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Preface

A great number of research works and practical implementations have con-
firmed the interest of mathematicians and computer scientists in developing
and applying the methods of universal algebra. The aim of universal algebra
is to extract the common elements (concepts, results and constructions) of
algebraic structures, which can be identified as central entities for a large vari-
ety of the basic algebraic structures: group, semigroup, monoid, ring, module,
lattice, semilattice, Boolean algebra and so on.

In general, an algebraic structure uses at least one algebraic operation.
Two kinds of such operations can be considered: partial operations and total
operations. The subject treated in this volume includes both the first and the
second kind of operation. There are several motivations for this subject:

• Mathematicians are interested to study the common constructions of
some mathematical structures in order to distinct them from the specific
constructions.

• The computer scientists are interested to study this domain because a
lot of problems implemented on computers were modeled by using the
tools of universal algebra.

• The interest for the study of partial algebras can be explained by the
fact that specific problems connected by partial computations have been
encountered in mathematics (partial division for integer numbers, par-
tial subtraction of natural numbers, the inverse of a matrix in numerical
analysis) and are encountered today in mathematics of computer science
(partial recursive mappings, partial computations in automata theory,
answer function of the knowledge representation and processing systems,
logical computation with respect to the semantics of logic programs, par-
tial morphisms in algebraic models for knowledge representation, partial
computations in the domain of the reasoning modeling, partial compu-
tations in the computability domain). As a consequence of this interest
several new structures are developed today: test algebras, orthomodular
algebras, many-sorted algebras and so on.

We give now a short description of the contents of the present volume. Chap-
ter 1 provides the fundamentals of ordered sets (partial mappings, partial
order, dual order, duality principle) and partial Σ-algebras (morphisms, sub-
algebras, free generated algebras). Chapter 2 deals with the Peano Σ-algebras



(the construction of such structures, the isomorphism of the Peano algebras
generated by the same set). Chapter 3 provides the basic properties of a
fundamental structure named lattice. We describe the concepts of lattice in
the sense of Ore and the lattice in the sense of Dedekind. We prove they are
equivalent structures. Finally the concept of Boolean algebra is defined in a
concise manner as a specialized form of lattice. In Chapter 4 we treat some
distinctive problems concerning the results specified in the previous chapters.
In the final of this volume we included Chapter 5, which should be viewed
as a chapter describing some possible ideas to initiate the reader in a re-
search activity allowing to obtain new results in these domains. Several open
problems are specified here.

The most properties included in this volume are accompanied by their
proofs. We consider that following these proofs the reader is able to obtain
a better understanding of the concepts. On the other hand we intended to
disengage the reader from an additional activity if the proofs are requested.

Besides the general interest to study the domain of universal algebra there
is a specific feature of this aspect which is described by a ”local” interest.
The aim of the present volume is twofold and reflects the author’s interest:

• to give a concise mathematical background for the course of ”Com-
putability and Deduction in Artificial Intelligence” (first year, Master
in Computer Science, University of Craiova);

• to offer an initial study for Ph.D. students in informatics.

We relieve the fact that only the concepts and results used for a better under-
standing of the mentioned course are presented in this volume. The following
topics of this course benefit of all results:

• the computability of the answer mapping of the knowledge systems based
on inheritance;

• knowledge modeling by labeled stratified graphs;
• knowledge modeling by semantic schemas.

The text included in this volume is not an encyclopedic one. We hope the
reader will find in this volume a concise description of the main results and a
helpful literature to apply the algebraic methods in knowledge representation
but not only.

It is not possible to finalize this preface before to thank Professor Sergiu
Rudeanu. Under his guidance I obtained the first research results in this
domain.

This volume is addressed to graduate students (master in computer sci-
ence, Ph.D. students in informatics) and, in general, to each person which
intend to apply universal algebras in various domains.

Nicolae Ţăndăreanu June 2006



1. Basic concepts of universal algebra

In this chapter we describe some of the basic concepts of universal algebra.
The main concepts treated here are the following: partial order and partially
ordered sets, duality principle, partial algebra, closed sets and partial sub-
algebras, algebraic induction, morphisms of partial algebras, free generated
algebras.

1.1 Notations, basic concepts and results

We denote by N the set {0, 1, 2, . . .} of all natural numbers. We recall the
basic concepts and notations from set theory.

We consider a non empty set A. The notation B ⊆ A specifies that B is
a subset of A. If B ⊆ A and B 6= A then we write B ⊂ A. The empty set is
denoted by ∅.

The Cartesian product of the sets X1, X2, . . . , Xn is the set

X1 ×X2 × . . .×Xn = {(x1, . . . , xn) | xi ∈ Xi, i = 1, . . . , n}
For a subset X ⊆ X1 ×X2 × . . .×Xn and j ∈ {1, . . . , n} we denote

prjX = {x ∈ Xj | ∃(x1, . . . , xj−1, x, xj+1, . . . , xn) ∈ X}
and this set is named the projection of X on the axis j.

We define A0 = {∅} and for n > 0 we denote by An the Cartesian product
A × . . . × A of n elements. By 2A we denote the power set of A, i.e. the set
of all subsets of A.

The words mapping and function are used as equivalent concepts. A map-
ping f from A to B is a set f ⊆ A×B such that

(x, y1) ∈ f, (x, y2) ∈ f =⇒ y1 = y2

We denote dom(f) = pr1f and this set is called the domain of definition of
the mapping f . If dom(f) ⊂ A then f is a partial mapping. Otherwise we say
that f is a mapping on A.

The classical notation to indicate that f is a mapping from A to B is
f : A −→ B. If (x, y) ∈ f then we denote y = f(x).
For a mapping f : dom(f) −→ Y and X ⊆ Awe denote
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f(X) = {y | ∃x ∈ X ∩ dom(f) : f(x) = y}
and this is the image of the set X by the mapping f . Particularly we denote
val(f) = f(dom(f)).

If f is a (partial) mapping from A to B and Y ⊆ B then we denote

f−1(Y ) = {x ∈ dom(f) | f(x) ∈ Y }
For a total mapping f : A −→ B we have

X ⊆ A =⇒ X ⊆ f−1(f(X)) (1.1)

Y ⊆ Z ⊆ B =⇒ f−1(Y ) ⊆ f−1(Z) (1.2)

We write f ≺ g if f : dom(f) −→ A and g : dom(g) −→ A are two
functions such that dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f). If
this is the case, we say that f is a restriction of g.

If f : A −→ B and g : B −→ C are two mappings then we denote by
g ◦ f the mapping g ◦ f : A −→ C defined by g ◦ f(x) = g(f(x)). This is the
composition operation or the superposition of two mappings.

We denote by 1A the mapping 1A : A −→ A defined by 1A(x) = x for
each x ∈ A. An useful property is given in the next proposition.

Proposition 1.1.1. If f : A −→ B and g : B −→ A satisfy the identities

g ◦ f = 1A, f ◦ g = 1B

then

1) f and g are bijective mappings
2) g = f−1

Proof. If x1, x2 ∈ A and f(x1) = f(x2) then g(f(x1)) = g(f(x2)), therefore
x1 = x2. Thus the mapping f is injective. Let be y ∈ B. For x = g(y) we
have f(x) = f(g(y)) = 1B(y) = y, therefore f is surjective. Similarly we
prove that g is a bijective mapping. If f(x) = y then 1A(x) = g(f(x)) = g(y),
i.e. x = g(y). Conversely, if x = g(y) then f(x) = f(g(y)) = 1B(y) = y. Thus
f(x) = y if and only if x = g(y). This establishes the relation g = f−1.

A binary relation on the set A is a subset ρ ⊆ A × A. In the vision of
the usual relation ≤ between the real numbers we denote xρy instead of
(x, y) ∈ ρ. A binary relation ρ is a partial order if the following conditions
are satisfied:

• Reflexivity: xρx for all x ∈ A
• Antisymmetry: xρy ∧ yρx =⇒ x = y for all x, y ∈ A
• Transitivity: xρy ∧ yρz =⇒ xρz for all x, y, z ∈ A
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If xρy or yρx then the elements x and y are called comparable elements.
Otherwise x and y are incomparable elements. If, in addition of reflexivity,
antisymmetry and transitivity we have xρy or yρx for every x, y ∈ A then
we say that ρ is a total order on A.

A partially ordered set or poset is a pair (A, ρ), where ρ is a partial order
on the set A. If ρ is a total order then this pair is a totally ordered set.

For a subset P ⊆ A an element z ∈ A is a lower bound of P if zρx for all
x ∈ P . An element z0 ∈ A is the greatest lower bound of P if

• z0 is a lower bound of P ;
• for every lower bound z of P we have zρz0.

We remark that although ρ is a partial order, if z0 is the greatest lower bound
of P and z is a lower bound of P then z0 and z are comparable elements and
moreover, we have zρz0. Equivalently we say that z0 is the infimum of P and
we denote z0 = infρP . If z0 = infρP and z0 ∈ P then z0 is the least or the
first element of P . The element infρP , if exists, is unique.

An element u ∈ A is an upper bound of P if xρu for all x ∈ P . An element
u0 ∈ A is the least upper bound of P if

• u0 is an upper bound of P ;
• for every upper bound u of P we have u0ρu.

The same remark as in the case of infρP can be relieved here: the least
upper bound is comparable with each upper bound. Usually we say that the
element u0 above defined, if exists, is the supremum of the set P and we
denote u0 = supρP . If u0 = supρP and u0 ∈ P then u0 is the last or the
greatest element of P . The greatest element of a subset, if exists, is unique.

For a binary relation ρ on A we can define the dual relation, denoted by
ρ̃ and defined as follows:

xρ̃y ⇐⇒ yρx

Obviously the dual relation ρ̃ of a partial order ρ is also a partial order.
Using the duality mentioned above we obtain dual concepts. For example,

suppose α is a lower bound of the set P ⊆ A in (A, ρ̃). This means that αρ̃x
for all x ∈ P . Equivalently we have xρα for every x ∈ P . Thus, a lower bound
in (A, ρ̃) is an upper bound in (A, ρ) and vice versa. Thus the concepts of lower
bound and upper bound are dual concepts. Similarly, the least element and
the greatest element are dual concepts.

From a sentence S stated in the terms of some domain we can obtain
another statement S̃ by replacing each concept by its dual. The statement S̃
is named the dual of S. Particularly, this aspect can be relieved for theorems,
i.e. for sentences that are proved in the corresponding domain. Based on the
following principle we can save the proof of some theorems:

Proposition 1.1.2. (Duality principle, Grätzer (1971))
If T is a theorem in the theory of partially ordered sets then its dual T̃ is also
a theorem in the same domain.
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For example, it is known the following theorem T : The supremum of a subset,
if exists, is unique. The dual T̃ is the sentence The infimum of a subset, if
exists, is unique and this is a theorem in the theory of partially ordered sets.
In virtue of the duality principle it is not necessary to give a proof of T̃ . As a
matter of fact, the proof of T̃ can be easy obtained by duality from the proof
of T .

If does not exist any confusion, the index ρ from the notation infρP or
supρP is omitted.

Example 1.1.1. Take the set A = {2, 3, 4, 6, 12} and the relation ”divides”,
xρy if and only if x divides y. Consider P = {6, 12}. The elements 2 and
3 are lower bounds of P and they are incomparable elements. The greatest
element of P is 12.

If (A, ρ) is a poset then we say that x is covered by y in A and we write xρcy
if xρy, x 6= y and from xρz and zρy we deduce x = z or z = y. In other
words, there isn’t any element ”between” x and y. Based on this relation
we can represent any finite partially ordered set by a picture called Hasse
diagram. In order to obtain such a diagram we proceed as follows: we draw
any element of A by a circle and if aρcb then we draw the circle of b above
the circle of a and then we join the two circles by a line segment. An example
of such representation is given in Figure 1.1, where A = {0, a, b, c, 1} and
0 is the least element, 1 is the greatest element, a and b are incomparable
elements, b is covered by c, inf{a, c} = 0, sup{a, b} = sup{a, c} = 1 and so
on. We observe that from a Hasse diagram we can rebuild the initial relation
ρ by means of the sequences of covered elements and using also the reflexivity
of the relation ρ. For example, we have 0ρcb, bρcc and cρc1. It follows that
0ρc, bρ1 by such sequences of covered elements and then bρb by reflexivity.

◦́
´́

0

◦¡
¡

¡¡

@
@

@@

a

◦ b

◦

◦ 1
Q

QQ c

Fig. 1.1. Hasse diagram

A binary relation ρ on the set A is an equivalence relation if the following
conditions are satisfied:

• Reflexivity: xρx for all x ∈ A;
• Symmetry: xρy =⇒ yρx for all x, y ∈ A;
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• Transitivity: xρy ∧ yρz =⇒ xρz.

For an element x ∈ A we define the equivalence class of x as follows:

[x]ρ = {y ∈ A | yρx}
Proposition 1.1.3. (Burris (1981))
If ρ is an equivalence relation on the set A then:

• x ∈ [x]ρ for every x ∈ A;
• if xρy then [x]ρ = [y]ρ;
• either [x]ρ ∩ [y]ρ = ∅ or [x]ρ = [y]ρ.

Proof. By the reflexivity property of ρ we have x ∈ [x]ρ. Suppose xρy.
By symmetry and transitivity of ρ we have zρx if and only if zρy, therefore
[x]ρ = [y]ρ. Suppose now that [x]ρ∩[y]ρ 6= ∅ and take an element z ∈ [x]ρ∩[y]ρ.
It follows that zρx and zρy therefore xρy. Thus [x]ρ = [y]ρ.

1.2 Partial algebras: definitions and examples

The domain of universal algebras extracts and generalizes basic concepts and
results from various algebraic structures. By this process not only an unitary
theory is obtained but also the results can be successfully applied to new
contexts. In this section the reader is familiarized with background concepts
of this domain. The first concept is given in the next definition.

Definition 1.2.1. (Burmeister (2002))
We consider a nonempty set A and a natural number n ∈ N . By an n-ary
partial operation on A we understand a partial mapping f from An to A.
This means that f : dom(f) −→ A, where dom(f) ⊂ An. In the case when
dom(f) = An we say that f is an n-ary operation on A. The number n is
called the arity of A.

Let us consider an operation f of arity zero. We have two cases:

- if f is a partial operation then dom(f) ⊂ A0, therefore dom(f) = ∅;
- if f is an operation then dom(f) = {∅} therefore f is completely deter-

mined by the image f(∅) of the only element ∅ in A0; for this reason we
can identify f by f(∅) and therefore an operation of arity zero on A can
be identified with an element of the set A.

We assume that Σ is a set of operation symbols and let a : Σ −→ N be a
mapping, that is dom(a) = Σ. For every σ ∈ Σ the natural number a(σ) is
the arity of σ.

Definition 1.2.2. (Burmeister (2002))
By a partial Σ-algebra we understand a pair

A = (A, {σA}σ∈Σ)
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where A is a set and for every σ ∈ Σ the elemant σA is a partial operation
on A of arity a(σ). In the case when σA is an operation of arity a(σ) for
every σ ∈ Σ, we say that A is a Σ-algebra. The system (a(σ))σ∈Σ is the
signature of Σ. For the particular case when Σ is a singleton, i.e. Σ = {σ}
for some symbol σ of arity a(σ), we say that A is a partial σ-algebra.

For some values of arity the corresponding operation has a special name. The
most encountered cases are the following:

- for a(σ) = 0 we have a nullary operation σ;
- for a(σ) = 1 we have an unary operation;
- for a(σ) = 2 we have a binary operation.

For example, we consider Σ = {σ} and σ a symbol of arity 2. The pair
A = (A, {σA}), where A = {0, 2, 4}, dom(σA) = {(0, 0), (2, 0), (4, 0), (4, 2)}
and σA(x, y) = x − y is a partial Σ-algebra. If we consider B = (B, {σB}),
where B = {0, 1, 2} and σB(x, y) = max{x, y} then we obtain an example of
Σ-algebra.

We consider an equivalence relation ρ on A, where A is the support
set of the partial Σ-algebra A = (A, {σA}σ∈Σ). The set of all equiva-
lence classes is denoted by A/ρ and this set is named the factor set. Fre-
quently a congruence is used instead of an equivalence relation. In compar-
ison with an equivalence relation, a congruence introduces a compatibility
property with the operations from A. More precisely, an equivalence relation
ρ is a congruence if for every σ ∈ Σ and every (x1, . . . , xa(σ)) ∈ Aa(σ),
(y1, . . . , ya(σ)) ∈ Aa(σ) the following conditions are satisfied: if (x1, y1) ∈
ρ, . . . , (xa(σ), ya(σ)) ∈ ρ and (x1, . . . , xa(σ)) ∈ dom(σA) then (y1, . . . , ya(σ)) ∈
dom(σA) and (σA(x1, . . . , xa(σ)), σA(y1, . . . , ya(σ))) ∈ ρ.

