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Chapter 1

Introduction to labelled
stratified graphs

1.1 Overview

A great number of research works and practical implementations have confirmed the
interest of mathematicians and computer scientists in developing and applying the
methods of graph theory. The subject presented in this chapter can be placed in a
common area of the applied mathematics and computer science. The motivation is
based on the following facts. First, we incorporate the concept of labelled graph into
an algebraic environment given by a tuple of components, which are obtained apply-
ing several concepts of universal algebra. The result of this approach is materialized
in a proper point of view concerning the use of the universal algebra in graph theory
leading to a simple and concise theory with applications in several domains. This
explains the connection with applied mathematics. In what concerns the computer
science, there are two fields by which our research is connected. One of them is
the automatic graph drawing, which is relatively a new field in computer science.
A short description of the connection with the graph drawing field is given in the
final of the next chapter, where several intentions concerning the continuation of
this work are presented. Another field is that of knowledge representation by graph
methods. The concepts of our approach, incorporated in that of labelled stratified
graph (LSG), can be used successfully in knowledge representation.

The first section of this chapter establishes all prerequisites necessary to the
study of labelled stratified graphs. We recall some elementary concepts and results
of universal algebra, we introduce the concept of labelled graph in a distinctive
manner and we establish some connections which allow us to introduce the concept
of labelled stratified graph in the next section. Finally we prove the existence of this
structure.
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1.2 Labelled graphs and universal algebras

We consider a non empty set A. The notation B ⊆ A specifies that B is a subset of
A. If B ⊆ A and B 6= A then we write B ⊂ A. The empty set is denoted by ∅. We
denote by 2A the power set of A, that is the set of all subsets of A. We denote by
An the Cartesian product A× . . .×A.

By a partial operation f on A we understand a partial mapping f from An

to A. This means that f is defined for the elements of some set dom(f), where
dom(f) ⊂ An. We shall use the notation f : dom(f) −→ A. The number n is called
the arity of f . In the case when dom(f) = A×A we say that f is a binary operation
on A.

We write f ≺ g if f : dom(f) −→ A and g : dom(g) −→ A are two functions
such that dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f). If this is the case,
we say that f is a restriction of g.

We consider a symbol σ of arity 2. By a partial σ-algebra we understand a pair
A=(A, σA), where A is the support set of A and σA is a partial binary operation on
A. If dom(σA) = A×A then we say that A is a σ-algebra.

Let A=(A, σA) be a partial σ-algebra. A subset B ⊆ A is a closed set in A if the
following condition is fulfilled:

(x1, x2) ∈ dom(σA) ∩ (B ×B) =⇒ σA(x1, x2) ∈ B

If B ⊆ A then the closure of B in A is the least closed set containing B. The
closure of B in (A, σA) is denoted by ClσA(B) and obviously if B is a closed set then
ClσA(B) = B. It can be shown that if B is not a closed set then ClσA(B) =

⋃
n≥0 Bn

where{
B0 = B
Bn+1 = Bn ∪ {σA(x1, x2) | (x1, x2) ∈ dom(σA) ∩ (Bn ×Bn)}, n ≥ 0

(1.1)

We consider now the partial σ-algebras A=(A, σA) and B=(B, σB). The mapping
h : A −→ B is a morphism of partial algebras from A to B if for every (x1, x2) ∈
dom(σA) the following conditions are fulfilled:

• (h(x1), h(x2)) ∈ dom(σB)

• σB(h(x1), h(x2)) = h(σA(x1, x2))

We can define the mapping h×h : A×A −→ B×B taking by definition, h×h(x, y) =
(h(x), h(y)). Using this notation and taking into consideration the representation
given in Figure 1.1, we can express intuitively the condition h : A −→ B is a
morphism as follows: if we are able to go along the path (A×A,A,B) then we are
able also to go along the path (A×A,B ×B, B) and we obtain the same result.

We shall use the notation h : A −→ B to specify that h is a morphism from A
to B. A bijective morphism is an isomorphism. Two partial σ-algebras A and B are
isomorphic algebras if there is an isomorphism from A to B.

Let A=(A, σA) be a σ-algebra and M ⊆ A. By definition, A is a Peano σ-
algebra over M if the following conditions are fulfilled ([1]):
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B ×B -σB
B

A×A -σA
A

? ?

h× h h

Figure 1.1: The morphism condition

• ClσA(M) = A

• σA(x1, x2) /∈ M for every x1, x2 ∈ A

• for every x1, x2, y1, y2 ∈ A, from σA(x1, x2) = σA(y1, y2) we deduce x1 = y1

and x2 = y2

By definition, the σ-algebra A=(A, σA) is free-generated by M ⊆ A if for every σ-
algebra B=(B, σB) and every mapping f : M −→ B there exists a morphism and
only one, h : A −→ B, such that f ≺ h.
For every set M there is a Peano σ-algebra over M . In order to obtain such an
algebra we proceed as follows. We may assume σ /∈ M because otherwise we can
rename this element. We take the σ-algebra H=(H,σH), where

• H is the set of all nonempty words over {σ} ∪M

• σH : H −→ H is defined by σH(x1, x2) = σx1x2

Taking A = ClσH (M) we obtain the σ-algebraA=(A, σA), where σA is the restriction
of σH on A. A is a Peano σ-algebra over M and we denote this algebra by PA(M).
Two Peano σ-algebras over the same set M are isomorphic algebras (particularly
they are isomorphic with A) because a Peano σ-algebra over M is a σ-algebra free
generated by M and two σ-algebras free generated by M are isomorphic algebras
([1]). Thus, if M = {a, b} then the set

A = {a, b, σ(a, a), σ(b, b), σ(a, b), σ(a, σ(a, a)) . . .}

gives the support set of the Peano σ-algebra PA(M), σA(a, a) = σaa, σA(a, σ(a, b))
= σaσab and so on. The elements of A are called terms by some authors. We
observe that the elements of A are nonempty strings or words.

We consider a nonempty set S. A binary relation over S is a subset ρ ⊆ S × S.
Equivalently we can write ρ ∈ 2S×S . If ρ1 ∈ 2S×S and ρ2 ∈ 2S×S then we define:

ρ1 ◦ ρ2 = {(x, y) ∈ S × S | ∃z ∈ S : (x, z) ∈ ρ1, (z, y) ∈ ρ2}
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We remark that the following case can be encountered: ρ1 6= ∅, ρ2 6= ∅ and
nevertheless ρ1 ◦ ρ2 = ∅. But the empty relation is not a useful one in knowl-
edge representation. In order to avoid this situation we introduce the mapping
prodS : dom(prodS) −→ 2S×S as follows:

dom(prodS) = {(ρ1, ρ2) ∈ 2S×S × 2S×S | ρ1 ◦ ρ2 6= ∅}
prodS(ρ1, ρ2) = ρ1 ◦ ρ2

We denote by R(prodS) the set of all restrictions of the mapping prodS :

R(prodS) = {u | u ≺ prodS}
We observe that if u is an element of R(prodS) then the pair (2S×S , u) is a partial
algebra, which is used in the next section.

In the remainder of this section we present in a distinctive manner the concept
of labelled graph such that several useful connections with the concepts of universal
algebra can be established. These connections allow us to introduce the concept of
labelled stratified graph in the next section of this chapter.

A labelled graph is a tuple G = (S,L0, T0, f0), where

• S is a finite set, an element of S is a node of G

• L0 is a set of elements named labels

• T0 is a set of binary relations on S

• f0 : L0 −→ T0 is a surjective mapping

Such a structure admits a graphical representation. Each element of S is represented
by a rectangle specifying the corresponding node. We draw an arc from n1 ∈ S to
n2 ∈ S and this arc is labelled by e ∈ L0 if (n1, n2) ∈ f0(e). This case is shown in
Figure 1.2. If we proceed in this manner for each element of

⋃
e∈L0

f0(e) then we
obtain a graphical representation of the whole structure.

n1 n2-e

Figure 1.2: A labelled arc

Conversely, from a graphical representation of a labelled graph we can recompose
the components of the corresponding structure. In this case a binary relation from T0

consists of all the pairs of nodes that are linked by an arc and the corresponding arc
is labelled by the same element of L0. For example, Figure 1.3 specifies a graphical
representation of some labelled graph. For this graph we have S = {x1, x2, x3, x4},
L0 = {a, b, c}, T0 = {ρ1, ρ2}, ρ1 = {(x1, x2), (x2, x4)}, ρ2 = {(x2, x3)} and f0(a) =
f0(b) = ρ1, f0(c) = ρ2.

The concepts of labelled graph and directed graph are differentiated by the fol-
lowing two aspects:
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x1 x2 x3

x4

- -
?

