, Alina, Medina, hotel,

pension, good conditions, good prices}
• Cs = {p, q, r, s}
• Er = {is−a, offers, has}
• A = {price, surface, communication, parking, garden, leisure}
• I = {i, a}, where i is used to designate the individual objects and a is used to

designate the abstract objects.
According to our notational convention from Remark 4.1 and the conditional mem-
bership from (1) we can write:

((Pax, i), (hotel, a)) ∈c Relc(is−a)
((hotel, a), (good conditions, a)) ∈c Relc(offers)

Now we can introduce the concept of conditional schema as in the next definition.

Definition 4.1. A conditional schema is a tuple (Ob, Cs, Er, A, V, Bcr, h, f), where
• Ob is a set of the objects’ names; this set is divided into two subsets Obind and

Obabstr such that Ob = Obind ∪ Obabstr and Obind ∩ Obabstr = ∅;
• Cs is a finite set of symbols named conditional symbols;
• Er is a finite set of symbols used to designate conditional binary relations over

Ob;
• A is a set of attribute name for the elements of Ob;
• V is a set of values for the elements of A;
• Bcr ⊆ 2((Ob×I)×(Ob×I))×(Cs∪{T}) is the set of the conditional binary relations;
• h : Er → Bcr is a mapping that assigns a conditional binary relation for every

symbol of Er;
• f : Obind → 2A×V is a mapping that assigns initial knowledge to the individual

objects of Obind.

Remark 4.2. The mapping h is used to establish a connection between an element
r ∈ Er and the relation h(r) ∈ Bcr designated by r. Obviously for every r ∈ Er we
have h(r) = Relc(r), therefore

r ⇔ h(r)

For example, in the case of KP2 we have:
h(is−a) = {(((Pax, i), (hotel, a)), T ), (((Meitner, i), (hotel, a)), T ),

(((Astoria, i), (hotel, a)), T ),
(((Transilvania House, i), (pension, a)), T ),
(((Alina, i), (pension, a)), T ), (((Medina, i), (pension, a)), T )}

Remark 4.3. Any pair (attr, val) ∈ f(x), where x ∈ Obind, specifies the value val of
the attribute attr for the object x.

The following notation is used for a set M ⊆ X1 × . . . Xk and i ∈ {1, . . . , k}:
priM = {x ∈ Xi | ∃(x1, . . . xi−1, x, xi+1, . . . , xk) ∈ M}

Definition 4.2. An abstract object x ∈ Obabstr is a useless object if (x, a) /∈ pr1Q∪
pr2Q, where Q = pr1(

⋃
m∈Er

h(m)).
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As we shall see such elements can not be used in the reasoning process. In the
remainder of this chapter we consider that every conditional schema does not contain
useless objects.

5. Conditional graphs

A conditional schema can be graphically represented as a particular labeled directed
graph. The representation is named conditional graph and this concept is presented in
the next definition. We relieve the fact that this structure is a useful one to formalize
the reasoning process in a conditional schema.

Definition 5.1. Let S = (Ob, Cs, Er, A, V, Bcr, h, f) be a conditional schema. A
conditional graph generated by S is a pair GS = (X ∪ Z, ΓX ∪ ΓZ), where

• X ⊆ Ob × I is the set of nodes such that pr1X = Ob and x = (n, w) ∈ X if and
only if there are r ∈ Er and y ∈ Ob× I such that (x, y) ∈c h(r) or (y, x) ∈c h(r).

• ΓX ⊆ X × Er × X and ((n, w1), r, (m, w2)) ∈ ΓX if and only if
((n, w1), (m, w2)) ∈c h(r).

• Z = {f(x) | x ∈ Obind} and ΓZ = {(f(x), x) | x ∈ Obind}
For example, in the graph of KP2 we have:

((Pax, i), is−a, (hotel, a)) ∈ ΓX

because ((Pax, i), (hotel, a)) ∈c h(is−a)

Remark 5.1. A distinctive aspect in a conditional graph is given by the fact that:
• There are two kinds of nodes, given by X and Z.
• There are two kinds of arcs specified by ΓX and ΓZ respectively. An arc from

ΓX is named arc of first category and an arc from ΓZ is an arc of second
category.

As we prove in the next proposition just one conditional graph can be generated
by a given conditional schema.

Proposition 5.1. A conditional schema generates one and only one conditional
graph.