If ρ is a congruence on A then we can obtain the quotient algebra denoted
by A/ρ = (A/ρ, {σ̃A}σ∈Σ), where

dom(σ̃A) = {([x1]ρ, . . . , [xa(σ)]ρ) | (x1, . . . , xa(σ)) ∈ dom(σA)}
σ̃A([x1]ρ, . . . , [xa(σ)]ρ) = [σA(x1, . . . , xa(σ))]ρ

We observe that this definition does not depend on representatives. Really,
if (x1, y1) ∈ ρ, . . . , (xa(σ), ya(σ)) ∈ ρ and ([x1]ρ, . . . , [xa(σ)]ρ) ∈ dom(σ̃A) then
([y1]ρ, . . . , [ya(σ)]ρ) ∈ dom(σ̃A) and σ̃A([x1]ρ, . . . , [xa(σ)]ρ) = σ̃A([y1]ρ, . . . ,
[ya(σ)]ρ). We observe that the quotient algebra has the same signature as the
initial algebra.

In the final part of this section we specify several examples of algebras and
we will observe that for each case the operations satisfy certain identities.

Example 1.2.1. (Semigroup, Burris (1981))
A semigroup is an algebra (S, {·}) of signature (2) such that the following
property is satisfied:

x · (y · z) = (x · y) · z
for each x, y, z ∈ S. If this identity is satisfied then we say that the operation
is associative.
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Example 1.2.2. (Monoid, Burris (1981))
A monoid is an algebra (M, {·, e}) of signature (2, 0) such that the following
property is satisfied:

x · (y · z) = (x · y) · z
x · 1 = 1 · x = x

for each x, y, z ∈ M .

Example 1.2.3. (Group, Burris (1981))
A group is an algebra (G, {·,−1 , e}) of signature (2, 1, 0) such that the follow-
ing relations are satisfied:

x · (y · z) = (x · y) · z for each x, y, z ∈ G;
x · e = e · x = x for every x ∈ G;
x · x−1 = x−1 · x = e for every x ∈ G

A group is called a commutative group or Abelian group if x · y = y · x for
every x and y.

Example 1.2.4. (Ring, Burris (1981))
A ring is an algebra (R, {+, ·,−, e}) of signature (2, 2, 1, 0) such that the
following relations are satisfied:

(R, +,−, e) is an Abelian group;
(R, ·) is a semigroup;
x · (y + z) = (x · y) + (x · z) for each x, y, z ∈ R;
(x + y) · z = (x · z) + (y · z) for every x, y, z ∈ R.

A ring with unit is a ring containing an element denoted by 1 such that
x · 1 = 1 · x = x for every x.

Other classical algebraic structures such as module, semilattice, lattice,
Boolean algebra, Heyting algebra, cylindric algebras can be defined as Σ-
algebras (Burris (1981)).

Example 1.2.5. (Partial algebras of binary relations) We consider a nonempty
set S. If ρ1 ∈ 2S×S and ρ2 ∈ 2S×S then we define:

ρ1 ◦ ρ2 = {(x, y) ∈ S × S | ∃z ∈ S : (x, z) ∈ ρ1, (z, y) ∈ ρ2}
We remark that the following case can be encountered: ρ1 6= ∅, ρ2 6= ∅
and nevertheless ρ1 ◦ ρ2 = ∅. For some applications the empty relation is
not a useful one. In order to avoid this situation we introduce the mapping
prodS : dom(prodS) −→ 2S×S as follows:

dom(prodS) = {(ρ1, ρ2) ∈ 2S×S × 2S×S | ρ1 ◦ ρ2 6= ∅}
prodS(ρ1, ρ2) = ρ1 ◦ ρ2
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We denote by R(prodS) the set of all restrictions of the mapping prodS :

R(prodS) = {u | u ≺ prodS}
We observe that if u is an element of R(prodS) then the pair (2S×S , u) is a
partial algebra. This is a useful partial algebra in the domain of knowledge
representation by algebraic methods.

We remark now that although prodS is an associative operation and u ≺
prodS the operation u can be a non-associative one. Take for example S =
{x1, x2, x3, x4, x5} and the following elements of 2S×S :

ρ1 = {(x1, x2)}; ρ2 = {(x2, x3), (x2, x4)};
ρ3 = {(x3, x4)}; ρ4 = {(x4, x5)}; ρ5 = {(x2, x4)};
ρ6 = {(x2, x5)}; ρ7 = {(x1, x5)}

Let us consider the mapping u ≺ prodS , which is defined as follows:

dom(u) = {(ρ2, ρ3), (ρ5, ρ4), (ρ1, ρ6)}
u(ρ2, ρ3) = ρ5;u(ρ5, ρ4) = ρ6; u(ρ1, ρ6) = ρ7

We observe that u is not an associative operation. Really, u(ρ2, u(ρ3, ρ4)) is
not defined, whereas u(u(ρ2, ρ3), ρ4)) = ρ6.

1.3 Closed sets and partial subalgebras

In this section we treat a basic concept of algebra, which is encountered
in all classical algebraic structures under the name of substructure such as
subgroup, sublattice, subspace of a linear space and so an. In general, a
substructure of a structure is a subset which is itself a structure if we consider
the same operations as in the initial structure. The next definition states this
concept in the context of partial algebras.

Definition 1.3.1. Let A = (A, {σA}σ∈Σ) be a partial Σ-algebra. A sub-
set B ⊆ A is a closed set in A if for every σ ∈ Σ the following con-
dition is fulfilled: for every (x1, . . . , xa(σ)) ∈ dom(σA) ∩ Ba(σ) we have
σA(x1, . . . , xa(σ)) ∈ B.

Remark 1.3.1. The empty set is a closed set.

Example 1.3.1. We consider the monoid N = (N, {σN , τN}), which is a Σ-
algebra of signature (2, 0), Σ = {σ, τ} and σN : N×N −→ N is the operation
σN (x, y) = x + y and τN = 0. The pair B = (B, {σB , τB}), where B =
{0, 2, 4, . . .} is the set of even natural numbers and σB , τB are the restrictions
of σN and τN respectively, defines the submonoid B of N .

Definition 1.3.2. Let A = (A, {σA}σ∈Σ) be a partial Σ-algebra. If B ⊆ A
then the closure of B in A is the least closed set containing B and this set
is denoted by B.
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Remark 1.3.2. If B is a closed set the B = B.

The existence of the closure of a set is obtained immediately from the
next proposition.

Proposition 1.3.1. Let A = (A, {σA}σ∈Σ) be a partial Σ-algebra and a
family {Xi}i∈I such that Xi ⊆ A for every i ∈ I. If Xi is a closed set in A
for every i ∈ I then

⋂
i∈I Xi is a closed set.

Proof. Take (x1, . . . , xa(σ)) ∈ dom(σA) ∩ (
⋂

i∈I Xi)a(σ). Because Xi is a
closed set of A we have σA(x1, . . . , xa(σ)) ∈ Xi and this property is true for
every i ∈ I. It follows that σA(x1, . . . , xa(σ)) ∈

⋂
i∈I Xi, therefore

⋂
i∈I Xi is

a closed set.

Corollary 1.3.1. Let A = (A, {σA}σ∈Σ) be a partial Σ-algebra and B ⊆ A.
There is the least closed set B which includes B.

Proof. Take the family J of all closed sets such that each set includes B.
Applying Proposition 1.3.1 we obtain the closed set

⋂
X∈J X and this is the

least closed set which contains B.
The following useful proposition is obtained immediately:

Proposition 1.3.2. The following properties are verified:

• ∅ = ∅;
• If X ⊆ Y then X ⊆ Y ;
• X = X.

Proof. If X ⊆ Y then the least closed set Y which contains Y is a closed set
which contains X. But X is the least closed set which contains X therefore
X ⊆ Y . The set X is a closed set therefore by Remark 1.3.2 we have X = X.

Remark 1.3.3. The property X ∩ Y = X ∩ Y is not true. Really, let us con-
sider the Σ-algebra A = (A, {σA}) of signature (2), where A = N and
σA(x, y) = x + y. Take X = {1, 4} and Y = {2, 4}. We have X ∩ Y = {4},
therefore X ∩ Y = {4n}n≥1. On the other hand we have X = N \ {0},
Y = {2n}n≥1. Thus we have 2 ∈ X ∩ Y , but 2 /∈ X ∩ Y .

A concept which is frequently encountered in the theory of universal al-
gebras is given in the next definition.

Definition 1.3.3. (Burris (1981))
A mapping C : 2A −→ 2A is called a closure operator on A if for every
X, Y ∈ 2A the following properties are satisfied:

• (extensive) X ⊆ C(X);
• (idempotent) C(C(X)) = C(X);
• (monotone) X ⊆ Y =⇒ C(X) ⊆ C(Y ).

The following property is obtained immediately:
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Proposition 1.3.3. Let A = (A, {σA}σ∈Σ) be a partial Σ-algebra. The op-
erator Cl : 2A −→ 2A defined by Cl(X) = X, where X is the least closed set
containing X, is a closure operator.

Proof. Immediate by Proposition 1.3.2.
In what follows we are interested to give an algorithm to compute the

closure B of the set B. The next two propositions give such algorithms.

Proposition 1.3.4. Let be B ⊆ A, B 6= ∅. If we consider the sequence
{

B0 = B

Bn+1 = Bn ∪ { σA(x) | σ ∈ Σ, x ∈ dom(σA) ∩B
a(σ)
n }, n ≥ 0

(1.3)

then {Bn}n≥0 is an increasing sequence and B =
⋃

n≥0 Bn.

Proof. We denote C =
⋃

n≥0 Bn. From (1.3) we have Bn ⊆ Bn+1 for
every n. Let us verify that C is a closed set. Take (x1, . . . , xa(σ)) ∈ Ca(σ) ∩
dom(σA). There are n1, . . . , na(σ) ∈ N such that xj ∈ Bnj

for j = 1, . . . , a(σ).
Because {Bn}n≥0 is an increasing sequence we have (x1, . . . , xa(σ)) ∈ B

a(σ)
k ,

where k = max{n1, . . . , na(σ)}. From (1.3) we deduce that σA(x1, . . . , xa(σ)) ∈
Bk+1, therefore σA(x1, . . . , xa(σ)) ∈ C. In order to show that C is the least
closed set which contains B we consider an arbitrary set Z such that

Z ⊇ B
Z is a closed set

and we prove that C ⊆ Z. We prove by induction on i ≥ 0 that

Bi ⊆ Z (1.4)

For i = 0 the inclusion (1.4) is true because B0 = B and B ⊆ Z. Suppose
(1.4) is true for i = m and take x ∈ Bm+1. Two cases are possible:

• x ∈ Bm.
By the inductive assumption we have x ∈ Z.

• x ∈ Bm+1 \Bm.
There are σ ∈ Σ and (x1, . . . , xa(σ)) ∈ B

a(σ)
m ∩ dom(σA) such that x =

σA(x1, . . . , xa(σ)). By the inductive assumption we have Bm ⊆ Z. On the
other hand Z is a closed set, therefore x ∈ Z.

Now the proposition is proved because from (1.4) we have
⋃

n≥0 Bn ⊆ Z.
An useful property is stated in the following proposition:

Proposition 1.3.5. Let be B ⊆ A, B 6= ∅. If we consider the sequence
{

C0 = B

Cn+1 = B ∪ { σA(x) | σ ∈ Σ, x ∈ dom(σA) ∩ C
a(σ)
n }, n ≥ 0

(1.5)

then {Cn}n≥0 is an increasing sequence and B =
⋃

n≥0 Cn.
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Proof. It is easy to verify by induction on n that Cn = Bn for every n ≥ 0,
where the sequence {Bn}n≥0 is defined in (1.3).
Obviously we have C0 = B0. We suppose Cn = Bn and we prove that Cn+1 =
Bn+1. Take an element x ∈ Cn+1. The following two cases are possible:

• x ∈ B
In this case x ∈ Bn+1 because B = B0 ⊆ Bn+1.

• x = σA(x1, . . . , xa(σ)) for some σ ∈ Σ and (x1, . . . , xa(σ)) ∈ dom(σA) ∩
C

a(σ)
n . By the inductive assumption we have Cn = Bn and therefore

(x1, . . . , xa(σ)) ∈ dom(σA) ∩B
a(σ)
n . From (1.3) we obtain x ∈ Bn+1.

Now we take x ∈ Bn+1. By similarity with the previous analysis we have also
two cases:

• x ∈ B
In this case x ∈ Cn+1 because B ⊆ Cn+1.

• x = σA(x1, . . . , xa(σ)) for some σ ∈ Σ and (x1, . . . , xa(σ)) ∈ dom(σA) ∩
B

a(σ)
n . By the inductive assumption we have Bn = Cn and therefore

(x1, . . . , xa(σ)) ∈ dom(σA) ∩ C
a(σ)
n . From (1.5) we obtain x ∈ Cn+1.

By Proposition 1.3.4 we have B =
⋃

n≥0 Bn, therefore B =
⋃

n≥0 Cn because
Bn = Cn for every n ≥ 0 and the proposition is proved.

Definition 1.3.4. Let A = (A, {σA}σ∈Σ) be a partial Σ-algebra. If B ⊆ A
and B = A then we say that the partial Σ-algebra A is generated by B.

Definition 1.3.5. Let us consider a partial Σ-algebra A = (A, {σA}σ∈Σ). A
partial subalgebra of A is a pair B = (B, {σB}σ∈Σ), where

- B ⊆ A is a closed set;
- for each σ ∈ Σ we have dom(σB) = Ba(σ) ∩ dom(σA) and

σB(x1, . . . , xa(σ)) = σA(x1, . . . , xa(σ))

for every (x1, . . . , xa(σ)) ∈ dom(σB)

If C ⊆ A is a nonempty set and take B = C the we obtain the partial
subalgebra of A generated by C.

We remark that a partial subalgebra of a partial Σ-algebra is itself a
partial Σ-algebra with respect to the restrictions of the operations σA to the
elements of B.

The next proposition states a result which gives a method by which we
prove some property for a given set of elements. We denote by P some prop-
erty. If an element x has the property P then we denote this fact by P(x).

Proposition 1.3.6. (algebraic induction)
Let A = (A, {σA}σ∈Σ) be a partial Σ-algebra, a subset B ⊆ A and a property
P. If
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• (initial step) for every x ∈ B we have P(x);
• (inductive step) for every σ ∈ Σ and every (x1, . . . , xa(σ)) ∈ dom(σA)
from P (xi) for i = 1, . . . , a(σ) we deduce P (σA(x1, . . . , xa(σ)))

then for every x ∈ B we have P(x).

Proof. We denote D = {x ∈ A | P(x)}. From the initial step we have
B ⊆ D and from the inductive step we deduce that D is a closed set. But B
is the least subset of A which is a closed set and includes B, therefore B ⊆ D.

Remark 1.3.4. The algebraic principle is known in literature also as struc-
tural induction. Various books (Rudeanu (1991), Burmeister (2002)) treat
this fundamental concept.

1.4 Morphisms of partial algebras

The concept of homomorphism is a central concept in algebra. A lot of prop-
erties are based on this concept. For the general case of partial algebras this
concept is defined as follows.

Definition 1.4.1. We consider the partial Σ-algebras A=(A, {σA}σ∈Σ) and
B=(B, {σB}σ∈Σ). We say that the mapping h : A −→ B is a homo-
morphism or a morphism of partial algebras from A to B if for every
(x1, . . . , xa(σ)) ∈ dom(σA) the following conditions are fulfilled:

• (h(x1), . . . , h(xa(σ)) ∈ dom(σB)
• σB(h(x1), . . . , h(xa(σ))) = h(σA(x1, . . . , xa(σ)))

A bijective homomorphism is an isomorphism.

In order to give an intuitive representation of this concept we define the
product mapping

ha(σ) : Aa(σ) −→ Ba(σ)

by ha(σ)(x1, . . . , xa(σ)) = (h(x1), . . . , h(xa(σ))).
Because h is a homomorphism of partial algebras, in the diagram of Figure

1.2a) we have the following property: if we are able to go along the path
(Aa(σ), A, B) then we are able also to go along the path (Aa(σ), Ba(σ), B) and
we obtain the same result.