? ?

a

b c

a b

Figure 1.3: Labelled graph

1) It is known that a directed graph is defined by a pair (X, ΓX), where X
is the set of its nodes and ΓX is a binary relation on X. Only one binary
relation is relieved by a directed graph and therefore its graphical represen-
tation specifies at most one arc from x to y for each pair (x, y) of nodes. In
comparison with such a structure, a labelled graph relieves a set of binary rela-
tions. Moreover, a given binary relation ρ may be labelled by several distinct
elements of L0. In other words, the set {y ∈ L0 | f0(y) = ρ} may contain
two or more elements. Such a situation is frequently encountered in knowl-
edge representation, where each label of L0 is assigned to some meaning. For
instance, we consider the following knowledge piece: John is Peter’s friend.
Peter is George’s friend. John likes Peter’s sister and Peter likes George’s
sister. Peter likes cakes. If we denote x1 = John, x2 = Peter, x3 = cakes and
x4 = George then the knowledge piece can be transposed in a labelled graph
(as in Figure 1.3). The pairs (John, Peter) and (Peter,George) have two com-
mon properties: friendship and affection. For this reason the binary relation
{(John, Peter), (Peter,George)} will be labelled by two distinct symbols.

2) If all labels appearing on a labelled graph are erased then we do not obtain
necessarily a directed graph. This can be easily viewed in Figure 1.3: there
are two arcs for each pair (x1, x2) and (x2, x4), therefore we do not obtain a
directed graph.

We consider a labelled graph G = (S, L0, T0, f0) and a symbol σ of arity 2. We
consider the Peano σ-algebra PA(L0) over L0. The support set of this algebra is

B =
⋃

n≥0

Bn (1.2)

where {
B0 = L0

Bn+1 = Bn ∪ {σ(x1, x2) | (x1, x2) ∈ Bn ×Bn}, n ≥ 0
(1.3)

For simplicity we denote PA(L0) = (B, σ). We consider some collection of subsets
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of B, denoted by Initial(L0). Namely, we say that X ∈ Initial(L0) if the following
conditions are fulfilled:

• L0 ⊆ X ⊆ B

• if σ(u, v) ∈ X then u ∈ X and v ∈ X

For example, if L0 = {a, b} then the set X = {a, b, σ(a, b), σ(a, σ(a, b))} is in
Initial(L0).

Remark 1.2.1 Generally speaking, if L ∈ Initial(L0) then the pair (L, {σL}),
where

• dom(σL) = {(x, y) ∈ L× L | σ(x, y) ∈ L}
• σL(x, y) = σ(x, y) for every (x, y) ∈ dom(σL)

is a partial algebra.

For instance, if we consider the Peano σ-algebra PA({a, b}) then

L = {a, b, σ(a, a), σ(a, b), σ(b, a), σ(a, σ(a, b))} ∈ Initial({a, b})

and
dom(σL) = {(a, a), (a, b), (b, a), (a, σ(a, b))}

Remark 1.2.2 Consider the closure Clu(T0) of T0 in the partial algebra (2S×S , u),
where u ∈ R(prodS). We have Clu(T0) =

⋃
n≥0 Xn, where

{
X0 = T0

Xn+1 = Xn ∪ {u(ρ1, ρ2) | (ρ1, ρ2) ∈ dom(u) ∩ (Xn ×Xn)}, n ≥ 0
(1.4)

But S is a finite set, therefore there is n such that Xn = Xn+1 and thus Clu(T0) =⋃n
k=0 Xk = Xn ([17]).

1.3 Labelled stratified graphs

In this section we define the concept of labelled stratified graph (shortly, LSG) and
we show that for each labelled graph we can build a LSG, therefore we prove the
existence of this structure. Some examples of LSGs are also presented.

Definition 1.3.1 A labelled stratified graph G over G is a tuple (G,L, T, u, f)
where

• G = (S, L0, T0, f0) is a labelled graph

• L ∈ Initial(L0)
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• u ∈ R(prodS) and T = Clu(T0)

• f : (L, {σL}) −→ (2S×S , {u}) is a morphism of partial algebras such that
f0 ≺ f , f(L) = T and if (f(x), f(y)) ∈ dom(u) then (x, y) ∈ dom(σL)

We give now some details concerning the last condition imposed in the definition of
LSG. Because f is a morphism of partial algebras, in the diagram of Figure 1.4 we
have the following property: if we are able to go along the path (L × L, L, 2S×S)
then we are able also to go along the path (L×L, 2S×S×2S×S , 2S×S) and we obtain
the same result.

2S×S × 2S×S -
u

2S×S

L× L -
σL

L

? ?

f × f f

Figure 1.4: Commutative diagram

Thus from the morphism property we have

dom(σL) ⊆ {(x, y) ∈ L× L | (f(x), f(y)) ∈ dom(u)} (1.5)

The last condition specified in Definition 1.3.1 gives the converse condition: if
we can go along the path (L×L, 2S×S × 2S×S , 2S×S) then we can go along the path
(L×L,L, 2S×S) and we obtain the same final result. Indeed, if (f(x), f(y)) ∈ dom(u)
then (x, y) ∈ dom(σL) therefore σL(x, y) ∈ L. Now by the morphism property we
have f(σL(x, y)) = u(f(x), f(y)). It follows that

dom(σL) ⊇ {(x, y) ∈ L× L | (f(x), f(y)) ∈ dom(u)} (1.6)

From (1.5) and (1.6) we obtain

dom(σL) = {(x, y) ∈ L× L | (f(x), f(y)) ∈ dom(u)} (1.7)

In order to relieve some aspects of this concept we consider the labelled graph drawn
in Figure 3.4. This labelled graph is defined by the following components:

S = {x1, x2, x3, x4, x5}
L0 = {a, b, c, d}
T0 = {ρ1, ρ2, ρ3}, where ρ1 = {(x1, x2), (x2, x4)}, ρ2 = {(x2, x3)}, ρ3 =
{(x5, x1)}
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x1 x2 x3

x4

- -
?

??

a

b c

a b

x5 -d

Figure 1.5: Labelled graph

f0(a) = f0(b) = ρ1, f0(c) = ρ2, f0(d) = ρ3

Taking dom(u) = {(ρ1, ρ1)} we obtain u(ρ1, ρ1) = ρ4, where ρ4 = {(x1, x4)}.
In this case various sets L ∈ Initial(L0) and corresponding morphisms f of partial
algebras as in Figure 1.4 can be taken. For example,

L = L0 ∪ {σ(a, a)}
f0 ≺ f , f(σ(a, a)) = u(f(a), f(a)) = u(ρ1, ρ1) = ρ4

We obtain T = Clu(T0) = T0 ∪ {ρ4}. Moreover, we have f(L) = T , f0 ≺ f ,
f : L −→ 2S×S is a morphism of partial algebras but (G,L, T, u, f) is not a LSG.
Really, (f(a), f(b)) = (ρ1, ρ1) ∈ dom(u) but σ(a, b) /∈ L.
A similar situation is encountered if we take L = L0 ∪ {σ(a, a), σ(b, b)} or L =
L0 ∪ {σ(a, a), σ(a, b)}.
In order to obtain a LSG we take

L = L0 ∪ {σ(a, a), σ(b, b), σ(a, b), σ(b, a)}
f0 ≺ f ; f(σ(a, a)) = f(σ(a, b)) = f(σ(b, b)) = f(σ(b, a)) = ρ4

and in this case the last condition of the definition of a LSG is fulfilled. We shall
refer to this LSG in the next chapter.

Obviously, if we choose another mapping u then we obtain also a labelled strati-
fied graph over the same labelled graph. In some cases it is not easy to build directly
a labelled stratified graph if we do not apply an algorithm. Such a case is presented
in [17], where an example of a LSG with an infinite set L is given.