Proof. Consider a conditional schema S = (Ob, Cs, Er, A, V, Bcr, h, f). Directly
from Definition 5.1 we can build a conditional graph if we proceed as follows:

- Obtain Z and ΓZ ;
- Take W = pr1(

⋃
r∈Er

h(r)) and X = pr1W ∪ pr2W .
- Take ΓX =

⋃
r∈Er

{((n, w1), r, (m, w2)) | ((n, w1), (m, w2)) ∈c h(r)}.
Let us verify that pr1X = Ob. From Definition 4.1 we observe that if r ∈ Er then

pr1h(r) ⊆ (Ob × I) × (Ob × I)

therefore
pri(pr1h(r)) ⊆ Ob × I

for i ∈ {1, 2}. It follows that

pr1W ∪ pr2W ⊆ Ob × I

therefore X ⊆ (Ob × I).
Conversely, suppose x ∈ Ob. It results the following two possibilities for x (x, i) ∈

Obind×I or (x, a) ∈ Obabstr×I. Because S does not contain isolate objects we deduce
that ∃r ∈ Er and ∃y ∈ Ob× I: ((x, w), y) ∈c h(r) or (y, (x, w)) ∈c h(r) which implies
(x, w) ∈ (pr1W ∪ pr2W ), for w ∈ I. But (pr1W ∪ pr2W ) = X , therefore x ∈ pr1X .
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Suppose that G1
S = (X1 ∪ Z, ΓX1 ∪ ΓZ) and G2

S = (X2 ∪ Z, ΓX2 ∪ ΓZ) are two
conditional graphs generated by S. The following sentences are equivalent:
(1) x ∈ X1

(2) There are r ∈ Er and y ∈ Ob × I such that (x, y) ∈c h(r) or (y, x) ∈c h(r)
(3) x ∈ X2

therefore X1 = X2. In a similar manner the following sentences are equivalent:
(1) ((n, w1), r, (m, w2)) ∈ ΓX1 ,
(2) ((n, w1), (m, w2)) ∈c h(r), ((n, w1), (m, w2)) ∈ X1 × X1

(3) ((n, w1), (m, w2)) ∈c h(r), ((n, w1), (m, w2)) ∈ X2 × X2

(4) ((n, w1), r, (m, w2)) ∈ ΓX2

therefore ΓX1 = ΓX2 .

Proposition 5.2. If GS = (X ∪ Z, ΓX ∪ ΓZ) is the conditional graph generated by
S = (Ob, Cs, Er, A, V, Bcr, h, f) then pr2ΓX = Er.

Proof. Directly from Definition 5.1 we have ΓX ⊆ X × Er × X , therefore
pr2ΓX ⊆ Er. To verify the converse inclusion we take an arbitrary element r ∈ Er.
We have h(r) �= ∅ because the empty relation is not used in knowledge representation.
Thus there is an element ((n, w1), (m, w2)) ∈c h(r). Using again Definition 5.1 we
deduce that ((n, w1), r, (m, w2)) ∈ ΓX and so r ∈ pr2ΓX .

The graphical representation of a conditional schema S is obtained as follows:
• Consider the conditional graph GS = (X ∪ Z, ΓX ∪ ΓZ) generated by S;
• Each element of X is represented by a rectangle;
• We draw an arc from the node x ∈ X to y ∈ X and we put the label r ∈ Er on

this arc if and only if (x, r, y) ∈ ΓX ;
• For each individual node x ∈ Obind × I we append the additional information

given by f(x). This information is collected in a rounded rectangle linked to x
as in Figure 2.

Applying for KP2 this method we obtain the graphical representation from Figure 1.
The concept of conditional graph helps us to model the reasoning in a conditional

schema. Moreover, this concept is a useful one to specify some features of a conditional
schema.

For example, in Figure 2 we represented the conditional graph of a simple condi-
tional schema. The corresponding conditional schema contains the following compo-
nents:
(1) Ob = Obind = {Meitner};
(2) Cs = Er = Bcr = ∅;
(3) A = {price, surface, parking, garden, communication}
(4) The mapping h is undefined because Er = ∅;
(5) V = {170USD, 19-33sqm, free and guarded, yes, {net}};
(6) f(Peter) = {(price, 170USD), (surface, 19-33sqm),

(parking, free and guarded), (garden, yes), (communication, {net})}.

6. Future work

In this paper we formalized a new structure named conditional schema. This struc-
ture can be used to represent conditional knowledge pieces. We introduced also the
concept of conditional graph and we proved that a conditional schema generates just
one conditional graph. In a forthcoming paper we define the reasoning mechanism in
a conditional schema and this mechanism is described by means of the corresponding
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Figure 2. A simple conditional graph

conditional graph. A possible future research line is the extraction of the rules from
the text description of a knowledge piece.
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