Proposition 1.4.1. (Rasiowa and Sikorski (1963)) We consider the partial
Σ-algebras A = (A, {σA}σ∈Σ), B = (B, {σB}σ∈Σ) and C = (C, {σC}σ∈Σ). If
h : A −→ B and g : B −→ C are morphisms then the superposition g ◦ h is
a morphism from A to C.
Proof.

The morphisms h and g are represented in Figure 1.2b). Because h is
a morphism the following conditions are fulfilled for every (x1, . . . , xa(σ)) ∈
dom(σA):
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Ba(σ) -
σB

B

Aa(σ) -σA

A

? ?
ha(σ) h

a)

Ba(σ) -
σB

B

Aa(σ) -σA

A

? ?
ha(σ) h

Ca(σ) -
σC

C

ga(σ) g

? ?

b)

Fig. 1.2. Morphism diagrams

• (h(x1), . . . , h(xa(σ)) ∈ dom(σB)
• σB(h(x1), . . . , h(xa(σ))) = h(σA(x1, . . . , xa(σ)))

But g is also a morphism of partial algebras, therefore

• (g(h(x1)), . . . , g(h(xa(σ))) ∈ dom(σC)
• σC(g(h(x1)), . . . , g(h(xa(σ)))) = g(σB(h(x1), . . . , h(xa(σ))))

It follows that for every (x1, . . . , xa(σ)) ∈ dom(σA) we have

• (g ◦ h(x1), . . . , g ◦ h(xa(σ)) ∈ dom(σC)
• σC(g ◦ h(x1), . . . , g ◦ h(xa(σ))) = g ◦ h(σA(x1, . . . , xa(σ)))

because g(σB(h(x1), . . . , h(xa(σ)))) = g(h(σA(x1, . . . , xa(σ)))).
The properties from the next proposition allow us to identify several prop-

erties on particular cases such that an economy of proofs are obtained.

Proposition 1.4.2. (Căzănescu (1975))
Let us consider the partial Σ-algebras A=(A, {σA}σ∈Σ) and B=(B, {σB}σ∈Σ)
and a morphism h : A −→ B.

1) If Y ⊆ B is a closed set in B then h−1(Y ) is a closed set in A.
2) If A is an algebra and X ⊆ A is a closed set in A then h(X) is a
closed set in B.
3) If X ⊆ A then h(X) ⊆ h(X). If A is an algebra then h(X) = h(X).

Proof.
1) Consider a closed set Y ⊆ B. Take an arbitrary element σ ∈ Σ and

(x1, . . . , xa(σ)) ∈ dom(σA) such that x1, . . . , xa(σ) ∈ h−1(Y ). Because h is a
morphism we have (h(x1), . . . , h(xa(σ))) ∈ dom(σB) and

σB(h(x1), . . . , h(xa(σ))) = h(σA(x1, . . . , xa(σ))) (1.6)
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On the other hand Y is a closed set in B, therefore σB(h(x1), . . . , h(xa(σ))) ∈
B because h(x1), . . . , h(xa(σ)) ∈ Y and (h(x1), . . . , h(xa(σ))) ∈ dom(σB).
From (1.6) we obtain h(σA(x1, . . . , xa(σ))) ∈ Y therefore σA(x1, . . . , xa(σ)) ∈
h−1(Y ) and thus the first property is proved.

2) In order to verify the second property we take σ ∈ Σ and y1, . . . , ya(σ) ∈
h(X). There are x1, . . . , xa(σ) ∈ X such that y1 = h(x1), . . ., ya(σ) = h(xa(σ)).
We have dom(σA) = Aa(σ) because A is an algebra. The mapping h is a
morphism therefore (h(x1), . . . , h(xa(σ))) ∈ dom(σB) and

σB(h(x1), . . . , h(xa(σ))) = h(σA(x1, . . . , xa(σ))) (1.7)

But X is a closed set in A, therefore σA(x1, . . . , xa(σ))) ∈ X and thus
h(σA(x1, . . . , xa(σ)))) ∈ h(X). Taking into account the fact that h(xi) = yi,
from (1.7) we obtain σB(y1, . . . , ya(σ)) ∈ h(X).

3) In order to prove the last property we observe that based on (1.1) and
(1.2) we have

X ⊆ h−1(h(X)) ⊆ h−1(h(X)) (1.8)

By the first property already proved, the set h−1(h(X)) is a closed set in A
because h(X) is a closed set in B. From (1.8) and the fact that X is the least
closed set which contains X we obtain X ⊆ h−1(h(X)) therefore h(X) ⊆
h(X). If A is an algebra then h(X) is a closed set in B. But h(X) ⊇ h(X),
therefore h(X) ⊇ h(X) because h(X) is the least closed set which contains
h(X).

The concept introduced in the next definition as well as the concept of
morphisms of partial algebras are useful to study a method of knowledge
representation based on stratified graphs (Ţăndăreanu (2000a)).

Definition 1.4.2. Let A=(A, {σA}σ∈Σ) be a partial Σ-algebra. The set B ⊆
A is an initial set of A if for every σ ∈ Σ and every (x1, . . . , xa(σ)) ∈
dom(σA) the following condition is satisfied:

σA(x1, . . . , xa(σ)) ∈ B =⇒ {x1, . . . , xa(σ)} ⊆ B

If this condition is satisfied then we write B ∈ Initial(A).

Example 1.4.1. Consider the σ-algebra N1 = (N,σN ) of signature (2) and
σN (x, y) = x + y. Take B = {2, 4, 8} ⊆ N . We have σN (2, 6) = 8 ∈ B but
6 /∈ N . Thus B /∈ Initial(N1).

Example 1.4.2. Let us consider σ-algebra N2 = (N,σN ) of signature (1) and
σN (x) = x+2. Take B = {2k}k≥0 ⊆ N . If σN (m) ∈ B then m+2 is an even
number therefore m ∈ B. Thus B ∈ Initial(N2).

Proposition 1.4.3. (Căzănescu (1975)) If Bi ∈ Initial(A) for each i ∈ I
then

⋃
i∈I Bi ∈ Initial(A) and

⋂
i∈I Bi ∈ Initial(A).
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Proof. Consider an arbitrary element σ ∈ Σ and (x1, . . . , xa(σ)) ∈ dom(σA)
such that σA(x1, . . . , xa(σ)) ∈

⋃
i∈I Bi. There is k ∈ I such that σA(x1, . . . ,

xa(σ)) ∈ Bk. But Bk ∈ Initial(A) therefore x1, . . . , xa(σ) ∈ Bk. It follows
that x1, . . . , xa(σ) ∈

⋃
i∈I Bi. A similar proof can be given for intersection.

Finally, we can define a concept which is used in the next chapter.

Definition 1.4.3. The Σ-algebra A=(A, {σA}σ∈Σ) is free generated by
M ⊆ A if for every Σ-algebra B=(B, {σB}σ∈Σ) and every mapping f : M −→
B there exists a morphism h : A −→ B, uniquely determined, such that f ≺ h.

An expressive graphical representation of this condition is given in Figure
1.3, where i denotes the inclusion mapping: i(x) = x for every x ∈ M . The
condition can be stated also as follows: every mapping f : M −→ B can be
uniquely extended to a morphism h : A −→ B of Σ-algebras.

M - A

B

?

Q
Q

Q
Q

QQs

i

h
f

Fig. 1.3. The extension of f

Example 1.4.3. Consider the σ-algebra N = (N, σN ), where σN (x) = x + 1.
Take M = {0}. We verify now the following two properties:

• N is generated by M
• N is free generated by M

Applying Proposition 1.3.4 we obtain:
{

M0 = {0}
Mn = {0, 1, . . . , n} (1.9)

We verify by induction (1.9). For n = 0 this relation is true. Suppose (1.9) is
true for n. Based on (1.3) we obtain

Mn+1 = Mn ∪ {n + 1} = {0, 1, . . . , n + 1}
therefore (1.9) is true for n + 1.
It follows that

M =
⋃

n≥0

Mn = N

therefore the closure of M is N .
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Let us consider the graphical representation from Figure 1.3, where A =
N and B = (B, σB) is a σ-algebra of signature (1). Consider the mapping
h : N −→ B defined as follows:





h(0) = f(0)
h(1) = σB(f(0))
h(2) = σB(σB(f(0)))
. . . . . . . . . . . .
h(n + 1) = σn+1

B (f(0))

The mapping h is a morphism of σ-algebras. Really, σB(h(n)) = σn+1
B (f(0))

and h(σN (n)) = h(n+1) = σn+1
B (f(0)) therefore σB(h(n)) = h(σN (n)). Thus

the mapping f can be extended to a morphism of σ-algebras.
Suppose g : N −→ B is a morphism of σ-algebras such that f ≺ g. It

follows that g(0) = f(0) = h(0). We suppose g(n) = h(n) and we prove that
g(n + 1) = h(n + 1). Let us use the fact that g is a morphism. We obtain

g(n + 1) = g(σN (n)) = σB(g(n)) = σB(h(n)) = h(σN (n)) = h(n + 1)

Thus g = h and N is free generated by {0}. This example is used also in the
next chapter.



2. Peano algebras

In this chapter we introduce the concept of Peano algebra, we show that
every Peano algebra is a free generated algebra, we prove the existence of the
Peano algebras and we give a method to build such structures.

2.1 Definitions and intermediate results

We begin this section by defining the concept of Peano algebra over some set.
In the remainder of this section we establish the prerequisites for the next
sections of this chapter.

Definition 2.1.1. A Σ-algebra A=(A, {σA}σ∈Σ) is a Peano Σ-algebra
over M ⊆ A if the following conditions are satisfied:

1) M = A;
2) σA(x1, . . . , xa(σ)) /∈ M for every σ ∈ Σ and every x1, . . . , xa(σ) ∈ A;
3) for every σ, τ ∈ Σ and every x1, . . . , xa(σ) ∈ A, y1, . . . , ya(τ) ∈ A we
have

σA(x1, . . . , xa(σ)) = τA(y1, . . . , ya(τ)) =⇒ σ = τ, xi = yi, i = 1, . . . , a(σ)

If Σ = {σ} is a singleton then the corresponding structure is called shortly
Peano σ-algebra.

Directly from this definition we remark the following aspects:

• A Peano algebra is a total algebra and not a partial one.
• The support set of a Peano algebra is generated by some of its subsets.
• The elements of the set M generating the support set A are viewed as

”atomic” elements. This means that these elements can not be decom-
posed into some elements by means of the algebraic operations. In other
words none element of M can be obtained by composing other elements
of the support set.

• Each element of the set A \M is uniquely written as σA(x1, . . . , xa(σ)).
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Remark 2.1.1. Let us consider again the σ-algebra N = (N,σN ), where
σN (x) = x + 1, taken in Example 1.4.3. Let us verify that N is a Peano
σ-algebra over M = {0}.

1) The condition M = N is true as it was shown in Example 1.4.3.
2) For every n ∈ N we have σN (n) /∈ M because n + 1 ≥ 1.
3) For every n, k ∈ N if σN (n) = σN (k) then n + 1 = k + 1 therefore

n = k.
If we choose M = {0, 1} then the first condition is verified as well as the third
condition. But 1 ∈ M and 1 = σN (0), therefore the second condition is not
verified.

Remark 2.1.2. An interesting aspect connected by the concept of Peano alge-
bra is discussed in Burris (1981). We remember he following axioms, known
as Peano’s axioms for natural numbers:

1) 0 is a natural number.
2) Every natural number a has a successor, denoted by Sa.
3) Distinct natural numbers have distinct successors: n = k if and only
if Sn = Sk.
4) No natural number has 0 as its successor.
5) We denote by Q a property for natural numbers. If Q(0) is true and
from Q(n) we can prove Q(n+1) then Q will hold for all natural numbers.

It is not difficult to observe that all these properties are encountered in the
context of Peano algebras and this fact can explain the name of the structure
introduced in Definition 2.1.1. As a matter of fact, we can immediate identify
the property M = N for M = {0} and the extension of the Peano’s axiom
to the conditions from Definition 2.1.1. Moreover, the last axiom of Peano
postulates the proof method known as mathematical induction (induction
over the naturals). This method is encountered in the theory of universal
algebras as algebraic induction.

The property stated in the next lemma gives a basic result used to prove
a fundamental property of the Peano Σ-algebras.

Lemma 2.1.1. Let A=(A, {σA}σ∈Σ) be a Peano Σ-algebra over M . We con-
sider a set B and for each σ ∈ Σ we take a mapping

fσ : Ba(σ) ×Aa(σ) −→ B

For every mapping f : M −→ B there is a mapping h : A −→ B, uniquely
determined, such that

f ≺ h (2.1)

h(σA(x1, . . . , xa(σ))) = fσ(h(x1), . . . , h(xa(σ)), x1, . . . , xa(σ)) (2.2)

for every σ ∈ Σ and x1, . . . , xa(σ) ∈ A.
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M - A

B

?

Q
Q

Q
Q

QQs

i

h
f

Aa(σ)

Ba(σ) ×Aa(σ)

?

ha(σ) × ia(σ)

σA¾

¾
fσ

Fig. 2.1. Commutative diagram

Proof. The property stated in this lemma can be restated as we can
view in Figure 2.1: every mapping f can be uniquely extended to h such that
the ”rectangular” diagram is commutative.

Because M = A, using (1.5) we obtain

A =
⋃

n≥0

Mn (2.3)

where {Mn}n≥0 is the increasing sequence given by
{

M0 = M

Mn+1 = M ∪ { σA(x) | σ ∈ Σ, x ∈ M
a(σ)
n }, n ≥ 0

(2.4)

For n ≥ 0 we define inductively the mappings fn : Mn −→ val(fn) as follows:

• f0 = f ;
• fn+1(x) = f(x) if x ∈ M
• fn+1(x) = fσ(fn(x1), . . . , fn(xa(σ)), x1, . . . , xa(σ)) if x1, . . . , xa(σ) ∈ Mn

and x = σA(x1, . . . , xa(σ))

For the sequence {fn}n≥0 we prove the following properties:

1) {fn}n≥0 is a well defined sequence

First we prove that for each natural number n ≥ 0 we have the following
properties:

M ∩ { σA(x) | σ ∈ Σ, x ∈ dom(σA) ∩Ma(σ)
n } = ∅ (2.5)

val(fn) ⊆ B (2.6)

The relation (2.5) is immediately obtained from Definition 2.1.1. The re-
lation (2.6) can be verified by induction on n. For n = 0 this relation is
true because f0 = f and val(f) ⊆ B. Suppose val(fn) ⊆ B and take
y ∈ val(fn+1). There exist σ ∈ Σ and x1, . . . , xa(σ) ∈ Mn such that
y = fn+1(σA(x1, . . . , xa(σ))). But fn(x1), . . . , fn(xa(σ)) ∈ val(fn) and by the
inductive assumption val(fn) ⊆ B. It follows that

(fn(x1), . . . , fn(xa(σ)), x1, . . . , xa(σ)) ∈ Ba(σ) ×Aa(σ)
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therefore fσ(fn(x1), . . . , fn(xa(σ)), x1, . . . , xa(σ)) is defined and moreover, it
is an element of B. But y = fn+1(σA(x1, . . . , xa(σ))) and using the definition
of fn+1 we obtain y ∈ B.
By Definition 2.1.1 we know that every element x ∈ A\M is uniquely written
as σA(x1, . . . , xa(σ)) for some σ ∈ Σ and x1, . . . , xa(σ) ∈ A. Taking into
account the relations (2.5) and (2.6) we observe that the sequence {fn}n≥0

is well defined.