Let G = (S, L0, T0, f0) be a labelled graph. Take u ∈ R(prodS) and consider the
closure T = Clu(T0) of T0 in the algebra (2S×S , u). We consider the Peano σ-algebra
PA(L0) = (B, σ) over L0, where B is given by (1.2) and (1.3).
We observe that dom(f0) = B0 and we can define recursively for every natural
number n ≥ 0:

• Dn+1 = {σ(p, q) ∈ Bn+1 \Bn | p, q ∈ dom(fn), (fn(p), fn(q)) ∈ dom(u)}
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• dom(fn+1) = dom(fn) ∪Dn+1

• fn+1(x) =

{
fn(x) if x ∈ dom(fn)
u(fn(p), fn(q)) if x = σ(p, q) ∈ Dn+1

It is not difficult to observe that the following properties are satisfied by these
entities:

(a) Di ∩Dj = ∅ for i 6= j; L0 ∩Di = ∅ for every i ≥ 1

(b) dom(fn) = B0 ∪
⋃n

k=1 Dk ⊆ Bn, for every n ≥ 0

(c) dom(fn) ∩Dn+1 = ∅ for every n ≥ 0

Taking into account these properties we obtain the following proposition:

Proposition 1.3.1 For every n ≥ 0 the following properties are satisfied:

1) the mapping fn+1 is well defined

2) fn ≺ fn+1

3) fn : dom(fn) −→ T

Proof. Because B is given by (1.2) and (1.3), it follows that if x ∈ Bn+1 \Bn then
x can be uniquely written as x = σ(p, q) for some p, q ∈ Bn. Taking into account
the definition of fn+1 and the fact that dom(fn) ∩ Dn+1 = ∅, we deduce that the
mapping fn+1 is well defined for every n ≥ 0.
The property fn ≺ fn+1 is obtained directly from the definition of fn+1. The last
sentence can be verified by induction on n. Because G = (S, L0, T0, f0) is a labelled
graph, we have f0 : dom(f0) −→ T0. But T0 ⊆ T , therefore the property is verified
for n = 0. Suppose the property is true for n. Take an element x ∈ dom(fn+1). If
x ∈ dom(fn) then fn+1(x) = fn(x) ∈ T . If x ∈ Dn+1 then x = σ(p, q) for some
p, q ∈ dom(fn) and (fn(p), fn(q)) ∈ dom(u). By the inductive assumption we have
fn(p) ∈ T and fn(q) ∈ T . But fn+1(x) = u(fn(p), fn(q)) and T is closed under u,
therefore fn+1(x) ∈ T .

Definition 1.3.2 We define the mapping f∗ : dom(f∗) −→ T as follows:

dom(f∗) =
⋃

n≥0 dom(fn) = L0 ∪
⋃

k≥1 Dk

f∗(x) =

{
f0(x) if x ∈ L0

fk(x) if x ∈ Dk

Proposition 1.3.2 For every n ≥ 0 we have dom(f∗) ∩Bn = dom(fn).
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Proof. We observe that for each n ≥ 0 we have

dom(f∗) = dom(fn) ∪
⋃

k≥n+1

Dk

therefore

dom(f∗) ∩Bn = (dom(fn) ∩Bn) ∪
⋃

k≥n+1

(Dk ∩Bn) = dom(fn)

because dom(fn) ⊆ Bn and for k ≥ n + 1 we have Dk ∩Bn = ∅.
Proposition 1.3.3 Let be L∗ = dom(f∗). The set L∗ satisfies the following prop-
erties:

L∗ ⊇ L0 (1.8)

σ(p, q) ∈ L∗ iff {p, q ∈ L∗ and (f∗(p), f∗(q)) ∈ dom(u)} (1.9)

L∗ ∈ Initial(L0) (1.10)

Proof. The relation (1.8) is obtained directly from Definition 1.3.2. Let us prove
(1.9). We suppose σ(p, q) ∈ L∗ = dom(f∗). Let n be the smallest natural number
such that σ(p, q) ∈ dom(fn). We have n ≥ 1 since σ(p, q) /∈ L0 = dom(f0). It follows
that σ(p, q) ∈ dom(fn) \ dom(fn−1)= Dn. By the definition of Dn it follows that
p, q ∈ dom(fn−1) ⊆ L∗ and (f∗(p), f∗(q)) = (fn−1(p), fn−1(q)) ∈ dom(u).
Conversely, let p, q ∈ L∗ such that (f∗(p), f∗(q)) ∈ dom(u). To use an uniform
notation we consider D0 = L0. Because L∗ =

⋃
n≥0 Dn we deduce that there are

the natural numbers ip, iq such that p ∈ Dip and q ∈ Diq . Taking k = max{ip, iq}
we obtain p ∈ dom(fk), q ∈ dom(fk) and σ(p, q) ∈ Bk+1 \ Bk. It follows that
(f∗(p), f∗(q)) = (fip(p), fiq(q))= (fk(p), fk(q)) ∈ dom(u), therefore σ(p, q) ∈ Dk+1 ⊆
L∗. Thus (1.9) is true. Now, (1.10) is obtained from (1.8) and (1.9).

Based on Remark 1.2.1 and Proposition 1.3.3 we can consider the partial σ-
algebra AL∗ = (L∗, σL∗). On the other hand the same propositions allow us to
obtain the following property for σL∗ , which is used later:

Corollary 1.3.1

dom(σL∗) = {(x, y) ∈ L∗ × L∗ | (f∗(x), f∗(y)) ∈ dom(u)} (1.11)

Proof. If (x, y) ∈ L∗ × L∗ and (f∗(x), f∗(y)) ∈ dom(u) then by (1.9) we have
σ(x, y) ∈ L∗. By Remark 1.2.1 it follows that (x, y) ∈ dom(σL∗). Conversely,
if (x, y) ∈ dom(σL∗) then (x, y) ∈ L∗ × L∗ and σ(x, y) ∈ L∗. By (1.9) we have
(f∗(x), f∗(y)) ∈ dom(u).

Because T = Clu(T0), applying Remark 1.2.2 we obtain a natural number n0

and the increasing sequence T0 = X0 ⊂ X1 ⊂ . . . ⊂ Xn0 = Xn0+1 = . . . = T , whose
elements are given by (1.4). We consider the following sets:

{
C0 = X0

Ci = Xi \Xi−1, i ∈ {1, . . . , n0}
We have Ci ∩ Cj = ∅ for i 6= j, Ci 6= ∅ and Xi =

⋃i
j=0 Cj for i ∈ {0, . . . , n0}.
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Proposition 1.3.4 For every i ∈ {1, . . . , n0}, d ∈ Ci if and only if

i) there exist p ∈ Ci−1, q ∈ Xi−1 such that d = u(p, q) or d = u(q, p)

ii) d 6= u(d1, d2) for every d1, d2 ∈ Xi−2

Proof We suppose that d ∈ Ci = Xi \ Xi−1 for some i ∈ {1, . . . , n0}. There exist
p, q ∈ Xi−1 such that (p, q) ∈ dom(u) and d = u(p, q). Two cases are possible:

a) p, q ∈ Xi−2; in this case we have d ∈ Xi−1, which is not true

b) p ∈ Ci−1 or q ∈ Ci−1, therefore i) is true

In order to prove ii) we suppose by contrary that d = u(d1, d2) for some d1, d2 ∈
Xi−2. Thus we have d ∈ Xi−1, which is not true.
Conversely, if p ∈ Ci−1 and q ∈ Xi−1 then d = u(p, q) ∈ Ti. If d 6= u(d1, d2) for every
d1, d2 ∈ Xi−2 then d /∈ Xi−1. Therefore d ∈ Xi \Xi−1 = Ci.

Proposition 1.3.5 For every i ∈ {1, . . . , n0} we have Ci ⊆ fi(Di) ⊆ Xi

Proof. We prove first by induction on i that Ci ⊆ fi(Di) for every i ∈ {1, . . . , n0}.
We verify this property for i = 1. We have D1 = {σ(p, q) ∈ B1 \ B0 | p, q ∈
dom(f0), (f0(p), f0(q)) ∈ dom(u)}. Let be z ∈ C1. By Proposition 1.3.4 it fol-
lows that z = u(d1, d2) for some d1, d2 ∈ X0. Because f0 : L0 −→ X0 is a
surjective mapping and L0 = B0, we deduce that there are a, b ∈ B0 such that
d1 = f0(a), d2 = f0(b). Therefore we have z = u(f0(a), f0(b)) for some a, b ∈ B0.
But σ(a, b) ∈ B1 \ B0, a, b ∈ dom(f0) = B0, (f0(a), f0(b)) ∈ dom(u), therefore
σ(a, b) ∈ D1 = dom(f1). We obtain f1(σ(a, b)) = u(f0(a), f0(b)) = z, therefore
C1 ⊆ f1(D1).
We suppose now that Cj ⊆ fj(Dj) for j ∈ {1, . . . , i} and we shall prove that
Ci+1 ⊆ fi+1(Di+1). We consider an arbitrary element z ∈ Ci+1. By Proposi-
tion 1.3.4 it follows that there are d1 ∈ Ci and d2 ∈ Cj for some j ∈ {0, . . . , i}
such that z = u(d1, d2) or z = u(d2, d1). Obviously it is enough to consider the
situation z = u(d1, d2). By the inductive assumption we have Ci ⊆ fi(Di) and
Cj ⊆ fj(Dj), therefore there are a ∈ Di, b ∈ Dj such that d1 = fi(a), d2 = fj(b).
It follows that σ(a, b) ∈ Bi+1 \ Bi, a ∈ dom(fi), b ∈ dom(fj) ⊆ dom(fi) and
(fi(a), fi(b)) = (fi(a), fj(b)) ∈ dom(u). Thus σ(a, b) ∈ Di+1 and fi+1(σ(a, b)) =
u(fi(a), fi(b)) = u(fi(a), fj(b)) = u(d1, d2) = z, therefore z ∈ fi+1(Di+1).
We prove now that fi(Di) ⊆ Xi. First we verify this property for i = 1. If
z ∈ f1(D1) then z = f1(σ(p, q))= u(f0(p), f0(q)) for some p, q ∈ L0. Because
(f0(p), f0(q)) ∈ (X0 × X0) ∩ dom(u), using the definition of X1 we deduce that
z ∈ X1. We suppose that fj(Dj) ⊆ Xj for every j < i and let be z ∈ fi(Di).
It follows that z = fi(σ(p, q)) = u(fi−1(p), fi−1(q)) for some p, q ∈ dom(fi−1)
such that (fi−1(p), fi−1(q)) ∈ dom(u). There are i1, i2 ∈ {0, . . . , i − 1} such that
p ∈ Di1 and q ∈ Di2 because p, q ∈ dom(fi−1) =

⋃
j<i Dj . We have fi−1(p) = fi1(p)

and fi−1(q) = fi2(q). By the inductive assumption we have fi1(p) ∈ Xi1 ⊆ Xi−1

and fi2(q) ∈ Xi2 ⊆ Xi−1. Thus we have z = u(fi1(p), fi2(q)), fi1(p) ∈ Xi−1 and
fi2(q) ∈ Xi−1. From the definition of Xi we deduce z ∈ Xi.
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Remark 1.3.1 If we denote D0 = L0 then we observe that Proposition 1.3.5 is true
also for n = 0.

Corollary 1.3.2 For every i ∈ {1, . . . , n0} we have Di 6= ∅.

Proof. We apply Proposition 1.3.5. If by contrary, we suppose that for some
i ∈ {1, . . . , n0} we have Di = ∅ then fi(Di) = ∅ ⊇ Ci. Thus Ci = ∅, which is not
true.

Proposition 1.3.6 The mapping f∗ : (L∗, σL∗) −→ (T, u) is a surjective morphism
of σ-algebras.

Proof. We consider an arbitrary pair (x1, x2) ∈ dom(σL∗). By (1.11) we have
(x1, x2) ∈ L∗ × L∗ = dom(f∗) × dom(f∗) and (f∗(x1), f∗(x2)) ∈ dom(u). Based
on Remark 1.2.1 and Proposition 1.3.3 we have σL∗(x1, x2) = σ(x1, x2). Using
the definition of the mapping f∗ we obtain f∗(σL∗(x1, x2)) = f∗(σ(x1, x2)) =
u(f∗(x1), f∗(x2)), therefore f∗ is a morphism. Taking into account the properties

dom(f∗) = L0 ∪
⋃

k≥1 Dk,
T =

⋃n0
k=0 Ck

and using Proposition 1.3.5, we deduce that f∗ is a surjective mapping.
We can obtain now the following theorem:

Theorem 1.3.1 Let G = (S,L0, T0, f0) be a labelled graph. For every u ∈ R(prodS)
the tuple G∗ = (G,L∗, T, u, f∗) is a labelled stratified over G, where T = Clu(T0),
L∗ = dom(f∗) and f∗ is given in Definition 1.3.2.

Proof. Taking into consideration Definition 1.3.1 and the Proposition 1.3.6 it re-
mains to verify the following property: if (f∗(x), f∗(y)) ∈ dom(u) then (x, y) ∈
dom(σL∗). But using (1.9) we obtain σ(x, y) ∈ L∗, therefore by Remark 1.2.1 we
have (x, y) ∈ dom(L∗).

Based on the next definition we can explain why the structure introduced in
Definition 1.3.1 is named labelled stratified graph.

Definition 1.3.3 Let G = (G,L, T, u, f) be a labelled stratified graph. We define
{

Layer(L, 0) = L0

Layer(L, n + 1) = L ∩ (Bn+1 \Bn), n ≥ 0
(1.12)

where PA(L0) = (B, σ) is the Peano σ-algebra over L0 and B is given by (1.2) and
(1.3).

The set Layer(L, n) is called the nth layer of L.
We can explain now why the structure given in Definition 1.3.1 is named la-

belled stratified graph. Let us denote by G = (G,L, T, u, f) such a structure. The
explanation is based on the following remarks:
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(1) By the surjective morphism f , the set T is covered by L; in other words
every binary relation of T has at least one label and the labels are assigned by
f ; thus, the elements of T are labelled binary relations.

(2) Based on Definition 1.3.3 we observe that the set L of all the labels is
divided into several layers; the first layer is given by L0; each element of the
layer i is obtained by means of two elements, one of them belonging to the
layer i− 1 and the other being in the set union of the layers 0, 1, . . . , i− 1. We
obtain a stratified structure of the set L of labels.

The next proposition shows that the layers of G∗ are exactly the sets Dn.

Proposition 1.3.7 Let G∗ = (G,L∗, T, u, f∗) be the labelled stratified graph ob-
tained in Theorem 1.3.1. Then Layer(L∗, n) = Dn for every n ≥ 0.

Proof. By Definition 1.3.2 we have L∗ =
⋃

j≥0 Dj , where D0 = L0. For every j ≥ 0
we have Dj ⊆ Bj \ Bj−1, where for j = 0 we consider Bj−1 = B−1 = ∅. It follows
that

Dj ∩ (Bk+1 \Bk) =

{
∅ for j 6= k + 1
Dk+1 for j = k + 1

(1.13)

From (1.12) and (1.13) we obtain:

Layer(L∗, k + 1) = L∗ ∩ (Bk+1 \Bk) =
⋃

j≥0

Dj ∩ (Bk+1 \Bk) = Dk+1

For n = 0 the property is obviously true and thus the proposition is proved.
The set L∗ may be divided into an infinite number of layers. In order to empha-

size this fact we take the following example. We consider the labelled graph from
Figure 1.6.

x1 x2

x3

-¾

@
@

@R

¡
¡

¡ª

a

a

b b

Figure 1.6: A labelled graph giving an infinite hierarchy of layers

We take S = {x1, x2, x3} and L0 = {a, b}. We consider the binary relations

ρ1 = {(x1, x2), (x2, x1)}, ρ2 = {(x1, x3), (x2, x3)}

Take T0 = {ρ1, ρ2}, T = Clu(T0), u = prodS and ρ3 = {(x1, x1), (x2, x2)}. We
obtain:

u(ρ1, ρ1) = ρ3, u(ρ1, ρ2) = ρ2, u(ρ1, ρ3) = ρ1
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a b

σ(a, b) σ(a, a)

σ(a, σ(a, a)) σ(a, σ(a, b)) σ(σ(a, a), σ(a, a))

σ(σ(a, a), a) σ(σ(a, a), b)

σ(σ(a, a), σ(a, b))

D0

D1

D2

ρ1 ρ2 ρ3

Figure 1.7: An infinite hierarchy of layers

u(ρ3, ρ1) = ρ1, u(ρ3, ρ2) = ρ2, u(ρ3, ρ3) = ρ3

Applying (1.4) we have X1 = T0 ∪ {ρ3} and X2 = X1 therefore T = {ρ1, ρ2, ρ3}.
The computation of the elements Dn will conduce us to the elements specified in
Figure 1.7. Taking into consideration the values of the mapping f∗ we obtain three
containers of labels, each of them containing all the labels for ρ1, ρ2, ρ3 respectively.
Each container contains an infinite set of labels. In order to verify this fact we
denote

σ(P,Q) = {σ(u, v) | u ∈ P, v ∈ Q}
and for each natural number n we take

σn(A,B) =
⋃

j≤n

[σ(An, Bj) ∪ σ(Aj , Bn)]

where Aj , Bj are subsets of L, A is the sequence A0, A1, . . . and B is the sequence
B0, B1, . . .. For every j ≥ 0 and i ∈ {1, 2, 3} we denote Dj(ρi) = {u ∈ Dj | f(u) =
ρi} and let D(ρi) be the sequence D0(ρi), D1(ρi), . . ..
Taking into account the manner in which σT is defined we obtain the following
equations: 




Dn+1(ρ3) = σn(D(ρ1), D(ρ1)) ∪ σn(D(ρ3), D(ρ3))
Dn+1(ρ2) = σn(D(ρ1), D(ρ2)) ∪ σn(D(ρ3), D(ρ2))
Dn+1(ρ1) = σn(D(ρ1), D(ρ3)) ∪ σn(D(ρ3), D(ρ1))

(1.14)

We observe that D2(ρ1), D2(ρ2) and D2(ρ3) are nonempty sets. Based on (1.14) we
can verify by induction that Dn(ρ1), Dn(ρ2) and Dn(ρ3) are also nonempty sets for
every n ≥ 3. Thus we obtain an infinite hierarchy of layers for L∗.