2) fn ≺ fn+1 for every n ≥ 0

For n = 0 this property is true by the definition of f0 and f1. Suppose that
fn ≺ fn+1. Let us prove that fn+1 ≺ fn+2. Take x ∈ Mn+1. If x ∈ M
then fn+2(x) = f(x) = fn+1(x). Otherwise, there is σ ∈ Σ and there are
x1, . . . , xa(σ) ∈ Mn such that x = σA(x1, . . . , xa(σ)). We have x ∈ Mn+1 ⊆
Mn+2 and applying the definition for the sequence {fn}n≥0 we obtain:

fn+1(x) = fσ(fn(x1), . . . , fn(xa(σ)), x1, . . . , xa(σ)) (2.7)

fn+2(x) = fσ(fn+1(x1), . . . , fn+1(xa(σ)), x1, . . . , xa(σ)) (2.8)

But x1 ∈ Mn, . . ., xa(σ) ∈ Mn and by the inductive assumption we have
fn ≺ fn+1. It follows that

fn+1(x1) = fn(x1)

. . . . . .

fn+1(xa(σ)) = fn(xa(σ))

and from (2.7) and (2.8) we obtain fn+2(x) = fn+1(x).
We define now the mapping h : A −→ B by h(x) = fn(x) if x ∈ Mn. This

is a well defined mapping because we have (2.3) and fn ≺ fn+1.
We observe that for every x ∈ M = M0 we have h(x) = f0(x) = f(x),
therefore we have (2.1).
Let us take an arbitrary element σ ∈ Σ and x1, . . . , xa(σ) ∈ A. From (2.3)
and the monotony of the sequence {Mn}n≥0 we deduce that there is k ∈ N
such that x1, . . . , xa(σ) ∈ Mk. It follows that σA(x1, . . . , xa(σ)) ∈ Mk+1 and
thus

h(σA(x1, . . . , xa(σ))) = fk+1(σA(x1, . . . , xa(σ))) =

fσ(fk(x1), . . . , fk(xa(σ)), x1, . . . , xa(σ)) =

fσ(h(x1), . . . , h(xa(σ)), x1, . . . , xa(σ))

and therefore we have (2.2).
Let us prove that h is uniquely determined. We suppose that there is

g : A −→ B such that (2.1) and (2.2) are satisfied. We verify by algebraic
induction that h(x) = g(x) for every x ∈ A. We have h(x) = g(x) for every
x ∈ M . We take σ ∈ Σ and x1, . . . , xa(σ) ∈ A such that h(xi) = g(xi) for
i = 1, . . . , a(σ). Using (2.2) we have
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g(σA(x1, . . . , xa(σ))) = fσ(g(x1), . . . , g(xa(σ)), x1, . . . , xa(σ)) =

fσ(h(x1), . . . , h(xa(σ)), x1, . . . , xa(σ)) = h(σA(x1, . . . , xa(σ)))

and the proposition is proved.

Proposition 2.1.1. If A=(A, {σA}σ∈Σ) is a Peano Σ-algebra over M then
A is a Σ-algebra free generated by M .

Proof. Let B = (B, {σB}σ∈Σ) be a Σ-algebra and a mapping f : M −→ B.
For each σ ∈ Σ we define the mapping fσ : Ba(σ) ×Aa(σ) −→ B as follows:

fσ(y1, . . . , ya(σ), x1, . . . , xa(σ)) = σB(y1, . . . , ya(σ))

By Lemma 2.1.1 we deduce that f can be uniquely extended to the mapping
h such that (2.2) is satisfied. Based on this relation we obtain

h(σA(x1, . . . , xa(σ))) = fσ(h(x1), . . . , h(xa(σ)), x1, . . . , xa(σ)) =

σB(h(x1), . . . , h(xa(σ)))

therefore h is a morphism.

2.2 A method to build Peano algebras

The next proposition establishes the existence of the Peano Σ-algebras over
some set and based on the results treated in the previous section a method
to build such structures is obtained.

Proposition 2.2.1. For every sets M and Σ such that Σ ∩ M = ∅ there
exists a Peano Σ-algebra over M .

Proof. We consider the Σ-algebra K = (K, {σK}σ∈Σ), where the support
set K is the set (Σ ∪M)+ of all nonempty words over the alphabet Σ ∪M
and for each σ ∈ Σ:

σK(x1, . . . , xa(σ)) = σx1 . . . xa(σ)

Take A = M , the closure of M in K and consider the subalgebra A =
(A, {σA}σ∈Σ) of the Σ-algebra K. Let us prove that A is a Peano Σ-algebra
over M . To do this we have to verify the conditions specified in Definition
2.1.1. The first condition is satisfied by definition of the set A. In order to
verify the second condition, we suppose the contrary: there is σ ∈ Σ and
there are x1, . . . , xa(σ) ∈ A such that σA(x1, . . . , xa(σ)) ∈ M . It follows that
σx1 . . . xa(σ) ∈ M , therefore a(σ) = 0 and σ ∈ M . This is not possible because
Σ ∩M = ∅.
Let us prove that

pα = qβ, p ∈ M, q ∈ A,α, β ∈ (Σ ∪M)+ =⇒ q ∈ M
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By contrary we suppose that q ∈ A\M . Because A is generated by M we have
q = σK(z1, . . . , za(σ)) for some σ ∈ Σ and z1, . . . , za(σ) ∈ A. But pα = qβ,
therefore pα = σz1 . . . za(σ)β. It follows that p = σ, which is not true because
Σ ∩M = ∅.
Now we prove by algebraic induction that for each x ∈ A the following
property Q is true:

xα = yβ, y ∈ A,α, β ∈ (Σ ∪M)+ =⇒ x = y, α = β

For x ∈ M , as we proved above we have y ∈ M . Thus x = y and α = β. In
order to verify the inductive step we take σ ∈ Σ and consider x1, . . . , xa(σ)

such that Q(x1), . . ., Q(xa(σ)) are true. Let us prove that Q(σA(x1, . . . , xa(σ)))
is also true. In order to verify this property we suppose that

σA(x1, . . . , xa(σ))α = yβ

where y ∈ A and α, β ∈ (Σ ∪M)+. It follows that

σx1 . . . xa(σ)α = yβ

therefore y ∈ A\M . This implies that y = τA(y1, . . . , ya(τ)) for some elements
y1, . . . , ya(τ) ∈ A. It follows that

σx1 . . . xa(σ)α = τy1 . . . ya(τ)β

therefore σ = τ and x1 . . . xa(σ)α = y1 . . . ya(τ)β. Taking into consideration
Q(x1), . . ., Q(xa(σ)) and the fact that y1, . . . , ya(σ) ∈ A we obtain xi = yi for
i = 1, . . . , a(σ) and α = β. Thus y = τA(y1, . . . , ya(τ)) = σA(x1, . . . , xa(σ)),
therefore Q(σA(x1, . . . , xa(σ))) is true. By algebraic induction Q(x) is true for
each x ∈ A.
Now we verify the last condition from Definition 2.1.1. Suppose that

σA(x1, . . . , xa(σ)) = τA(y1, . . . , ya(τ))

for some σ, τ ∈ Σ and x1, . . . , xa(σ), y1, . . . , ya(τ) ∈ A. It follows that
σx1 . . . xa(σ)) = τy1 . . . ya(τ)), therefore σ = τ and x1 . . . xa(σ) = y1 . . . ya(τ).
But Q(x1), . . ., Q(xa(σ)) are true and y1, . . . , ya(τ) ∈ A, therefore x1 = y1,
. . ., xa(σ) = ya(σ).

Remark 2.2.1. The proof of the previous proposition relieves the following
method by which we obtain a Peano Σ-algebra over the set M :

- Take the Σ-algebra K = (K, {σK}σ∈Σ), where K = (Σ ∪M)+ and for
each σ ∈ Σ:

σK(x1, . . . , xa(σ)) = σx1 . . . xa(σ)

- Take A = M , the closure of M in K and consider the subalgebra A =
(A, {σA}σ∈Σ) of the Σ-algebra K. A is a Peano Σ-algebra over M .
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2.3 The Peano algebras over the same set are
isomorphic

In the remaining of this chapter we establish a connection between the Peano
Σ-algebra specified in Remark 2.2.1 and other Peano Σ-algebras over the
same set.

Proposition 2.3.1. If A = (A, {σA}σ∈Σ) and B = (B, {σB}σ∈Σ) are Σ-
algebras free generated by the set M then there is an isomorphism of Σ-
algebras h : A −→ B such that h(x) = x for every x ∈ M .

Proof. We have M ⊆ A and M ⊆ B because A and B are free generated
by M .

M - A

B

?

Q
Q

Q
Q

QQs

i1

h1

f1

M - B

A

?

Q
Q

Q
Q

QQs

i2

h2

f2

Fig. 2.2. Extensions for f1 and f2

We have the situation represented in Figure 2.2 because:

- We take the mapping f1 : M −→ B defined by f1(x) = x for every
x ∈ M . But A is free generated by M and B is a Σ-algebra therefore the
mapping f1 can be extended to a morphism h1 : A −→ B.

- Similarly, from the mapping f2 : M −→ A defined by f2(x) = x for every
x ∈ M we obtain a morphism h2 : B −→ A such that f2 ≺ h2.

M - A

A

?

Q
Q

Q
Q

QQs

i

h2 ◦ h1

f2

M - A

A

?

Q
Q

Q
Q

QQs

i

1A

f2

Fig. 2.3. Two extensions of f2

Applying Proposition 1.4.1 we deduce that h2◦h1 : A −→ A is a morphism
of Σ-algebras and h2 ◦ h1(x) = x for every x ∈ M , therefore f2 ≺ h2 ◦ h1.
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On the other hand the mapping 1A : A −→ A is a morphism of Σ-algebras.
Thus we have the representation from Figure 2.3. But the mapping f2 is
uniquely extended to a morphism therefore h2 ◦h1 = 1A. Similarly, changing
the algebra A with B, we deduce h1 ◦ h2 = 1B . By Proposition 1.1.1 we
deduce that h1 and h2 are bijective mappings. Moreover, f1 ≺ h1, therefore
h1(x) = x for every x ∈ M . Thus h1 : A −→ B is an isomorphism of Σ-
algebras.

Corollary 2.3.1. Two Peano Σ-algebras A = (A, {σA}σ∈Σ) and B =
(B, {σB}σ∈Σ) over M are isomorphic algebras. Moreover, there is an iso-
morphism h : A −→ B such that 1M ≺ h.

Proof. By Proposition 2.1.1 the structures A and B are Σ-algebras free
generated by M . Now we apply Proposition 2.3.1.

Remark 2.3.1. As a conclusion, if we build the Peano Σ-algebra over M
by the method described in Remark 2.2.1 then the structure obtained is
isomorphic with every Peano Σ-algebra over the same set M .

Remark 2.3.2. In the theory of labeled stratified graphs and semantic schemas
is encountered frequently a particular Peano algebra. This is the case of a
singleton Σ = {σ}. If M is a finite and nonempty set such that σ /∈ M then
in the first step the following sequence {Mn}n≥0 is obtained:

{
M0 = M
Mn+1 = Mn ∪ { σuv | u ∈ Mn, v ∈ Mn}, n ≥ 0

In the second step we take A =
⋃

n≥0 Mn as support set and the operation
σA(u, v) = σuv. We obtain the σ-algebra A = (A, σA). This structure is the
Peano σ-algebra over M , which is isomorphic with every Peano σ-algebra
over the same set M .



3. Lattices and semilattices

The concept of lattice is frequently encountered both in theoretical computer
science and in applied computer science but not only. There are two equivalent
ways to define this concept: as a poset satisfying additional conditions and
by means of the universal algebras. Several computation rules in a lattice
are briefly exposed. Finally a concise definition of a very fruitful structure,
Boolean algebra, is presented and the basic properties of this structure are
described.

3.1 From poset to lattice

Taking the poset as starting point we define in this section the concept of
lattice.

Definition 3.1.1. A poset (L,≤) is a lattice if for every x, y ∈ L there
exists sup{x, y} and inf{x, y}.
The above definition allows us to introduce two binary operations on L as
we show in the next definition.

Definition 3.1.2. If (L,≤) is a lattice then we define the following binary
operations, named the join (or union or disjunction) and meet (or inter-
section or conjunction) operations respectively:

∨ : L× L −→ L, x ∨ y = sup{x, y} (3.1)

∧ : L× L −→ L, x ∧ y = inf{x, y} (3.2)

These operations are well defined because the least upper bound and the
greatest lower bound are uniquely determined. We observe that they are
”total” operations.

Proposition 3.1.1. The following identities are satisfied in a lattice:

x ∨ (y ∨ z) = sup{x, y, z} (3.3)

x ∧ (y ∧ z) = inf{x, y, z} (3.4)
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Proof. By the definition of the join operation we have

x ∨ (y ∨ z) = sup{x, y ∨ z}
therefore x ≤ x ∨ (y ∨ z). We observe that we have also

y ≤ y ∨ z ≤ x ∨ (y ∨ z)

z ≤ y ∨ z ≤ x ∨ (y ∨ z)

therefore x ∨ (y ∨ z) is an upper bound of {x, y, z}.
Let us consider another upper bound t0 of the set {x, y, z}. But y ∨ z =
sup{y, z} and t0 is an upper bound of {y, z}, therefore y ∨ z ≤ t0 because
y∨z is the least upper bound of {y, z}. It follows that t0 is is an upper bound
of the set {x, y∨ z} and x∨ (y∨ z) ≤ t0. In conclusion, x∨ (y∨ z) is the least
upper bound of the set {x, y, z}. In other words, we have (3.3). Similar we
prove (3.4).

Proposition 3.1.2. In a lattice (L,≤) the operations ∨ and ∧ satisfy the
following identities:

x ∨ y = y ∨ x, x ∧ y = y ∧ x (commutativity) (3.5)

(x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity) (3.6)

x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x (absorption) (3.7)

Proof. The relations 3.5 are obviously true by (3.1) and (3.2). Based on
Proposition 3.1.1 we observe that x ∨ (y ∨ z) = sup{x, y, z} = sup{z, x, y} =
z ∨ (x ∨ y) = (x ∨ y) ∨ z. A similar proof is obtained for the associativity of
the meet operation, therefore (3.6) is verified.
In order to prove (3.7) we observe that

x ≤ x ∨ (x ∧ y) (3.8)

because x ∨ (x ∧ y) = sup{x, x ∧ y}. But x ∧ y ≤ x therefore x is an upper
bound for the set {x, x ∧ y}. Thus we can write

x ∨ (x ∧ y) ≤ x (3.9)

From (3.8) and (3.9) we obtain x∧ (x∨ y) = x. The other relation from (3.7)
is proved in a similar manner.

We observe the duality of the relations (3.5), (3.6) and (3.7). According
to these relations we remark that the meet and join operations are dual.
Moreover, based on (3.6) we can write without any confusion

x ∨ y ∨ z = sup{x, y, z} (3.10)

and
x ∧ y ∧ z = inf{x, y, z} (3.11)

The next property extends Proposition 3.1.1.
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Proposition 3.1.3. For every finite and nonempty subset M of a lattice
(L,≤) there exists infM and supM .

Proof. Suppose M = {x1, . . . , xn} and n ≥ 3. We prove this property by
induction on n. For n = 2 the property is obtained directly from Definition
3.1.1, so we supposed n ≥ 3. By induction on n we verify that

x1 ∨ x2 ∨ . . . ∨ xk = sup{x1, x2, . . . , xk} (3.12)

For k = 3 the relation (3.12) is true because we have (3.10). Suppose (3.12)
is true for k = n and we verify this relation for k = n+1. First we prove that
sup{x1, . . . , xn+1} exists and moreover

sup{sup{x1, . . . , xn}, xn+1} = sup{x1, . . . , xn+1}
By the inductive assumption we can denote

y = sup{x1, . . . , xn} (3.13)

The set L is a lattice therefore we have sup{y, xn+1} = z ∈ L. Let us verify
that z = sup{x1, . . . , xn+1}. From (3.13) we have

xi ≤ y ≤ z, i ∈ {1, . . . , n} (3.14)

and xn+1 ≤ z, therefore z is an upper bound of the set {x1, . . . , xn+1}. Let t
be another upper bound of {x1, . . . , xn+1}:

xi ≤ t, i ∈ {1, . . . , n + 1} (3.15)

From (3.15), (3.14) and (3.13) we obtain y ≤ t. But xn+1 ≤ t, therefore
z = sup{y, xn+1} ≤ t.

In conclusion we have

x1 ∨ x2 ∨ . . . ∨ xn+1 = (x1 ∨ x2 ∨ . . . ∨ xn) ∨ xn+1 =

sup{sup{x1, x2, . . . , xn}, xn+1} = sup{x1, x2, . . . , xn+1}
A similar proof can be given for the relation

x1 ∧ x2 ∧ . . . ∧ xk = inf{x1, x2, . . . , xk}
and the proposition is proved.

We define now two useful structures. They are used in knowledge repre-
sentation, especially in knowledge modeling by stratified graphs and semantic
schemas.