Remark 1.3.2 The construction given in Theorem 1.3.1 is possible even if T0 is
a closed set, that is, Clu(T0) = T0. In order to observe this fact we consider the
labelled graph from Figure 1.8.
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x1 x2 x3- -

6

a a

b

Figure 1.8: A labelled graph such that Clu(T0) = T0

Taking u = prodS, ρ1 = {(x1, x2), (x2, x3)}, ρ2 = {(x1, x3)} and L0 = {a, b} we
obtain Clu(T0) = T0, L∗ = {a, b, σ(a, a)}, f∗(a) = ρ1, f∗(b) = ρ2, f∗(σ(a, a)) = ρ2.

Remark 1.3.3 As we proved in this chapter, for every labelled graph G there is a
labelled stratified graph over G. We denote by Strat(G) the set of all labelled graphs
over G. By Proposition 1.3.1 we have Strat(G) 6= ∅.
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Chapter 2

Algebraic properties of LSGs

2.1 Overview

2.2 Environments for labelled graphs.

We consider a labelled graph G = (S, L0, T0, f0). For each u ∈ R(prodS) we denote
by envG(u) the set of all tuples (L, T, f) such that (G, L, T, u, f) ∈ Strat(G). As
we shown in the previous chapter, for every u ∈ R(prodS) there is (G,L, T, u, f)
∈ Strat(G), therefore envG(u) 6= ∅. We denote

Env(G) =
⋃

u∈R(prodS)

envG(u)

An element of Env(G) is named environment for G and the elements of envG(u)
are called environments generated by u. Because envG(u) ⊆ Env(G), we obtained a
mapping

envG : R(prodS) −→ 2Env(G) (2.1)

The terms used above can be explained as follows. First, if we transpose some
problem in a labelled graph G and we build an appropriate (G, L, T, u, f) ∈ Strat(G)
then the pair (L, T ) offers the space by means of which we can identify all the
solutions of the problem. The connection between L and T is given by f . In
section 3.3 of the next chapter this process can be observed in detail. On the other
hand, in order to build a LSG corresponding to u ∈ R(prodS), only the features
of the mapping u are used. This fact is proved in this section and it constitutes
a basic result to prove other properties for LSGs. This can explain the context
”environment generated by u ”.

The following mapping will be used also in this chapter:

HG : R(prodS) −→ 22S×S
, HG(u) = Clu(T0) (2.2)

The pairs (R(prodS),≺) and (22S×S
,⊆) are partially ordered sets, where ⊆ is the

set inclusion.

21
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Proposition 2.2.1 The mapping HG is monotone, that is, if u ≺ v then HG(u) ⊆
HG(v).

Proof. HG(v) is a closed set under v and includes T0. Because u ≺ v, HG(v) is
closed under u. But HG(u) is the smallest set which is closed under u such that
T0 ⊆ HG(u), therefore HG(u) ⊆ HG(v).

A basic result concerning LSGs refers to the number of the environments gen-
erated by a mapping. In order to prove this result the next proposition is used.

Proposition 2.2.2 We consider a labelled graph G = (S, L0, T0, f0). Let be u, v ∈
R(prodS) such that u ≺ v. If (L1, T1, f) ∈ envG(u) and (L2, T2, g) ∈ envG(v) then
L1 ⊆ L2, T1 ⊆ T2 and f ≺ g.

Proof. The support set of the Peano-algebra over L0 is defined by (1.3) and it is
the set B =

⋃
n≥0 Bn, where B0 = L0. Because L0 ⊆ L1 ⊆ B and L0 ⊆ L2 ⊆ B it

follows that
L1 = L0 ∪

⋃

n≥0

(L1 ∩ (Bn+1 \Bn)) (2.3)

L2 = L0 ∪
⋃

n≥0

(L2 ∩ (Bn+1 \Bn)) (2.4)

There exist G1 = (G,L1, T1, u, f) and G2 = (G,L2, T2, v, g) in Strat(G), therefore by
(1.7) we have

dom(σL1) = {(x, y) ∈ L1 × L1 | (f(x), f(y)) ∈ dom(u)} (2.5)

dom(σL2) = {(x, y) ∈ L2 × L2 | (g(x), g(y)) ∈ dom(v)} (2.6)

We shall verify by induction on n that for every n ≥ 0

L1 ∩ (Bn+1 \Bn) ⊆ L2 ∩ (Bn+1 \Bn) (2.7)

f(x) = g(x) if x ∈ L1 ∩ (Bn+1 \Bn) (2.8)

1) Initial step:
Suppose n = 0 and take x ∈ L1 ∩ (B1 \ B0). There are a, b ∈ B0 = L0, uniquely
determined, such that x = σ(a, b) = σL1(a, b). The following properties are satisfied
by a and b:

(a, b) ∈ dom(σL1) (2.9)

f0(a) = f(a) = g(a), f0(b) = f(b) = g(b) (2.10)

Really, (2.9) is true because x = σL1(a, b) and (2.10) is obtained from a, b ∈ L0,
f0 ≺ f , f0 ≺ g. From (2.9) and (2.5) we obtain (f(a), f(b)) ∈ dom(u). Consequently,
from (2.10) we obtain (g(a), g(b)) ∈ dom(u). But dom(u) ⊆ dom(v), therefore
(g(a), g(b)) ∈ dom(v). Because (a, b) ∈ L0×L0 and L0 ⊆ L2, we have (a, b) ∈ L2×L2.
Using (2.6) we obtain (a, b) ∈ dom(σL2) and therefore σL2(a, b) = σ(a, b) = x ∈ L2.
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Thus, the property (2.7) is verified for n = 0. Moreover, f and g are morphisms
therefore

f(x) = f(σ(a, b)) = f(σL1(a, b)) = u(f(a), f(b)) = v(g(a), g(b))

g(x) = g(σ(a, b)) = g(σL2(a, b)) = v(g(a), g(b))

Thus, f(x) = g(x) and (2.8) is true for n = 0.
2) Inductive step:
We suppose the properties (2.7) and (2.8) are true for n ∈ {0, . . . , k}. Let us take
an arbitrary element x such that

x ∈ L1 ∩ (Bk+2 \Bk+1) (2.11)

Using (1.3) we deduce that there are a, b ∈ Bk+1, uniquely determined, such that
x = σL1(a, b). We prove that

a, b ∈ L0 ∪
⋃

n∈{0,...,k}
L1 ∩ (Bn+1 \Bn) (2.12)

(a, b) ∈ dom(σL2) (2.13)

We observe that a, b ∈ L1 because x ∈ L1 and L1 ∈ Initial(L0). It is not possible to
have simultaneously a ∈ Bk and b ∈ Bk. Really, if by contrary we suppose a ∈ Bk

and b ∈ Bk then x = σ(a, b) ∈ Bk+1, which is not true. Therefore a ∈ Bk+1 \Bk or
b ∈ Bk+1 \Bk. In order to make a choice we suppose a ∈ Bk+1 \Bk. Two cases are
possible:

Case 1: b ∈ Bk+1 \Bk

Case 2: b ∈ Bk

We observe that either in case 1 or in case 2 we have (2.12). It remains to prove
(2.13). In the first case we have

a ∈ L1 ∩ (Bk+1 \Bk) ⊆ L2 ∩ (Bk+1 \Bk)

b ∈ L1 ∩ (Bk+1 \Bk) ⊆ L2 ∩ (Bk+1 \Bk)

therefore by the inductive assumption we have f(a) = g(a) and f(b) = g(b). We have
(a, b) ∈ dom(σL1) and from (2.5) we obtain (f(a), f(b)) ∈ dom(u). But dom(u) ⊆
dom(v) and a ∈ L2, b ∈ L2. Thus, (g(a), g(b)) = (f(a), f(b)) ∈ dom(u) ⊆ dom(v)
and by (2.6) we have (2.13).
In the second case we shall take into consideration the cases b ∈ B0 = L0 and
b ∈ Bq \Bq−1 for some q ∈ {1, . . . , k}.

• If b ∈ B0 then f(b) = f0(b) = g(b). We have a ∈ L1 ∩ (Bk+1 \ Bk). By
the inductive assumption we have L1 ∩ (Bk+1 \ Bk) ⊆ L2 ∩ (Bk+1 \ Bk) and
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f(a) = g(a). On the other hand, the mapping f is a morphism and u ≺ v,
therefore

f(x) = f(σL1(a, b)) = u(f(a), f(b)) = u(g(a), g(b)) = v(g(a), g(b)) (2.14)

We remark that a ∈ L2, b ∈ L0 ⊆ L2 and (g(a), g(b)) ∈ dom(v). Applying
(2.6) we deduce (2.13).

• If b ∈ Bq \Bq−1 for some q ∈ {1, . . . , k} then

b ∈ L1 ∩ (Bq \Bq−1) ⊆ L2 ∩ (Bq \Bq−1)

a ∈ L1 ∩ (Bk+1 \Bk) ⊆ L2 ∩ (Bk+1 \Bk)

and f(a) = g(a), f(b) = g(b) by the inductive assumption. We obtain (2.14),
therefore (g(a), g(b)) ∈ dom(v). From (2.6) we deduce (2.13).

Now, from (2.13) we deduce σL2(a, b) ∈ L2. But σL2(a, b) = σ(a, b) = x, therefore
x ∈ L2 and the inclusion L1 ∩ (Bk+2 \Bk+1) ⊆ L2 ∩ (Bk+2 \Bk+1) is proved.
It remains to verify the equality f(x) = g(x) for every x ∈ L1 ∩ (Bk+2 \ Bk+1).
We recall that as we proved above, if x ∈ L1 ∩ (Bk+2 \ Bk+1) then there are a, b ∈
L0 ∪

⋃
n∈{0,...,k} L1 ∩ (Bn+1 \ Bn) such that x = σL1(a, b) = σL2(a, b). Based on the

inductive assumption we have f(a) = g(a), f(b) = g(b). Thus,

f(x) = f(σL1(a, b)) = u(f(a), f(b)) = v(g(a), g(b)) = g(x)

and the relations (2.7) and (2.8) are proved by induction.
Using the relations (2.3), (3.1.1), (2.7) and (2.8) we obtain L1 ⊆ L2 and f ≺ g.
Applying the monotony of the mapping HG and taking into account the equalities
T1 = HG(u) and T2 = HG(v) we obtain T1 ⊆ T2.

Corollary 2.2.1 For each u ∈ R(prodS), the set envG(u) is a singleton. In other
words, just one element belongs to envG(u).

Proof. Take v = u in the previous proposition. It follows that if (L1, T1, f) ∈
envG(u) and (L2, T2, g) ∈ envG(u) then L1 ⊆ L2, T1 ⊆ T2 and f ≺ g. For the same
reason we have also L2 ⊆ L1, T2 ⊆ T1 and g ≺ f . Thus we have L2 = L1, T2 = T1

and f = g.

Remark 2.2.1 Corollary 2.2.1 allows to denote

envG(u) = (L, T, f)

instead of envG(u) = {(L, T, f)}.
Thus the mapping defined in (2.1) becomes

envG : R(prodS) −→ Env(G)

where
Env(G) = {envG(u) | u ∈ R(prodS)} (2.15)
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Definition 2.2.1 We define the following relation on Env(G):

(L1, T1, f) ¿ (L2, T2, g) iff L1 ⊆ L2, T1 ⊆ T2 and f ≺ g

We obtain a partially ordered set (Env(G),¿) because¿ is reflexive, antisymmetric
and transitive. In these terms, Proposition 2.2.2 can be restated as follows:

Proposition 2.2.3 The mapping envG : (R(prodS),≺) −→ (Env(G),¿) is mo-
notone.

Remark 2.2.2 The mapping envG : R(prodS) −→ Env(G) is surjective, but it is
not injective.

Really, by (2.15) envG is surjective. It is not injective and this property can be
proved as follows. We consider again the labelled graph G = (S, L0, T0, f0) which
is represented in Figure 3.4. In Section 1.3 the following environment envG(u) =
(L, T, f) was obtained:

L = L0 ∪ {σ(a, a), σ(b, b), σ(a, b), σ(b, a)}
T = Clu(T0) = T0 ∪ {ρ4}
f0 ≺ f ; f(σ(a, a)) = f(σ(a, b)) = f(σ(b, b)) = f(σ(b, a)) = ρ4

Let us choose now the mapping v ∈ R(prodS) defined by

dom(v) = {(ρ1, ρ1), (ρ5, ρ2)}, where ρ5 = {(x5, x2)}
v(ρ1, ρ1) = ρ4, v(ρ5, ρ2) = ρ6, where ρ6 = {(x5, x3)}

By computation we obtain envG(v) = envG(u) and thus the mapping envG is not
injective. This is due to the fact that the domain of v includes the useless symbol
ρ5. Really, ρ5 /∈ Clv(T0) and thus this element is not used in the computation of
envG(v). The useless symbols can be rejected by a method which is described in
what follows.

Definition 2.2.2 Let G = (S,L0, T0, f0) be a labelled graph. We define the operator

θG : R(prodS) −→ R(prodS)

taking θG(u) ≺ u such that dom(θG(u)) = (Clu(T0) × Clu(T0)) ∩ dom(u). We
denote by MGE(G) the image of the set R(prodS) by θG, that is, MGE(G) =
θG(R(prodS)).

The notation MGE(G) is derived from the fact that its elements will be considered
as mappings generating environments.

Directly from Definition 2.2.2 we express the mapping θG by the following two
conditions: {

θG(u) ≺ u
dom(θG(u)) = (HG(u)×HG(u)) ∩ dom(u)

(2.16)

Let us consider an example. We start with the sets S and T0 of below:
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S = {x1, x2, x3, x4}
T0 = {ρ1, ρ2}, where ρ1 = {(x1, x2), (x2, x1)}, ρ2 = {(x1, x3), (x2, x3)}

We consider the mapping u ∈ R(prodS) defined in Table 2.1, where

ρ3 = {(x3, x4)}, ρ4 = {(x1, x1), (x2, x2)}, ρ5 = {(x1, x4), (x2, x4)}
dom(u) = {(ρ1, ρ1), (ρ1, ρ2), (ρ2, ρ3), (ρ1, ρ4), (ρ4, ρ2)}

u ρ1 ρ2 ρ3 ρ4

ρ1 ρ4 ρ2 ρ1

ρ2 ρ5

ρ4 ρ2

Table 2.1: The mapping u

Applying (1.4) we obtain

X0 = T0

X1 = T0 ∪ {ρ4}, X2 = X1

therefore HG(u) = Clu(T0) = {ρ1, ρ2, ρ4}. Consequently, we have

(Clu(T0)× Clu(T0)) ∩ dom(u) = {(ρ1, ρ1), (ρ1, ρ2), (ρ1, ρ4), (ρ4, ρ2)}
and thus we obtain the mapping θG(u) ≺ u represented in Table 2.2.

θG(u) ρ1 ρ2 ρ4

ρ1 ρ4 ρ2 ρ1

ρ2

ρ4 ρ2

Table 2.2: The mapping θG(u)

Finally we shall remark that it suffices to consider the set MGE(G) to obtain
all LSGs over G. This will be shown in a next section (see Corollary 2.4.2), where
we shall prove the following equality:

Env(G) = {envG(u) | u ∈ MGE(G)}
If we corroborate this property with the bijectivity of the mapping envG, that is,
distinct mappings produce distinct environments (by the same corollary), then we
can anticipate that in order to investigate the general properties of a LSG, MGE(G)
is a useful set of mappings. This explain why the next section is dedicated to the
study of several algebraic properties of this set.
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2.3 Algebraic properties for MGE(G)

Two main results concerning the set MGE(G) will be proved in this section. The
first result states that MGE(G) is the set of all fixed points of the operator θG.
This is not only an interesting result by itself, but it is also used to prove the final
result of this section, which states that MGE(G) is a join semilattice with greatest
element (Proposition 2.3.6). This property is used in the next section.

In order to prove the first result, the following three properties of the operator
θG are used.

Proposition 2.3.1 HG(u) = HG(θG(u)) for every u ∈ R(prodS).

Proof. Because θG(u) ≺ u, by Proposition 2.2.1 we obtain HG(θG(u)) ⊆ HG(u).
To prove the converse implication we observe first that from (1.4) and (2.2) we have
HG(u) =

⋃
n≥0 Xn. We verify by induction on n that

Xn ⊆ HG(θG(u)) (2.17)

For n = 0 we have X0 = T0 ⊆ HG(θG(u)). Assume Xn ⊆ HG(θG(u)). Let d ∈ Xn+1.
If d ∈ Xn then d ∈ HG(θG(u)) by the inductive assumption. Otherwise there
are d1, d2 ∈ Xn such that d = u(d1, d2). By the inductive assumption we have
(2.17), therefore d1, d2 ∈ HG(θG(u)). We have also (d1, d2) ∈ (Xn ×Xn) ∩ dom(u)
⊆ (HG(u)×HG(u))∩dom(u) = dom(θG(u)). But HG(θG(u)) is closed under θG(u),
therefore θG(u)(d1, d2) ∈ HG(θG(u)). On the other hand θG(u) ≺ u, therefore
θG(u)(d1, d2) = u(d1, d2). But u(d1, d2) = d and θG(u)(d1, d2) ∈ HG(θG(u)). Thus
d ∈ HG(θG(u)) and (2.17) is proved by induction. From (2.17) we obtain

⋃
n≥0 Xn ⊆

HG(θG(u)), that is, HG(u) ⊆ HG(θG(u)).
Applying this proposition we deduce directly from (2.16) that θG satisfies also

the following property

dom(θG(u)) = (HG(θG(u))×HG(θG(u))) ∩ dom(u)

therefore
dom(θG(u)) ⊆ HG(θG(u))×HG(θG(u)) (2.18)

Proposition 2.3.2 The operator θG is idempotent. In other words, θG(θG(u)) =
θG(u) for every u ∈ R(prodS).