Definition 3.1.3. (Rudeanu (1991))
A join (meet) semilattice is a poset (L,≤) such that for every x, y ∈ L
there exists sup{x, y} (inf{x, y}).
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Fig. 3.1. Examples of posets

◦ b

◦

0

c

◦a

◦d

Q
QQ

´
´́◦

a) meet semilattice

◦ b

◦

0

c

◦a

◦d

´
´

´
´́

Q
Q

Q
QQ

Q
QQ

´
´́◦

b) poset, not a meet semilattice

Fig. 3.2. Examples of posets

Obviously a poset (L,≤) is a lattice if and only if (L,≤) is a join and a meet
semilattice.

A Hasse diagram can help us to show that a given poset is/not is a
semilattice. For example, let us consider the case represented in Figure 3.1.
The case a) represents a join semilattice with last element. The case b) gives
an example of a poset which is not a semilattice. Obviously this structure
can not be a meet semilattice because there isn’t any lower bound for {a, b}.
If we try to find sup{a, b} then we have to find in the first step the set of
the upper bounds of the set {a, b}. Obviously, this is the set {c, d, 1} and the
elements c and d are incomparable. As a consequence, it does not exist the
least element of this set. In conclusion the element sup{a, b} does not exist.
A dual case is presented in Figure 3.2.

Obviously we have the property specified in the next proposition.

Proposition 3.1.4. If in a join (meet) semilattice (L,≤) we define the
operation ∨ : L × L −→ L (∧ : L × L −→ L) by x ∨ y = sup{x, y}
(x ∧ y = inf{x, y}) then we obtain an idempotent, commutative and as-
sociative operation.

Remark 3.1.1. (Rudeanu (2001))
The concept of lattice defined in this section is named also lattice in the sense
of Ore. Shortly we say that this structure is an Ore lattice.
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Remark 3.1.2. The duality principle holds in lattice theory. Moreover, the
concepts of meet semilattice and join semilattice are dual to each other.

3.2 Lattice as universal algebra

In this section we introduce the concept of lattice as universal algebra and
we prove that we obtain an equivalent definition.

Definition 3.2.1. A lattice is an universal algebra (L,∨,∧) of signature
(2, 2) such that the operations satisfy the commutativity (3.5), associativity
(3.6) and absorption law (3.7).

Remark 3.2.1. (Rudeanu (2001)) The concept introduced in Definition 3.2.1
is called also lattice in the sense of Dedekind. Shortly we say a Dedekind
lattice.

Proposition 3.2.1. In a Dedekind lattice the operations are idempotent:

x ∨ x = x, x ∧ x = x

Proof. Applying (3.7) we obtain

x ∧ (x ∨ x) = x

x ∨ (x ∧ (x ∨ x)) = x

therefore x∨x = x∨(x∧(x∨x)) = x. By duality we have the second property
x ∧ x = x.

The following result is a useful property to simplify the introducing of a
partial order.

Proposition 3.2.2. In a Dedekind lattice we have x ∨ y = y if and only if
x ∧ y = x.

Proof. Suppose x ∨ y = y. We obtain x ∧ y = x ∧ (x ∨ y) = x by (3.7).
Similar we prove the other implication.

We can introduce now a binary relation on a Dedekind lattice.

Proposition 3.2.3. The following relation defined on a Dedekind lattice is
a partial order:

x ≤ y if and only if x ∨ y = y (3.16)

Proof. By Proposition 3.2.1 we have x ∨ x = x, therefore x ≤ x. Suppose
x ≤ y and y ≤ x. Using (3.16) we have x ∨ y = y and y ∨ x = x. By
commutativity we obtain x = y. To prove the transitivity we suppose x ≤ y
and y ≤ z. We have x ∨ y = y and y ∨ z = z, therefore x ∨ z = x ∨ (y ∨ z) =
(x ∨ y) ∨ z = y ∨ z = z.
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Proposition 3.2.4. Every Dedekind lattice (L,∨,∧) is an Ore lattice (L,≤),
where ≤ is defined in (3.16).

Proof. Let us prove that for every x, y ∈ L there exists sup{x, y}. Moreover,
we prove that sup{x, y} = x∨y. We have the following sequence of deductions:

• x∨(x∨y) = (x∨x)∨y = x∨y and y∨(x∨y) = (x∨y)∨y = x∨(y∨y) = x∨y,
therefore by (3.16) the element x∨y is an upper bound for the set {x, y}.

• Let t be an upper bound for {x, y}. Thus we have x ≤ t and y ≤ t.
Using (3.16) we can write x ∨ t = t and y ∨ t = t, therefore (x ∨ y) ∨ t =
x ∨ (y ∨ t) = x ∨ t = t. Thus x ∨ y ≤ t.

It follows that x ∨ y is the least upper bound of {x, y}. By duality we prove
that x ∧ y = inf{x, y}.
Remark 3.2.2. As we proved in the previous section every Ore lattice is a
Dedekind lattice. If in addition we consider Proposition 3.2.4 then we can
say that the concepts of Ore lattice and Dedekind lattice are equivalent.

Definition 3.2.2. Suppose L = (L,≤) is an Ore lattice. The lattice LDed =
(L,∨,∧), where x ∨ y = sup≤{x, y} and x ∧ y = inf≤{x, y} is called the
Dedekind lattice associated to L.

Definition 3.2.3. Suppose L = (L,∨,∧) is a Dedekind lattice. The lattice
LOre = (L,¹), where x ¹ y if and only if x∨y = y is named the Ore lattice
associated to L.

Proposition 3.2.5. (Grätzer (1971))

• If L is an Ore lattice then (LDed)Ore = L.
• If L is a Dedekind lattice then (LOre)Ded = L.

Proof. We prove only the first property. Suppose L = (L,≤) is an Ore
lattice. We have LDed = (L,∨,∧), where

x ∨ y = sup≤{x, y}, x ∧ y = inf≤{x, y}
Taking the Ore lattice associated to LDed we obtain (LDed)Ore = (L,¹),
where

x ¹ y ⇐⇒ x ∨ y = y

It follows that:

• If x ≤ y then x ∨ y = sup≤{x, y} = y, therefore x ¹ y.
• If x ¹ y then x ∨ y = y, therefore sup≤{x, y} = y. Thus we have x ≤ y.

In conclusion we have x ≤ if and only if x ¹ y.
In the remainder of this section we treat the concept of semilattice by

means of universal algebras.
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Definition 3.2.4. (Grätzer (1971))
A semilattice is an algebra (L, ◦) of signature (2) such that ◦ is an idem-
potent, commutative and associative operation.

Proposition 3.2.6. Let (L, ◦) be a semilattice. We define the following bi-
nary relations on L:

a ≤ b ⇐⇒ a ◦ b = b (3.17)

a v b ⇐⇒ a ◦ b = a (3.18)

Then the following properties are satisfied:

1) ≤ and v are dual relations;
2) ≤ and v are partial orders;
3) (L,≤) is a join semilattice;
4) (L,v) is a meet semilattice.

Proof.
1) The dual ≤d of ≤ is defined as follows:

x ≤d⇐⇒ y ≤ x

Using (3.17) we obtain
x ≤d y ⇐⇒ y ◦ x = x (3.19)

But the operation ◦ is commutative therefore from (3.19) we obtain

x ≤d y ⇐⇒ x ◦ y = x

Using (3.18) we obtain
x ≤d y ⇐⇒ x v y

and thus the dual of ≤ is v.
2) The binary relation ≤ is:

• Reflexive because the operation ◦ is idempotent: x ◦ x = x, therefore
x ≤ x.

• Antisymmetric because from x ≤ y and y ≤ x we have x ◦ y = y and
y ◦ x = x respectively; but ◦ is a commutative operation therefore x = y;

• Transitive because from x ≤ y and y ≤ z we obtain x ◦ y = y and
y ◦ z = z respectively; using the associativity of the operation ◦ it follows
that x ◦ z = x ◦ (y ◦ z) = (x ◦ y) ◦ z = y ◦ z = z, therefore x ≤ z.

The dual of a partial order is a partial order, therefore v is a partial
order.
3) Let us verify that (L,≤) is a join semilattice. We prove that for every
x, y ∈ L there exists sup≤{x, y}. More precisely we show that

sup≤{x, y} = x ◦ y (3.20)

We remark that x ◦ y is an upper bound for the set {x, y}. Really, because
◦ is associative and idempotent we have x ◦ (x ◦ y) = (x ◦ x) ◦ y = x ◦ y,
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therefore x ≤ x◦y. Similar we have y ≤ x◦y because y ◦ (x◦y) = (y ◦x)◦y =
(x ◦ y) ◦ y = x ◦ (y ◦ y) = x ◦ y.
Let t be an arbitrary upper bound for the set {x, y}. This means that x ≤ t
and y ≤ t therefore x◦t = t and y◦t = t. We have (x◦y)◦t = x◦(y◦t) = x◦t = t
therefore x ◦ y ≤ t. Thus x ◦ y is the least upper bound of the set {x, y}
therefore the relation (3.20) is proved.
4) We verify that L,v is a meet semilattice. To do this we show that for
every x, y ∈ L we have

infv{x, y} = x ◦ y

First, the element x ◦ y is a lower bound for {x, y} because:
• (x ◦ y) ◦ x = x ◦ (y ◦ x) = x ◦ (x ◦ y) = (x ◦ x) ◦ y = x ◦ y, therefore

x ◦ y v x;
• (x ◦ y) ◦ y = x ◦ (y ◦ y) = x ◦ y, therefore x ◦ y v y.

Let z be a lower bound of the set {x, y}: z v x and z v y. From (3.18) we
have z◦x = z and z◦y = z. It follows that z◦(x◦y) = (z◦x)◦y = (x◦z)◦y =
z ◦ y = z, therefore z v x ◦ y.

Remark 3.2.3. Directly from definition of an Ore lattice we know that if
(L,≤) is such a structure then (L,≤) is a join semilattice and also (L,≤) is
a meet semilattice. Conversely, if (L,≤) is both a join semilattice and a meet
semilattice then (L,≤) is an Ore lattice. The last proposition informs us that
if (L, ◦) is a semilattice then we can introduce two partial orders ≤ and v
such that (L,≤) is a join semilattice and (L,v) is a meet semilattice.

3.3 Distributive lattices and complemented lattices

In this section we define two relevant concepts, which allow us to give a concise
definition for a fundamental structure of theoretical and applied computer
science.

Definition 3.3.1. A distributive lattice is a lattice (L,≤) such that the
following identities are satisfied:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (3.21)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (3.22)

Proposition 3.3.1. The identities (3.21) and (3.22) are equivalent.

Proof. Suppose (3.21) is true for every x, y, z ∈ L, where L is an arbitrary
lattice. Applying (3.21) we obtain:

(x ∧ y) ∨ (x ∧ z) = [(x ∧ y) ∨ x] ∧ [(x ∧ y) ∨ z] (3.23)

therefore by absorption and commutativity we have

(x ∧ y) ∨ (x ∧ z) = x ∧ [z ∨ (x ∧ y)] (3.24)
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Applying again (3.21), the associativity of the meet operation and the ab-
sorption law we obtain

x ∧ [z ∨ (x ∧ y)] = x ∧ (z ∨ x) ∧ (z ∨ y) = x ∧ (z ∨ y) (3.25)

Now from (3.23), (3.24), (3.25) and the commutativity of the join operation
we obtain (3.22). The converse implication is obtained by duality.

Remark 3.3.1. Applying Proposition 3.3.1 we observe that in Definition 3.3.1
it is enough to suppose that only one of (3.21) or (3.22) is satisfied.

Remark 3.3.2. In the theory of distributive lattices can be used the duality
principle because the dual of (3.21) is (3.22) and vice versa.

Definition 3.3.2. If the lattice (L,≤) has first element and last element then
(L,≤) is named bounded lattice. The first element is denoted by 0 and the
last element is denoted by 1. We suppose 0 6= 1.

Taking into consideration the Dedekind lattice associated to the bounded
lattice (L,≤) we have obviously the following properties:

0 ≤ x ≤ 1 for every x ∈ L;
x ∨ 0 = x, x ∧ 0 = 0 for every x ∈ L;
x ∨ 1 = 1, x ∧ 1 = x for every x ∈ L;
x ∨ y = 0 if and only if x = y = 0;
x ∧ y = 1 if and only if x = y = 1.

Definition 3.3.3. Let us consider a bounded lattice (L,≤). An element x′ ∈
L is a complement of the element x ∈ L if the following conditions are
satisfied: {

x ∧ x′ = 0
x ∨ x′ = 1 (3.26)

A bounded lattice such that every element has at least one complement is a
complemented lattice.

Remark 3.3.3. In a bounded lattice the following situations can be encoun-
tered:

– There is an element which has no complement. This is the case repre-
sented in Figure 3.3 case b), where the element a (as well as b) has none
complement.

– Some element or every element has just one complement. This is the case
presented in Figure 3.3 case a).

– One or more elements has/have at least two complements. This case is
presented in Figure 1.1, where the element a has two complements (the
elements b and c). Moreover, each of the elements b and c has just one
complement, namely a.
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Fig. 3.3. Hasse diagrams

Proposition 3.3.2. In a bounded distributive lattice the complement of an
element is uniquely determined if exists.

Proof. Suppose the element x has two complements, x′ and x′′. We obtain:

x′ = x′ ∧ 1 = x′ ∧ (x ∨ x′′) = (x′ ∧ x) ∨ (x′ ∧ x′′) = x′ ∧ x′′

because x′ ∧ x = 0. Similarly we have

x′′ = x′′ ∧ 1 = x′′ ∧ (x ∨ x′) = (x′′ ∧ x) ∨ (x′′ ∧ x′) = x′′ ∧ x′ = x′ ∧ x′′

therefore x′ = x′′.

3.4 Boolean algebras

We can introduce now in a very concise manner a fruitful concept in computer
science. This is the subject of the next definition.

Definition 3.4.1. A distributive and complemented lattice is a Boolean al-
gebra.

Because in a Boolean algebra each element has a complement and only one,
the complement of x is denoted by x.

Example 3.4.1. The structure represented in Figure 3.3 a) is a Boolean alge-
bra. We consider the set A = {a, b, c}. If we take the set 2A as the support
set and the set theoretical operations of union and intersection then we ob-
tain a Boolean algebra. The zero element is ∅ and the element 1 is A. The
complement of X ∈ 2A is X=A \ X. It is not difficult to observe that this
algebra is isomorphic with the algebra represented in Figure 3.3 a).
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In what follows we denote a Boolean algebra by the system(B,∨,∧,− , 0, 1)
considered as an algebra of signature (2, 2, 1, 0, 0), where x ∨ y = sup{x, y}
and x ∧ y = inf{x, y}.

We can now relieve some basic properties in a Boolean algebra. For sim-
plicity we shall use the classical notation x · y = x ∧ y and moreover, xy
instead of x · y.

Proposition 3.4.1. Let (B,∨,∧,− , 0, 1) be a Boolean algebra. The following
properties are satisfied and can be viewed as computation rules on a Boolean
algebra:

1. x = y ⇐⇒ x ∨ t = y ∨ t for every t ∈ B;
2. x = y ⇐⇒ x · t = y · t for every t ∈ B;
3. x ∨ y = 0 ⇐⇒ x = y = 0;
4. x · y = 1 ⇐⇒ x = y = 1;
5. x ∨ y = x · y,

x · y = x ∨ y (De Morgan laws);
6. x=x (double negation law);
7. x ≤ y =⇒ y ≤ x;
8. x ≤ y ⇐⇒ x ∨ t ≤ y ∨ t for every t ∈ B;
9. x ≤ y ⇐⇒ x · t ≤ y · t for every t ∈ B;

10. x · (x ∨ y) = x · y;
x ∨ (x · y) = x ∨ y; (Boolean absorption)

11. x ≤ y ⇐⇒ x · y = 0 ⇐⇒ x ∨ y = 1.
12. x = y ⇐⇒ x · y ∨ x · y = 0

Proof.

1. If x ∨ t = y ∨ t for every t ∈ B then particularly for t = 0 we obtain
x = y.

2. Similarly, take t = 1.
3. If x ∨ y = 0 then x = y = 0 because x ≤ x ∨ y, y ≤ x ∨ y and 0 is the

first element.
4. Immediate because x ≥ x · y = 1 and 1 is the last element.
5. (x ∨ y) ∨ (x · y) = (x ∨ y ∨ x) · (x ∨ y ∨ y) = (y ∨ 1) · (x ∨ 1) = 1;

(x ∨ y) · (x · y) = (x · y) · (x ∨ y) = (x · y · x) ∨ (x · y · y) = 0 ∨ 0 = 0;
6. We have x ∨ x = 1, x · x = 0 because x is the complement of x. But x is

the complement of x therefore x∨x = 1 and x ·x = 0. These relations are
interpreted as follows: x and x are the complements of x. The complement
is uniquely determined therefore x = x.