Proof. Using Definition 2.2.2 and Proposition 2.3.1 we obtain

dom(θG(θG(u))) = (HG(θG(u))×HG(θG(u))) ∩ dom(θG(u)) =

(HG(θG(u))×HG(θG(u))) ∩ (HG(u)×HG(u)) ∩ dom(u)=

(HG(u)×HG(u)) ∩ dom(u) = dom(θG(u))

But θG(θG(u)) ≺ θG(u), therefore θG(θG(u)) = θG(u).
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Proposition 2.3.3

The operator θG : (R(prodS),≺) −→ (R(prodS),≺) is monotone.

Proof. Let be u ≺ v. We have dom(θG(u)) = (HG(u)×HG(u))∩dom(u), therefore
by Proposition 2.2.1 we obtain

dom(θG(u)) ⊆ (HG(v)×HG(v)) ∩ dom(u) ⊆ (HG(v)×HG(v)) ∩ dom(v)

because dom(u) ⊆ dom(v). But (HG(v) × HG(v)) ∩ dom(v) = dom(θG(v)). The
relation dom(θG(u)) ⊆ dom(θG(v)) can be written equivalently θG(u) ≺ θG(v), that
is, θG is monotone.

We can now prove that MGE(G) is the set of all fixed points of θG:

Proposition 2.3.4

MGE(G) = {u ∈ R(prodS) | θG(u) = u}

Proof. We observe that θG is an interior operator because it is the dual of a closure
operator ( θG(u) ≺ u, θG is monotone and idempotent). Now, the proof is immediate
([1], p.7).

We define now a binary operation for two extensions of the same mapping, which
allows to introduce a binary operation on MGE(G) such that MGE(G) becomes a
join semilattice.

Definition 2.3.1 Let f and g be two mappings such that f(x) = g(x) for every
x ∈ dom(f) ∩ dom(g). We define the mapping f ∨ g as follows:

dom(f ∨ g) = dom(f) ∪ dom(g)

(f ∨ g)(x) =

{
f(x) if x ∈ dom(f)
g(x) if x ∈ dom(g)

(2.19)

We observe that the mapping f ∨ g is well defined because f and g have the same
values on dom(f) ∩ dom(g).

Remark 2.3.1

1) For every u ∈ R(prodS) and v ∈ R(prodS) the condition specified in Defini-
tion 2.3.1 is fulfilled and thus we may consider the mapping u∨ v. Indeed, for
every (d1, d2) ∈ dom(u)∩dom(v) we have u(d1, d2) = prodS(d1, d2) = v(d1, d2)
because u ≺ prodS and v ≺ prodS.

2) Particularly we may consider the mapping θG(u) ∨ θG(v).

It is not difficult to observe that for every u, v ∈ R(prodS) the following properties
are equivalent:

u ≺ v
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u ∨ v = v

We intend to prove now that ∨ is a binary operation on MGE(G), that is, if u, v ∈
MGE(G) then u ∨ v ∈ MGE(G). This is not an obvious property and in order to
prove it we use the following property specified in the next proposition:

Proposition 2.3.5 For every u, v ∈ R(prodS) we have

θG(u) ∨ θG(v) ∈ MGE(G)

Proof. By Proposition 2.3.4 we see that it is enough to prove that θG(u)∨θG(v) is
a fixed point of θG, that is, θG(θG(u)∨ θG(v)) = θG(u)∨ θG(v). We have θG(θG(u)∨
θG(v)) ≺ θG(u) ∨ θG(v) and thus in order to prove the proposition it is enough to
verify that dom(θG(θG(u) ∨ θG(v))) = dom(θG(u) ∨ θG(v)). We have

dom(θG(θG(u) ∨ θG(v))) = (HG(θG(u) ∨ θG(v))×HG(θG(u) ∨ θG(v))) ∩
dom(θG(u) ∨ θG(v)) (2.20)

From (2.18) and by monotony of HG (Proposition 2.2.1) we have

dom(θG(u)) ⊆ HG(θG(u)) × HG(θG(u)) ⊆ HG(θG(u) ∨ θG(v)) × HG(θG(u) ∨
θG(v))

dom(θG(v)) ⊆ HG(θG(v)) × HG(θG(v)) ⊆ HG(θG(u) ∨ θG(v)) × HG(θG(u) ∨
θG(v))

therefore dom(θG(u) ∨ θG(v)) = dom(θG(u)) ∪ dom(θG(v)) ⊆ HG(θG(u) ∨ θG(v)) ×
HG(θG(u) ∨ θG(v)). Using this inclusion in (2.20) we obtain

dom(θG(θG(u) ∨ θG(v))) = dom(θG(u) ∨ θG(v))

Corollary 2.3.1 The pair (MGE(G),∨) is an algebra, that is, for every u, v ∈
MGE(G) the element u ∨ v is in MGE(G).

Proof. Immediate by Proposition 2.3.4 and Proposition 2.3.5.

Proposition 2.3.6 (MGE(G),≺) is a join semilattice with greatest element. More
precisely, for every u, v ∈ MGE(G) there exists sup{u, v}, sup{u, v} = u ∨ v and
θG(prodS) is the greatest element of MGE(G).

Proof. We consider an arbitrary subset {u, v} ⊆ MGE(G). We have u ≺ u ∨ v
and v ≺ u ∨ v. So the element u ∨ v is an upper bound for {u, v} and by Corollary
2.3.1 the element u∨v belongs to MGE(G). Let us show that u∨v is the least upper
bound for {u, v}. To do this we consider an arbitrary upper bound w ∈ MGE(G) for
{u, v}. Thus, u ≺ w and v ≺ w. By the definition of ≺ we have dom(u) ⊆ dom(w)
and dom(v) ⊆ dom(w), therefore dom(u ∨ v) ⊆ dom(w). Consequently, u ∨ v ≺ w
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and therefore u ∨ v is the least upper bound of {u, v}. Let us consider now an
arbitrary element u ∈ MGE(G). We have u ≺ prodS and by Proposition 2.3.3
the mapping θG is monotone, therefore θG(u) ≺ θG(prodS). But θG(u) = u by
Proposition 2.3.4, therefore u ≺ θG(prodS). Because u is an arbitrary element
in MGE(G) and θG(prodS) ∈ MGE(G), it results that θG(prodS) is the greatest
element of MGE(G).

2.4 Algebraic properties for Env(G)

From Proposition 2.2.3 and Remark 2.2.2 we know that the mapping

envG : (R(prodS),≺) −→ (Env(G),¿)

is monotone and surjective, but it is not injective. At the beginning of this section
we show that if we take

envG : (MGE(G),≺) −→ (Env(G),¿)

then we obtain a bijective morphism of partially ordered sets, therefore we obtain
an isomorphism.

Proposition 2.4.1 Let be u, v ∈ MGE(G). The following conditions are equiva-
lent:

i) u ≺ v

ii) envG(u) ¿ envG(v)

Proof. Implication i) =⇒ ii) is obtained by Proposition 2.2.3 because we have
MGE(G) ⊆ R(prodS). Thus it remains to prove the implication ii) =⇒ i). Suppose
(L1, T1, f) = envG(u) and (L2, T2, g) = envG(v). We have HG(u) = T1, HG(v) = T2,
f(L1) = T1, g(L2) = T2. By Proposition 2.3.4 we have θG(u) = u and θG(v) = v,
therefore using (2.16) we have dom(u) ⊆ T1 × T1 and dom(v) ⊆ T2 × T2. Let be
(ρ1, ρ2) ∈ dom(u). There are a, b ∈ L1 such that f(a) = ρ1 and f(b) = ρ2. Using
(1.7) we deduce that σ(a, b) ∈ L1. But L1 ⊆ L2 and f ≺ g, therefore σ(a, b) ∈ L2,
a ∈ L2, b ∈ L2, f(a) = g(a), f(b) = g(b). Applying (1.7) for v, g and L2, we
deduce (g(a), g(b)) ∈ dom(v), therefore (ρ1, ρ2) ∈ dom(v). Thus we proved that
dom(u) ⊆ dom(v), that is, u ≺ v.

Corollary 2.4.1 The mapping envG : MGE(G) −→ Env(G) is injective.