7. y ≤ x ⇐⇒ y · x = y ⇐⇒ y · x = y ⇐⇒ y ∨ x = y ⇐⇒ x ≤ y;
8. x ≤ y =⇒ x∨ y = y =⇒ x∨ y ∨ t = y ∨ t; for the converse implication we

choose t = 0.
9. Similar to 8.

10. By distributivity we have x · (x ∨ y) = (x · x) ∨ (x · y) = 0 ∨ x · y = x · y.
The name of this law comes from the fact x is absorbed.
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11. If x ≤ y then x · y ≤ y · y = 0. Conversely, if x · y = 0 then (x · y)∨ y = y,
therefore (x∨y) · (y∨y) = y. Thus x∨y = y, therefore x ≤ y. Further we
obtain by De Morgan law and double negation x · y = 0 ⇐⇒ x ∨ y = 1.

12. The direct implication is immediate. If x·y∨x·y = 0 then x·y = x·y = 0,
therefore x ≤ y and y ≤ x.

Proposition 3.4.2. Every Boolean algebra (B,∨,∧,− , 0, 1) is a ring with
unit (B, +, ·,−, 0, 1), where x + y = (x ∧ y) ∨ (x ∨ y) and x · y = x ∧ y.

Proof. A routine computation shows that all axioms of a ring are satisfied
and x + x = 0, therefore −x = x.

Remark 3.4.1. The problem to find the simplest example of a given algebraic
structure is frequently encountered. Particularly this problem can appear also
in the case of lattices or Boolean algebras. Developing this idea, we can relieve
the following aspects:

1. The simplest lattice is the structure ({a},≤) of one element, with the par-
tial order given by a ≤ a. This structure is called the degenerate lattice.
Obviously all degenerate lattices are isomorphic. A lattice containing at
least two elements is called a non-degenerate lattice. The simplest non-
degenerate lattice is L = ({a, b},≤), where infL = a and supL = b.
Thus the simplest non-degenerate lattice is a bounded lattice.

2. The simplest Boolean algebra is the structure ({a},∨,∧,− , a, a), where
a ∨ a = a ∧ a = a and a = a. This structure is named also the degen-
erate Boolean algebra. A Boolean algebra is a non-degenerate Boolean
algebra if it contains at least two elements. The simplest non-degenerate
Boolean algebra is also named the binary Boolean algebra and this struc-
ture is usually denoted by B2 = ({0, 1},∨,∧,− , 0, 1) and its operations
are defined in Table 3.1.

∨ 0 1
0 0 1
1 1 1

∧ 0 1
0 0 0
1 0 1

Table 3.1. The operations of B2

Although from the point of view of the general theory of Boolean alge-
bra the structure given by B2 is very simple, from the point of view of
the applications in binary logic and combinational circuits this structure
establishes an essential support.
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3.5 Boolean rings

In the previous section we shown that every Boolean algebra can be
organized as a ring with unit. This structure enjoys of some specific
properties, which are presented in this section.

Definition 3.5.1. A ring with unit R = (R, +, ·,−, 0, 1) is a Boolean
ring if the following condition is satisfied

x · x = x (3.27)

for every x ∈ R.

Proposition 3.5.1. If R = (R, +, ·,−, 0, 1) is a Boolean ring then the
following identities are satisfied:

x + x = 0 (3.28)

x · y = y · x (3.29)

Proof. Consider an arbitrary element x ∈ R. Based on (3.27) we have

(x + x)(x + x) = x + x

and by distributivity we obtain

x · x + x · x + x · x + x · x = x + x (3.30)

Taking into account the property (3.27) in (3.30) we obtain

x + x + x + x = x + x

therefore (3.28) is proved.
Take another element y ∈ R. Based on (3.27) we have

(x + y) · (x + y) = x + y

therefore
x · x + x · y + y · x + y · y = x + y

It follows that
x · y + y · x = 0 (3.31)

But from (3.28) we have

x · y + x · y = 0 (3.32)

From (3.31) and (3.32) we obtain

x · y + y · x = x · y + x · y
therefore (3.29) is proved.
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Corollary 3.5.1. In a Boolean ring −x = x.

Proof. Really, from (3.28) we obtain −x = x.

Proposition 3.5.2. Every Boolean algebra B = (B,∨,∧,− , 0, 1) is a
Boolean ring B⊗ = (B, +, ·,−, 0, 1) where

x + y = (x ∧ y) ∨ (x ∧ y)

x · y = x ∧ y

−x = x

Proof. Immediate by Proposition 3.4.2 and Definition 3.5.1.

Proposition 3.5.3. Every Boolean ring with unit B = (B, +, ·,−, 0, 1)
is a Boolean algebra B4 = (B,∨,∧,− , 0, 1) where

x ∨ y = x + y + x · y
x ∧ y = x · y
x = x + 1

Proof. Immediate by a routine computation. For example, x ∨ x =
x + (x + 1) + x · (x + 1) = 1 + x · x + x = 1 + x + x = 1 and x ∧ x =
x · (x + 1) = x · x + x = x + x = 0.

Proposition 3.5.4. If B is a Boolean algebra then (B⊗)4 = B.

Proof. If B = (B,∨,∧,− , 0, 1) then

B⊗ = (B, +, ·,−, 0, 1)

where
x + y = (x ∧ y) ∨ (x ∧ y)

x · y = x ∧ y

−x = x

Now if we take
(B⊗)4 = (B,t,u,? , 0, 1)

then
x t y = x + y + x · y

x u y = x · y
x? = x + 1

We observe that

x? = 1 + x = (1 ∧ x) ∨ (1 ∧ x) = x ∨ 0 = x
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and
x u y = x · y = x ∧ y

Moreover,

x t y = x + y + x · y = x + y · (1 + x) = x + y · x? =

x + y · x = [x ∧ y ∧ x] ∨ (x ∧ y ∧ x) =
[(x ∧ (y ∨ x)] ∨ (x ∧ y) = (x ∧ y) ∨ (x ∧ x) ∨ (x ∧ y) =

x ∨ (x ∧ y) = x ∨ y

Proposition 3.5.5. If B is a Boolean ring with unit then (B4)⊗ = B.

Proof. Consider a Boolean ring with unit B = (B, +, ·,−, 0, 1). The
structure

B4 = (B,∨,∧,− , 0, 1)

has the following operations:

x ∨ y = x + y + x · y
x ∧ y = x · y
x = x + 1

If further we take the structure

(B4)⊗ = (B,⊕,¯,ª, 0, 1)

then
x⊕ y = (x ∧ y) ∨ (x ∧ y)

x¯ y = x ∧ y

ªx = x

We obtain

x⊕ y = (x ∧ y) ∨ (x ∧ y) = [x ∧ (y + 1)] ∨ [(x + 1) ∧ y] =

[x · (y + 1)] ∨ [(x + 1) · y] = [(x · y) + x] ∨ [(x · y) + y] =
[(x · y) + x] + [(x · y) + y] + [(x · y) + x] · [(x · y) + y] =

(x · y) + x + (x · y) + y + (x · y) · (x · y) + (x · y) · y + x · (x · y) + x · y =
[(x · y) + (x · y)] + (x + y) + (x · y) + x · (y · y) + (x · x) · y + x · y =

0+(x+ y)+ (x · y)+ (x · y)+ (x · y)+ (x · y) = 0+ (x+ y)+0+0 = x+ y

For the second operation we obtain

x¯ y = x ∧ y = x · y
and for the third operation we have

ªx = x = −x

therefore the proposition is proved.
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Proposition 3.5.6. Consider a Boolean algebra B = (B,∨,∧,− , 0, 1)
and the Boolean ring with unit B⊗ = (B, +, ·,−, 0, 1) associated to B.
The following identities are satisfied:

i) x + y = x ∨ y ⇐⇒ x ∧ y = 0;
ii) x = y ⇐⇒ x + y = 0;
iii) x + x · y = x ∨ y.

Proof.
i) We have x + y = x ∨ y if and only if

x · y ∨ x · y = x ∨ y (3.33)

If each member of (3.33) is multiplied by x we obtain x · y = x ∨ x · y.
But x∨x · y = x therefore x · y = x. This implies x ≤ y and thus we have
x ∧ y = 0.
Conversely, suppose x ∧ y = 0. It follows that x ≤ y and y ≤ x. Equiva-
lently we can write x · y = x and x · y = y. But x + y = x · y ∨ x · y. Thus
we have x + y = x ∨ y.
ii) By Proposition 3.4.1 we have x = y if and only if x · y ∨ x · y = 0.
Thus x = y if and only if x + y = 0.
iii) We have x+x ·y = x ·x · y∨x ·x ·y = x ·(x∨y)∨x ·y = x∨x ·y = x∨y.

Remark 3.5.1. The previous results establish a bijection between the
class of Boolean algebras and the class of Boolean rings with unit.

Example 3.5.1. Consider the particular case of the Boolean algebraM =
(2M ,∪,∩, C, ∅,M) endowed with the set theoretical operations

A ∪B = {x ∈ M | x ∈ A or x ∈ B}
A ∩B = {x ∈ M | x ∈ A and x ∈ B}

C(A) = M \A

Then M⊗ = (2M ,+, ·,−, 0, 1) where

A + B = (A ∩ C(B)) ∪ (B ∩ C(A)) = (A \B) ∪ (B \A)

is the operation known as the symmetric difference of two sets. In addition
we have −A = A for every subset A of M .

Remark 3.5.2. The concepts of Boolean algebras and Boolean rings are
strongly connected. This can be observed by the fact that various results
from Boolean algebra are preserved in Boolean rings and vice versa. An
example of such a property is the following: if B1 and B2 are Boolean
algebras and h : B1 −→ B2 is a morphism of Boolean algebras then
h : (B1)⊗ −→ (B2)⊗ is a morphism of Boolean rings.



4. Case studies and related problems

This chapter can be considered as a complement of the previous chapters,
an illustration of the computation rules and the basic concepts for various
algebraic structures taken as universal algebras.
There are two objectives of this chapter:
• to emphasize a possible benefit obtained by the use of universal al-

gebras theory.
• to present several results that can hardly be introduced within the

previous chapters of this volume but these results help us to obtain
short solutions for various problems.

The reader can easy observe that some concepts as sublattice, subsemi-
lattice, Boolean subalgebra and other substructures are not developed
in the previous chapters. In this chapter we show that these substruc-
tures can be taken from the general theory of universal algebras. Several
properties for these particular algebraic structures are relieved.

4.1 Lattices

In this section we apply some general concepts of universal algebras such
as free algebras and subalgebras to lattice theory. In addition, because
the concept of distributive lattice is a main concept, we present several
useful properties of this structure. Among these properties we distinguish
a visual condition by which we can decide on a Hasse diagram of a lattice
whether or not the corresponding lattice is a distributive one.

4.1.1 Free lattices

The concept of Σ-algebra free generated by a set, introduced in Chapter
1, was used in the study of Peano algebras as we shown in Chapter 2.
In this section we relieve another aspect concerning the applications of
this concept. We consider the following general problem: find the most
general lattice that can be formed satisfying some conditions.
In order to illustrate the treatment of such a problem we develop an
interesting idea taken from Grätzer (1971): find the most general lattice
generated by the set {a, b, c} such that b < a.
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We denote by A = (A,∨,∧) the lattice satisfying the conditions imposed
above and consider M = {a, b, c}. We take

M1 = M0 ∪ {a ∨ c, b ∨ c, a ∧ c, b ∧ c}
as in (1.3), where M0 = M .
We discern the following steps:
1) The elements of M1 are pairwise distinct.
In order to prove this assertion we use Definition 1.4.3. For every lat-
tice L = (L,t,u), every mapping f : M −→ L can be extended to a
morphism h : A −→ L as in Figure 4.1. Particularly we can apply this
property for the lattice L=({0, 1, 2},≤), where x t y = max{x, y} and
x u y = min{x, y}. We choose the mapping f : M −→ B defined by
f(b) = 0, f(a) = 1, f(c) = 2.
Based on this choice we can verify that

a 6= a ∨ c, b 6= a ∨ c

b 6= a ∧ c, a ∧ c 6= b ∧ c

a ∨ c 6= b ∧ c, a ∨ c 6= a ∧ c

b ∨ c 6= a ∧ c, a ∨ c 6= b ∧ c

For instance, if by contrary we suppose a = a∨c then h(a) = h(a)th(c) =
f(b) t f(c) = 0 t 2 = 2, which is not possible because h(a) = f(a) = 1.
If we choose the mapping f(b) = 1, f(a) = 2 and f(c) = 0 then we can
verify that a 6= a ∧ c, c 6= a ∨ c and a ∨ c 6= b ∧ c.
2) If we continue to compute M2 as in (1.3) then we have to consider the
elements a ∧ (b ∨ c) and b ∨ (a ∧ c). Until now we obtained the situation
presented in Figure 4.2.
Let us prove that

a ∧ (b ∨ c) ≥ b ∨ (a ∧ c) (4.1)

From a ≥ b and b ∨ c ≥ b we deduce that

a ∧ (b ∨ c) ≥ b (4.2)

We have also a ≥ a and b ∨ c ≥ c, therefore
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a ∧ (b ∨ c) ≥ a ∧ c (4.3)

Now, from (4.2) and (4.3) we obtain (4.1).
We verify now that

(b ∨ (a ∧ c)) ∧ c = a ∧ c (4.4)

From b ∨ (a ∧ c) ≥ a ∧ c and c ≥ a ∧ c we deduce b ∨ (a ∧ c) ≥ a ∧ c,
therefore

(b ∨ (a ∧ c)) ∧ c ≥ a ∧ c (4.5)

and from b ≤ a we obtain b ∨ (a ∧ c) ≤ a ∨ (a ∧ c) = a, therefore

(b ∨ (a ∧ c)) ∧ c ≤ a ∧ c (4.6)

Now (4.4) is obtained from (4.5) and (4.6). As a conclusion we obtained
the situation presented in Figure 4.3.
If we try to find other elements by joins and meets we observe that each
of these elements is equal to a given one. The reader can easy verify
that the Hasse diagram from Figure 4.3 gives a lattice of nine elements
satisfying the imposed conditions.

4.1.2 Sublattices

The reader can observe that in Chapter 3 dedicated to lattices we didn’t
define the concept of sublattice of a lattice. This is explained by the fact
that a lattice is an universal algebra and by Definition 1.3.5 we introduced
the concept of subalgebra of a algebra as well as the subalgebra generated
by a subset of an algebra.

Example 4.1.1. We consider the set N = {0, 1, . . .} of all natural numbers
and the relation div ⊆ N × N defined as follows: x div y if an only
if x is a divisor of y. In other words, x divy if there exists a natural
number k such that y = x ·k. The relation div is reflexive, antisymmetric
and transitive, therefore it is a partial order. We obtain the poset N =
(N, div). Moreover, N is a lattice because:
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Fig. 4.3. The lattice A

inf{x, y} = g.c.d(x, y)

sup{x, y} = l.c.m(x, y)

where g.c.d(x, y) means ”the greatest common divisor” and l.c.m(x, y)
means the ”least common multiple” of the corresponding numbers. Thus
N becomes an Ore lattice.
We consider the Dedekind lattice NDed = (N,∨,∧) and the problem is to
find the least lattice of natural numbers with respect to div, which contains
the numbers 2, 3 and 5. Equivalently this problem can be restated in the
language of universal algebras as follows:
Consider the set M = {2, 3, 5} and the algebra NDed = (N,∨,∧). Find
the subalgebra (equivalently, the sublattice) generated by M in N .
In order to solve this problem we apply Proposition 1.3.4 to obtain the
closure of M in NDed:

M0 = {2, 3, 5};
M1 = M0 ∪ {1, 6, 10, 15};
M2 = M1 ∪ {30};
M3 = M2

It follows that M = {1, 2, 3, 5, 6, 10, 15, 30}. Because M is a finite set,
the operations of the sublattice M = (M,∨,∧) can be represented as in
Table 4.1 and Table 4.2.
These two tables give a complete description of the operations from M.
But we have also a graphical method to represent a poset, particularly
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sup 1 2 3 5 6 10 15 30
1 1 2 3 5 6 10 15 30
2 2 2 6 10 6 10 30 30
3 3 6 3 15 6 30 15 30
5 5 10 15 5 30 30 15 30
6 6 6 6 30 6 30 30 30
10 10 10 30 30 30 10 30 30
15 15 30 15 15 30 30 15 30
30 30 30 30 30 30 30 30 30

Table 4.1. The operation sup

inf 1 2 3 5 6 10 15 30
1 1 1 1 1 1 1 1 1
2 1 2 6 1 2 2 1 2
3 1 1 3 1 3 1 3 3
5 1 1 1 5 1 5 5 5
6 1 2 3 1 6 2 3 6
10 1 2 1 5 2 10 5 10
15 1 1 3 5 3 5 15 15
30 1 2 3 5 6 10 15 30

Table 4.2. The operation inf
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Fig. 4.4. Hasse diagram for M
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a lattice. This is the Hasse diagram and for M this representation is
given in Figure 4.4. The reader can compare the representation method
by tables and by Hasse diagrams.

A slight version of the previous problem is presented in the next example.

Example 4.1.2. We consider the set N = {0, 1, . . .} of all natural numbers
and the relation div ⊆ N ×N . As we observed in the previous example,
the structure N = (N, div) is a poset. Moreover, N is an Ore lattice and
inf{x, y} = g.c.d(x, y), sup{x, y} = l.c.m(x, y). Thus N is both a join
semilattice and a meet semilattice with respect to div. We consider the
following problem, which is immediately solved:
Find the join subsemillatice Nj and the meet subsemilattice Nm generated
by the set M = {2, 3, 5}.
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QQ◦
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QQ

³³³³³◦Q
QQ◦

³³³³³

2
5
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6

3
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QQ ³³³³³

1

◦

◦

◦2

3

5

join subsemilattice Nj meet subsemilattice Nm

Fig. 4.5. Subsemilattices generated by M

Applying Proposition 1.3.4 we obtain the closure of M with respect to
the operation ∨:

M0 = {2, 3, 5};
M1 = M0 ∪ {6, 10, 15};
M2 = M1 ∪ {30};
M3 = M2

It follows that M = {2, 3, 5, 6, 10, 15, 30} and the join subsemilattice Nj

is represented in Figure 4.5.
For the closure of M with respect to ∧ we obtain

M0 = {2, 3, 5};
M1 = M0 ∪ {1};
M2 = M1

and the corresponding Hasse diagram for Nm is drawn also in Figure 4.5.
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4.1.3 Distributive lattices

The next two results help us to obtain a useful characterization for the
distributive lattices.

Proposition 4.1.1. The following inequality holds in any lattice:

(x ∨ y) ∧ (x ∨ z) ≥ x ∨ (y ∧ (x ∨ z)) (4.7)

Proof. Obviously we have x ∨ y ≥ x and x ∨ z ≥ x therefore

(x ∨ y) ∧ (x ∨ z) ≥ x (4.8)

We have also
x ∨ y ≥ y ∧ (x ∨ z) (4.9)

because x ∨ y ≥ y ≥ y ∧ (x ∨ z) and

x ∨ z ≥ y ∧ (x ∨ z) (4.10)

because (x ∨ z) ∧ (y ∧ (x ∨ z)) = y ∧ (x ∨ z).
From (4.9) and (4.10) we obtain

(x ∨ y) ∧ (x ∨ z) ≥ y ∧ (x ∨ z) (4.11)

and from (4.8) and (4.11) we obtain (4.7).

Corollary 4.1.1. In any lattice we have

(x ∨ y) ∧ (x ∨ z) ≥ x ∨ (y ∧ z) (4.12)

Proof. From (4.7) we have

(x ∨ y) ∧ (x ∨ z) ≥ x ∨ (y ∧ (x ∨ z)) ≥ x ∨ (y ∧ z)

because x ∨ z ≥ z and y ∧ (x ∨ z) ≥ y ∧ z.

Proposition 4.1.2. (Grätzer (1971))
A lattice L = (L,∨,∧) is distributive if and only if the following inequality
is satisfied for every x, y, z ∈ L:

(x ∨ y) ∧ z ≤ x ∨ (y ∧ z) (4.13)

Proof. If L is a distributive lattice then

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

therefore (4.13) is true since x ∨ z ≥ z.
Conversely, suppose (4.13) is verified. Take the arbitrary elements a, b, c ∈
L. If we apply (4.13) for x = a, y = b and z = a ∨ c then we obtain

(a ∨ b) ∧ (a ∨ c) ≤ a ∨ (b ∧ (a ∨ c)) = a ∨ ((a ∨ c) ∧ b) (4.14)
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Taking x = a, y = c, z = b in (4.13) we obtain

(a ∨ c) ∧ b ≤ a ∨ (c ∧ b) = a ∨ (b ∧ c) (4.15)

From (4.14) and (4.15) we obtain

(a ∨ b) ∧ (a ∨ c) ≤ a ∨ (b ∧ (a ∨ c)) ≤ a ∨ (a ∨ (b ∧ c)) (4.16)

But
a ∨ (a ∨ (b ∧ c)) = (a ∨ a) ∨ (b ∧ c) = a ∨ (b ∧ c)

therefore from (4.16) we obtain

(a ∨ b) ∧ (a ∨ c) ≤ a ∨ (b ∧ c) (4.17)

Applying (4.12) we obtain

(a ∨ b) ∧ (a ∨ c) ≥ a ∨ (b ∧ c) (4.18)

therefore from (4.17) and (4.18) we have

(a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c)

In other words, the lattice L is distributive.

Proposition 4.1.3. (Grätzer (1971))
In any lattice the following properties are equivalent:

(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ (x ∧ z)) (4.19)

x ≥ z =⇒ (x ∧ y) ∨ z = x ∧ (y ∨ z) (4.20)

Proof. Suppose (4.19) is satisfied. If x ≥ z then x ∧ z = z therefore
(4.19) becomes (x∧ y)∨ z = x∧ (y ∨ z). Conversely, suppose that (4.20)
is satisfied. Consider the arbitrary elements a, b and c and take x = a,
y = b and z = a ∧ c in (4.20). We obtain

(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ (a ∧ c))

and thus (4.19) is verified.

Definition 4.1.1. A lattice satisfying (4.19) or (4.20) is named mod-
ular lattice.

Remark 4.1.1. The property (4.19) or (4.20) is named modular law.

An useful property is presented in the next proposition.

Proposition 4.1.4. A lattice L = (L,∨,∧) is modular if and only if

x ≤ z =⇒ x ∨ (y ∧ z) ≥ (x ∨ y) ∧ z (4.21)

for every x, y, z ∈ L.
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Proof. The direct implication is obtained immediately. If the lattice is
modular then by (4.20) we have

z ≥ x =⇒ (z ∧ y) ∨ x = z ∧ (y ∨ x)

therefore (4.21) is verified.
Conversely, if x ≤ z then from (4.12) and (4.21) we deduce

(x ∨ y) ∧ z ≥ x ∨ (y ∧ z) ≥ (x ∨ y) ∧ z

therefore (x∨ y)∧ z = x∨ (y∧ z). In conclusion, if (4.21) is satisfied then

z ≥ x =⇒ (x ∨ y) ∧ z = x ∨ (y ∧ z)

and by (4.20) and Definition 4.1.1 the lattice is modular.

Proposition 4.1.5. Every distributive lattice is modular.

Proof. Suppose x ≥ z. Because the lattice is distributive we have

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) = x ∧ (y ∨ z)

therefore the lattice is modular.
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Fig. 4.6. Hasse diagrams for N5 and M5

Proposition 4.1.6. (Burris (1981), Grätzer (1971)) Consider the lat-
tice N5 depicted in Figure 4.6. The lattice L=(L,∨,∧) is modular if and
only if L has no sublattice isomorphic to N5.

Proof. Obviously N5 is not a modular lattice. For instance, in Figure
4.6 we have b ∨ (a ∧ c) = b ∨ d = b and (b ∨ a) ∧ (b ∨ c) = e ∧ c = c,
therefore this lattice is a non distributive one. Thus L is not a modular
lattice.
Conversely, suppose L is a non modular lattice. By Proposition 4.21 there
are x, y, z ∈ L such that x ≤ z and
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x ∨ (y ∧ z) < (x ∨ y) ∧ z (4.22)

We consider the elements a = x∨ (y∧ z) and b = (x∨ y)∧ z. From (4.22)
we have a < b.
Using the elements a and b we shall obtain a sublattice of L isomorphic
to N5. In order to obtain this sublattice we observe that:

• y ∧ b = y ∧ [(x ∨ y) ∧ z] = [y ∧ (x ∨ y)] ∧ z = y ∧ z;
• y ∨ a = y ∨ [x ∨ (y ∧ z)] = x ∨ y ∨ (y ∧ z) = y ∨ x;
• y ∧ z ≤ a because a = x ∨ (y ∧ z);
• b ≤ y ∨ x because b = (x ∨ y) ∧ z;
• y ∧ z ≤ a < b therefore y ∧ z = y ∧ (y ∧ z) ≤ y ∧ a ≤ y ∧ b = y ∧ z
and thus y ∧ z = y ∧ b = y ∧ a;
• y ∨ x ≥ b therefore y ∨ x = y ∨ (y ∨ x) ≥ y ∨ b ≥ y ∨ a = y ∨ x

and thus y ∨ x = y ∨ a = y ∨ b.
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Fig. 4.7. Hasse diagram

The Hasse diagram for the set {a, b, y, y ∧ z, y ∨ x} is depicted in Figure
4.7. We obtained a sublattice of L that is isomorphic to N5 and the
proposition is proved.

Proposition 4.1.7. (Grätzer (1971), Burris (1981)) Consider the lat-
tice M5 depicted in Figure 4.6. A modular lattice is distributive if and
only if it has no sublattice isomorphic to M5.

Proof.
The lattice M5 is not distributive. Consider the lattice from Figure 4.8.
We have

a ∨ (b ∧ c) = a ∨ d

(a ∨ b) ∧ (a ∨ c) = e ∧ e = e

therefore this is not a distributive lattice.
Conversely, suppose that L = (L,∨,∧) is a modular lattice but it is not
a distributive one. There exist x, y, z ∈ L such that

(x ∧ y) ∨ (x ∧ z) 6= x ∧ (y ∨ z) (4.23)
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The dual of (4.12) is the relation

(x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z) (4.24)

and by Corollary 4.1.1 the relation (4.24) is satisfied by every lattice.
From (4.23) and (4.24) we deduce that the elements x, y and z satisfy
the relation

(x ∧ y) ∨ (x ∧ z) < x ∧ (y ∨ z) (4.25)

Using these elements we denote:

a = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

b = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

α = a ∨ (x ∧ b)

β = a ∨ (y ∧ b)

γ = a ∨ (z ∧ b)

Let us prove first that a ≤ b. Taking into account the definition of a and
(4.25) we obtain

a ≤ [x ∧ (y ∨ z))] ∨ (y ∧ z) (4.26)

But L is a modular lattice and y ∧ z ≤ y ∨ z, therefore

(y ∧ z) ∨ [(y ∨ z) ∧ x] = (y ∨ z) ∧ [(y ∧ z) ∨ x] (4.27)

therefore from 4.26 we deduce

a ≤ (y ∨ z) ∧ [(y ∧ z) ∨ x] (4.28)

But y ∧ z ≤ y and y ∧ z ≤ z therefore

x ∨ (y ∧ z) ≤ x ∨ y

x ∨ (y ∧ z) ≤ x ∨ z
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It follows that
x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z) (4.29)

From (4.28) and (4.29) we obtain

a ≤ (y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) = b

We have the following computations:

x ∧ b = x ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) = x ∧ (y ∨ z) (4.30)

x ∧ a = x ∧ [(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)] (4.31)

We observe that

x ∨ [(x ∧ y) ∨ (x ∧ z)] = x ∨ (x ∧ z) = x

therefore (x ∧ y) ∨ (x ∧ z) ≤ x.
Applying the modular law in (4.31) we obtain

x ∧ a = [(x ∧ y) ∨ (x ∧ z)] ∧ [x ∨ (y ∧ z)] = (x ∧ y) ∨ (x ∧ z)

because [(x ∧ y) ∨ (x ∧ z)] ≤ x ≤ [x ∨ (y ∧ z)]. Thus

x ∧ a = (x ∧ y) ∨ (x ∧ z) (4.32)

Using (4.25), (4.30) and (4.32) we obtain

x ∧ a < x ∧ b (4.33)

But a ≤ b therefore if we suppose a = b then x ∧ a = x ∧ b, which is not
true by (4.33). Thus we proved that

a < b (4.34)

We prove now the following relations:

α ∧ β = α ∧ γ = β ∧ γ = a (4.35)

α ∨ β = α ∨ γ = β ∨ γ = b (4.36)

We shall prove only the relation α ∧ β = a and based on this model the
reader can perform the computations for other relations.
Replacing α and β by their values we obtain:

α ∧ β = [a ∨ (x ∧ b)] ∧ [a ∨ (y ∧ b)] = [(y ∧ b) ∨ a] ∧ [a ∨ (x ∧ b)]

But a ≤ a ∨ (y ∧ b) therefore by the modular law we have

α ∧ β = a ∨ {[(y ∧ b) ∨ a] ∧ (x ∧ b)}
But a ≤ b therefore by the modular law we have

(y ∧ b) ∨ a = b ∧ (a ∨ y)
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therefore

α ∧ β = a ∨ {[b ∧ (a ∨ y)] ∧ (x ∧ b)} = a ∨ [(x ∧ b) ∧ (a ∨ y)]

Thus we obtained the relation

α ∧ β = a ∨ [(x ∧ b) ∧ (a ∨ y)] (4.37)

because (x ∧ b) ∧ b = x ∧ b. Using the absorption law we obtain

x ∧ b = x ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) = x ∧ (y ∨ z)

a ∨ y = y ∨ a = y ∨ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) = y ∨ (x ∧ z)

Replacing this entities in (4.37) we obtain

α ∧ β = a ∨ {x ∧ (y ∨ z) ∧ [y ∨ (x ∧ z)]} (4.38)

But y ≤ y ∨ z therefore by modular law we have

(y ∨ z) ∧ [y ∨ (x ∧ z)] = y ∨ [(y ∨ z) ∧ (x ∧ z)]

therefore from (4.38) we obtain

α ∧ β = a ∨ {x ∧ [y ∨ [(y ∨ z) ∧ (x ∧ z)]]} (4.39)

But (y ∨ z) ∧ (x ∧ z) = x ∧ z ∧ (y ∨ z) = x ∧ z by absorption, therefore
from (4.39) we obtain

α ∧ β = a ∨ {x ∧ [y ∨ (x ∧ z)]} (4.40)

Using again modular law we have

x ∧ [y ∨ (x ∧ z)] = x ∧ [(x ∧ z) ∨ y] = (x ∧ z) ∨ (x ∧ y)

therefore from (4.40) we obtain

α ∧ β = a ∨ ((x ∧ z) ∨ (x ∧ y)) =

(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) ∨ ((x ∧ z) ∨ (x ∧ y)) =

(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) = a

Finally let us observe that

a ≤ a ∨ (x ∧ b) = α

α ≤ b ∨ (x ∧ b) = b

therefore a ≤ α ≤ b. similar we have a ≤ β ≤ b and a ≤ γ ≤ b.
In conclusion, the Hasse diagram of the set Q = {α, β, γ, a, b} is repre-
sented in Figure 4.9 and we obtain a sublattice Q of L such that Q is
isomorphic to M5.
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4.2 More about Boolean algebras

4.2.1 Morphisms of Boolean algebras

We consider the Boolean algebras B = (B,∨,∧,− , 0B , 1B) and K =
(K, d, e, ?, 0K , 1K). If we consider these structures as universal algebras
then a morphism h : B −→ K is a mapping h : B −→ K that satisfies
the following conditions:

h(x ∨ y) = h(x) d h(y) (4.41)

h(x ∧ y) = h(x) e h(y) (4.42)

h(x) = (h(x))? (4.43)

h(0B) = 0K (4.44)

h(1B) = 1K (4.45)

In this section we show that not all these identities are independent
and thus we obtain a short characterization for a morphism of Boolean
algebras.

Proposition 4.2.1. We have the following equivalences:

{(4.41), (4.42), (4.43), (4.44), (4.45)} ⇐⇒ {(4.41), (4.43)}
{(4.41), (4.42), (4.43), (4.44), (4.45)} ⇐⇒ {(4.42), (4.43)}

{(4.41), (4.42), (4.43), (4.44), (4.45)} ⇐⇒ {(4.41), (4.42), (4.44), (4.45)}
Proof. We have the following implications:
1) (4.41), (4.43) =⇒ (4.42):

h(x ∧ y) = h(x ∧ y) = (h(x ∧ y))? = (h(x ∨ y))? = (h(x) d h(y))? =

((h(x))? d (h(y))?)? = ((h(x))?? e (h(y))??) = h(x) e h(y)

2) (4.41), (4.43) =⇒ (4.44):
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h(0B) = h(x ∧ x) = h(x) e h(x) = h(x) e (h(x))? = 0K

3) (4.41), (4.43) =⇒ (4.45):

h(1B) = h(x ∨ x) = h(x) d h(x) = h(x) d (h(x))? = 1K

Similar we prove the other implications.

4.2.2 Stone theorem (finite case)

In this section we present a fruitful result known as Stone theorem. The
result is proved only for the particular case of the finite sets. Various
applications use this result.

Definition 4.2.1. Consider a Boolean algebra B = (B,∨,∧,− , 0, 1). An
atom of B is an element a ∈ B such that a 6= 0 and for every x ∈ B
from 0 ≤ x ≤ a we deduce x = 0 or x = a.

Remark 4.2.1. Various interesting properties of a Boolean algebra can
be characterized by means of this concept. For example, B = {0, 1} if
and only if 1 is an atom of B. Really, if 1 is an atom then by Definition
4.2.1 for every x ∈ B we have x = 0 or x = 1 therefore B = {0, 1}. The
converse implication is immediately obtained by the same definition: if
by contrary, 1 is not an atom then there is x ∈ B such that 0 < x < 1,
therefore B contains at least three elements.

A trivial example of Boolean algebra is

M = (2M ,∪,∩, C, ∅,M)

where ∪ and ∩ are set theoretical union and intersection and C(A) =
M \A. Let us characterize its atoms.

Proposition 4.2.2. The element A ∈ 2M is an atom of M if and only
if A is a singleton.

Proof. If A is an atom then A 6= ∅ and for every K ∈ 2M from ∅ ⊆
K ⊆ A we deduce K = ∅ or K = A. If by contrary A is not a singleton
then consider b ∈ A, take K = {b} and we have ∅ ⊂ K ⊂ A, therefore
A is not an atom of M. The converse implication is obviously true. The
Boolean algebra M = (2M ,∪,∩, C, ∅,M) is named the Boolean algebra
of the power set of M .

Proposition 4.2.3. In every finite Boolean algebra B = (B,∨,∧,− , 0, 1)
the following property is satisfied: for every x ∈ B \ {0} there exists an
atom a ∈ B such that a ≤ x.
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Proof. Suppose x ∈ B \ {0}. Denote y1 = x. Either y1 is an atom
and in this case the property is verified, or there is y2 ∈ B such that
0 < y2 < y1. Now we repeat the previous reasoning. Either y2 is an atom
or there is y3 ∈ B such that 0 < y3 < y2 < y1. This process is finite one
because B is a finite set.

Proposition 4.2.4. If x and y are atoms and x 6= y then x ∧ y = 0.

Proof. The element y is an atom and 0 ≤ x∧ ≤ y therefore either
x ∧ y = 0 or x ∧ y = y. If x ∧ y = 0 then the property is satisfied.
Otherwise x < y because from x∧ y = y we deduce x ≤ y. Thus we have
0 < x < y and this relation is not possible because y is an atom.

Proposition 4.2.5. If B = (B,∨,∧,− , 0, 1) is a finite Boolean algebra
and A is the set of all its atoms then for every x ∈ B \ {0} we have

x =
⋃

a∈A,a≤x

a (4.46)

Proof. We denote
Ax = {a ∈ A | a ≤ x}

and we prove that x = supAx.
Directly from the definition of Ax we observe that x is an upper bound
for Ax. Suppose that z is also an upper bound for the same set. We
verify first that x ≤ z. By contrary we suppose x 6≤ z. Equivalently we
have x ·z 6= 0. Applying Proposition 4.2.3 it follows that there is an atom
a0 ∈ A such that a0 ≤ x·z. But x·z ≤ x therefore a0 ≤ x. In other words,
a0 ∈ Ax. The element z is an upper bound for Ax therefore a0 ≤ z. From
the inequality a0 ≤ x ·z we deduce a0 ≤ z and if we combine this relation
with a0 ≤ z then we obtain a0 = 0, which is not possible because a0 is
an atom. Thus the assumption x 6≤ z is false, therefore x ≤ z and the
proposition is proved.

Proposition 4.2.6. (Stone theorem) Every finite Boolean algebra is iso-
morphic to the Boolean algebra of the power set of its atoms.

Proof. Consider a finite Boolean algebra B = (B,∨,∧,− , 0, 1) and de-
note by A the set of its atoms. By Proposition 4.2.3 we have A 6= ∅. We
define the mapping h : B −→ 2A by

h(x) = {a ∈ A | a ≤ x}
The following properties are satisfied by h:

1) The mapping h is surjective.
Consider Y ⊆ A. Denote x = supY . Obviously Y ⊆ h(x) because if
y ∈ Y then y ∈ A and y ≤ x. Conversely, consider a1 ∈ h(x) and let us
verify that a1 ∈ Y . By contrary we suppose a1 /∈ Y . For every y ∈ Y we
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have 0 ≤ y ∧ a1 ≤ a1. But a1 is an atom therefore by Proposition 4.2.4
we have y ∧ a1 = 0. It follows that y ≤ a1. This inequality is satisfied
for every y ∈ Y therefore a1 is an upper bound for Y . But x = supY
therefore x ≤ a1 and thus x ∧ a1 = 0. We observe that a1 ≤ x because
a1 ∈ h(x). It follows that a1 ∧ x = a1 and thus a1 = 0, which is not
possible because a1 is an atom.

2) The mapping h is a morphism of Boolean algebras.
The condition

h(x ∧ y) = h(x) ∩ h(y) (4.47)

is verified because the following conditions are equivalent:
a ∈ h(x ∧ y)
a ∈ A and a ≤ x ∧ y
a ∈ A, a ≤ x and a ≤ y
a ∈ h(x) ∩ h(y)

The following condition is also verified:

h(x) = C(h(x)) (4.48)

Really, if a ∈ h(x) then a ∈ A and a ≤ x. If by contrary we suppose that
a ∈ h(x) then a ≤ x and therefore a ≤ x ∧ x = 0, which is not possible
because a ∈ A.
Conversely, suppose a ∈ C(h(x)). It follows that a ∈ A \ h(x) because
C(h(x)) = A \ h(x). We observe that 0 ≤ a ∧ x ≤ a and a ∈ A. Suppose
a ∧ x = a, therefore a ≤ x. In this case a ∈ h(x), which is not possible.
It remains that a ∧ x = 0, therefore a ≤ x. Thus a ∈ h(x).

3) The mapping h is injective.
Suppose h(x) = h(y). In other words,

{a ∈ A | a ≤ x} = {a ∈ A | a ≤ y} (4.49)

Using (4.46) and (4.49) we obtain

x =
⋃

a∈A,a≤x

a =
⋃

a∈A,a≤y

a = y

and the proposition is proved.

Corollary 4.2.1. If B is a finite Boolean algebra containing n atoms
then B has 2n elements.

Proof. By Stone theorem The Boolean algebra B is isomorphic to the
Boolean algebra (2A,∪,∩, ∅, A), where A is the set of all atoms of B. If
the cardinal of A is n then the cardinal of the set 2A is 2n.
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Remark 4.2.2. The structure represented in Figure 4.4 is a Boolean al-
gebra and the set of its atoms is A = {2, 3, 5}. We observe that this
structure contains 23 = 8 elements. The mapping h from Proposition
4.2.6 is the following:

h(0) = ∅;h(2) = {2};h(3) = {3}; h(5) = {5}
h(6) = {2, 3};h(10) = {2, 5}; h(15) = {3, 5}; h(30) = {2, 3, 5}

Moreover, we have the following computations:

h(2) = C(h(2)) = A \ {2} = {3, 5} = h(15)

therefore 2 = 15;

h(3) = C(h(3)) = A \ {3} = {2, 5} = h(10)

therefore 3 = 10.
Similar we obtain 5 = {6}, 6 = {5}, 10 = {3}, 15 = {2}, 0 = {30} and
30 = ∅.
Remark 4.2.3. Various ”Stone concepts” can be encountered in litera-
ture: Stone lattice, Stone space, Stone isomorphism, Stone algebra, Stone
duality etc. We observe that only the finite case for the Stone theorem is
treated in this section. The general case is treated by reference books as
Rasiowa and Sikorski (1963), Grätzer (1971), Grätzer (1978).



5. Connections and perspectives

Several implications of the lattices in computer science can be relieved.
In this section we present some aspects which can invite the reader to find
possible subjects for their research.

First of all we relieve the fact that the treatment of this volume is not an
exhaustive one. In preparing this volume we taken into account the following
aspects:

- we intended to offer a self contained volume for those readers which are
interested to study the use of universal algebra in knowledge representa-
tion by inheritance, labeled stratified graphs and semantic schemas; the
reader can find various references to these concepts and methods in the
last part of this section and also in the References part of this volume;

- we intended to introduce the reader into some algebraic domain with
large perspectives both in applied mathematics and theoretical computer
science;

- the persons interested in this domain can themselves to accomplish a
supplementary documentation to find a proper research line, to develop
theoretical results or to discover practical applications.

1. An excellent book in the domain of lattice theory is Rudeanu (2001),
which is strongly connected by the book Rudeanu (1974). Several ap-
plications of lattices and Boolean algebras are described in the following
domains: graph theory, automata theory, synthesis of circuits, fault detec-
tion in combinational circuits, marketing, databases, numerical analysis.

2. The concept of lattice is strongly implied at the frontier of mathematics
and computer science.

• A first implication we relieve here is in the theory of confidence,
which enables us to attribute degrees of confidence to propositions. The
degrees of confidence are characterized by the elements of an appropriate
lattice with first and last elements. They are attributed to the formulas of
a language when the propositional variables are interpreted as denoting
specific vague statements. In order to do so, let (L,t,u, 0, 1) be a lattice
with first and last elements. As usual we denote by ≤ the partial order
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of L. If F is the set of formulas let C : F −→ L be a mapping satisfying
the following conditions, where I is a finite set of indices:

C(α ∧ ¬α) = 0

C(α ∨ ¬α) = 1

C(∨i∈Iαi) ≥ ti∈IC(αi)

C(∧i∈Iαi) ≤ ui∈IC(αi)

If ` α ↔ β then C(α) = C(β)

Such a mapping C is called a confidence function. Depending on the
applications, the above conditions can be extended. For example we can
introduce the following condition:

If ` α → β then C(α) ≤ C(β)

The reader can find in Costa and Krause (2002) a proposal for an algebra
of confidence with large implication in the study of vagueness and other
kinds of propositional logic (propositions are vague in some sense but,
despite their vagueness, they can be believed with a certain degree of
confidence). The reader can find rich ideas if follows the research line of
da Costa.

• A second implication of the lattice theory can be encountered in
Ginsberg (1986), where the structure of bilattice is presented and the
applications in logic programming are discussed. A bilattice is a structure
(B,≤t,≤k,¬) consisting of a non-empty set B, two partial orderings ≤t

and ≤k on B and a mapping ¬ : B −→ B such that:
(B,≤t) and (B,≤k) are complete lattices;
x ≤t y =⇒ ¬y ≤t ¬x;
x ≤k y =⇒ ¬x ≤k ¬y;
¬¬x = x

The negation operator establishes the connection between the two or-
derings. The reader interested in the domain of logic programming can
find an interesting study of the distributive bilattices and the fixpoint se-
mantics using bilattices (and interlaced bilattices) in Fitting (1990) and
Fitting (1991).

• A third major implication of the lattice theory is connected by
fuzzy theory. We only underline here this fruitful research line because
there is a great number of papers and books related of this subject
(Ajmal and Thomas (1994), Kehagias (2004) etc).
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3. Various applications of Boolean functions can be relieved. We intend only
to present this concept here and to establish a possible research line.
In a Boolean algebra (B,∨,∧,− , 0, 1) we denote x0 = x and x1 = x. A
Boolean function of n variable is a mapping f : Bn −→ B such that for
every x1, . . . , xn ∈ B we have

f(x1, x2, . . . , xn) =
∨

a1,...,an∈{0,1}
f(a1, . . . , an)xa1

1 . . . xan
n (5.1)

Not every mapping can be written as (5.1). For example, take B =
{0, 1, a, a} and the mapping of one variable f : B −→ B defined by
f(a) = 1 and f(0) = f(1) = f(a) = 0. If we suppose that this is a
Boolean function then f(x) = f(0) · x ∨ f(1) · x = 0 for every x ∈ B
and this property is not true. Thus f is not a Boolean function. Var-
ious aspects related to Boolean functions and equations are treated in
Rudeanu (1974).

4. The study of non Boolean functions defined on Boolean algebras can open
various perspectives in the research work. A possible research line in this
domain is in connection with the concept of generalized Boolean function
introduced in Ţăndăreanu (1981) and developed in a subsequent papers.

We consider a finite set A = {a1, . . . , an} such that {0, 1} ⊆ A ⊂ B,
where B is a Boolean algebra. We denote by G(A) the set of all functions

g : A×B −→ B

such that
g(0, 0) = g(1, 1) = 1

and for every x ∈ B the set {g(a1, x), . . . , g(an, x)} is orthonormal:

g(a1, x) ∨ . . . ∨ g(an, x) = 1

g(ai, x) · g(aj , x) = 0, i 6= j

If g ∈ G(A) then the mapping f : Bn −→ B is a g-generalized Boolean
function if it satisfies the following identity:

f(x1, x2, . . . , xn) =
∨

a1,...,an∈A

f(a1, . . . , an)g(a1, x1) . . . g(an, xn)

A mapping f : Bn −→ B is an A-generalized Boolean function if there
is g ∈ G(A) such that f is a g-generalized Boolean function.

If we denote by BFn(B) the set of all Boolean functions of n variables
defined on B and by GBFn(A,B) the set of all A-generalized Boolean
functions then

BFn(B) ⊂ GBFn(A, B) ⊂ BBn

(5.2)

The monotonicity of the generalized Boolean functions of one variable is
studied in Ţăndăreanu (1985b) and the concept of partial derivative is
studied in Ţăndăreanu (1985a).
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5. The following research directions can be developed:

• Based on (5.2) try to approximate a generalized Boolean function by
means of Boolean functions.

• Based on the concept of interval in a Boolean algebra study those
generalized Boolean functions that are Boolean function on some
intervals.

• Identify classes of generalized Boolean functions satisfying various
restrictions (isotone on some intervals and antitone on other intervals
etc).

• The Boolean functions were successfully applied to combinational
circuits. Identify a corresponding application for generalized Boolean
functions.

• The Boolean functions were applied to solve Boolean equations. In-
troduce the concept of generalized Boolean equation and find meth-
ods to solve these equations. Extend this problem to systems of such
equations. Find problems that can be modeled by such equations.

6. The reader interested to accomplish a detailed study concerning the im-
plications of these structures in logic (category theory, Heyting algebras)
can use Buşneag (1997). An interesting presentation of the connections
between universal algebras and a branch of logic called model theory can
be found in Burris (1981).

7. The following arguments can be used to argue the interest in the struc-
tures presented in this volume:

- The implications of the lattice theory into computability of the
answer mapping for inheritance based knowledge systems can be
observed in the papers Ţăndăreanu (1999), Ţăndăreanu (2001b),
Ţăndăreanu (2002a), Ţăndăreanu (2003d) as vwell as in the book
Ţăndăreanu (2004e).

- The concepts of Peano algebra, morphisms of partial algebras and
semilattices are deeply used to introduce two mechanisms for knowl-
edge representation: labeled stratified graphs (Ţăndăreanu (2004b)
etc) and semantic schemas (Ţăndăreanu (2004c) etc)
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Ţăndăreanu, N. (2004c): Knowledge Representation by Labeled Stratified Graphs,
The 8th World Multi-Conference on Systemics, Cybernetics and Informatics, July
18-21, Orlando, Florida, Vol. V: Computer Science and Engineering, p.345-350

Ţăndăreanu, N. (2004d): Semantic Schemas and Applications in Logical representa-
tion of Knowledge, Proceedings of the 10th International Conference on Cyber-
netics and Information Technologies, Systems and Applications (CITSA2004),
July 21-25, Orlando, Florida, Vol. III p.82-87
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Ţăndăreanu N., Ghindeanu M. (2006)- Properties of derivations in a Semantic
Schema, Annals of University of Craiova, Math. Comp. Sci. Ser. (to appear)
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