Proof. Suppose envG(u) = envG(v). We have envG(u) ¿ envG(v) and envG(v) ¿
envG(u). Applying Proposition 2.4.1 we deduce u ≺ v and v ≺ u. Thus u = v.

The next result can explain why the mapping

envG : (R(prodS),≺) −→ (Env(G),¿)
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is not injective. The argument is that u ∈ R(prodS) and θG(u) generate the same
environment. This property is stated in the next proposition. On the other hand,
this result is used to prove the surjectivity of the mapping specified in Corollary
2.4.1.

Proposition 2.4.2 The following diagram is commutative:

R(prodS) -
θG

MGE(G)

?

envG

Env(G)

HHHHHHHHHHj
envG

that is, envG(u) = envG(θG(u)) for each u ∈ R(prodS).

Proof. Take an arbitrary element u ∈ R(prodS). By Proposition 2.2.3 we have
envG(θG(u)) ¿ envG(u) because θG(u) ≺ u. It remains to verify that envG(u) ¿
envG(θG(u)). Let us denote envG(u) = (L1, T1, f) and envG(θG(u)) = (L2, T2, g).
Because T1 = HG(u) and T2 = HG(θG(u)), by Proposition 2.3.1 we have T1 = T2.
We consider again the relations (2.3) and (3.1.1). Let us verify (2.7) and (2.8) by
induction on n. If σ(a, b) ∈ L1∩(B1\B0) then a, b ∈ L0 and (f(a), f(b)) ∈ dom(u) by
(1.7). Because f(L1) = T1, we have (f(a), f(b)) ∈ dom(u)∩(T1×T1) = dom(θG(u)).
On the other hand, f(a) = f0(a) = g(a) and f(b) = f0(b) = g(b). Thus we have
(g(a), g(b)) ∈ dom(θG(u)), therefore by (1.7) we obtain σ(a, b) ∈ L2. Moreover,

f(σ(a, b)) = u(f(a), f(b)) = prodS(f0(a), f0(b))

g(σ(a, b)) = θG(u)(g(a), g(b)) = prodS(f0(a), f0(b))

that is, f(σ(a, b)) = g(σ(a, b)). Thus (2.7) and (2.8) are true for n = 0.
Suppose (2.7) and (2.8) are true for n ≤ k. If σ(x, y) ∈ L1 ∩ (Bk+2 \ Bk+1) then
x ∈ L1 ∩ (Bs+1 \Bs) and y ∈ L1 ∩ (Bp+1 \Bp) for some s ≤ k and p ≤ k. Applying
the inductive assumption we have x ∈ L2 ∩ (Bs+1 \ Bs), y ∈ L2 ∩ (Bp+1 \ Bp) and
f(x) = g(x), f(y) = g(y). Because f(L1) = T1, x ∈ L1, y ∈ L1 and σ(x, y) ∈ L1,
by (1.7) we have (f(x), f(y)) ∈ dom(u)∩ (T1 × T1) = dom(u)∩ (HG(u)×HG(u)) =
dom(θG(u)). In other words, we have (g(x), g(y)) ∈ dom(θG(u)), where x, y ∈ L2.
Applying (1.7) we deduce σ(x, y) ∈ L2. Obviously f(σ(x, y)) = u(f(x), f(y)) =
prodS(f(x), f(y)) = prodS(g(x), g(y)) = θG(u)(g(x), g(y)) = g(σ(x, y)). Thus (2.7)
and (2.8) are true for every n ≥ 0. Using (2.3) and (3.1.1) we deduce L1 ⊆ L2 and
f ≺ g. We recall that T1 = T2, therefore envG(u) ¿ envG(θG(u)).

Corollary 2.4.2 The mapping envG : (MGE(G),≺) −→ (Env(G),¿) is bijective
and monotone, therefore it is an isomorphism.
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Proof. The mapping envG is injective by Corollary 2.4.1. To prove the surjec-
tivity we observe that for each (L, T, f) ∈ Env(G) there is u ∈ R(prodS) such
that envG(u) = (L, T, f). But θG(u) ∈ MGE(G) and envG(u) = envG(θG(u)) by
Proposition 2.4.2. The monotony is obtained from Proposition 2.4.1.

Taking into consideration Proposition 2.4.2 we deduce that

{envG(u) | u ∈ R(prodS)} = {envG(u) | u ∈ MGE(G)}

therefore
Env(G) = {envG(u) | u ∈ MGE(G)}

By Corollary 2.4.2 it follows that there are as many environments over G as the
cardinal number of MGE(G).

We can now prove the main result of this section, which is presented in the next
proposition.

Proposition 2.4.3 The pair (Env(G),¿) is a join semilattice with greatest ele-
ment. More precisely,

• sup{envG(u), envG(v)} = envG(u ∨ v)

• envG(θG(prodS)) is the greatest element of Env(G).

Proof. The mapping envG : MGE(G) −→ Env(G) is monotone, therefore envG

(u∨v) is an upper bound for {envG(u), envG(v)}. Moreover, envG(u∨v) is the least
upper bound for {envG(u), envG(v)}. Indeed, if envG(w) is also an upper bound for
{envG(u), envG(v)} then by Proposition 2.4.1 we have u ≺ w and v ≺ w. By Propo-
sition 2.3.6 it follows that u ∨ v ≺ w, therefore envG(u ∨ v) ¿ env(w). Now let us
consider an arbitrary element envG(u) ∈ Env(G), where u ∈ MGE(G). By Propo-
sition 2.3.6 the greatest element of MGE(G) is θG(prodS). Thus, u ≺ θG(prodS)
and therefore envG (u) ¿ envG(θG(prodS)). This shows that envG(θG(prodS)) is
the greatest element in Env(G).

2.5 An equivalence relation on Strat(G)

Using the notations introduced in the previous sections we can write

Strat(G) = {(G, L, T, u, f) | u ∈ R(prodS), envG(u) = (L, T, f)}

We can define
lsg : R(prodS) −→ Strat(G)

by lsg(u) = (G,L, T, u, f), where (L, T, f) = envG(u).
Obviously, the mapping lsg is surjective and thus

Strat(G) = {lsg(u) | u ∈ R(prodS)} (2.21)
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Definition 2.5.1 For every u, v ∈ R(prodS) we define

lsg(u) ' lsg(v) iff envG(u) = envG(v)

Obviously, ' is reflexive, symmetric and transitive, therefore it is an equivalence
relation. The factor set is denoted by Strat(G)/'. We denote by [lsg(u)] the
equivalence class defined by lsg(u).

We introduce on Strat(G)/' the following relation:

Definition 2.5.2
[lsg(u)] v [lsg(v)] iff θG(u) ≺ θG(v) (2.22)

Because the relation (2.22) is defined in terms of representatives, the next property
gives the answer to a natural question:

Proposition 2.5.1 If lsg(u) ' lsg(u1) then θG(u) = θG(u1). Consequently, the
relation v defined in (2.22) does not depend on representatives.

Proof. If lsg(u) ' lsg(u1) then envG(u) = envG(u1), therefore by Proposition
2.4.2 we have envG(θG(u)) = envG(θG(u1)). But θG(u) and θG(u1) belong to
MGE(G) and by Corollary 2.4.1 the mapping envG : MGE(G) −→ Env(G) is
injective. Thus, θG(u) = θG(u1).

Proposition 2.5.2 (Strat(G)/',v) is a partially ordered set.

Proof. The relation v is reflexive, antisymmetric and transitive. The reflexivity
and transitivity are verified immediately and the antisymmetry can be proved as
follows. Suppose [lsg(u)] v [lsg(v)] and [lsg(v)] v [lsg(u)]. We have θG(u) ≺
θG(v) and θG(v) ≺ θG(u), therefore θG(u) = θG(v). It follows that envG(θG(u)) =
env(θG(v)) and thus by Proposition 2.4.2 we have envG(u) = envG(v), that is,
[lsg(u)] = [lsg(v)].

2.6 Strat(G)/' is a join semilattice

We observe that if u, v ∈ R(prodS) then

[lsg(u)] v [lsg(v)] iff envG(u) ¿ envG(v) (2.23)

Really, this property is obtained immediately because the following relations are
equivalent by Proposition 2.4.1 and Proposition 2.4.2:

envG(u) ¿ envG(v)

envG(θG(u)) ¿ envG(θG(v))

θG(u) ≺ θG(v)
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We define now the mapping

E : Env(G) −→ Strat(G)/ '
by E(envG(u)) = [lsg(u)] for each u ∈ R(prodS).

Proposition 2.6.1 The mapping E : (Env(G),¿) −→ (Strat(G)/ ',v) is an
isomorphism.

Proof. By (2.23) the mapping E is a morphism of partially ordered sets. Obvi-
ously E is surjective. If E(envG(u)) = E(envG(v)) then lsg(u) ' lsg(v), therefore
envG(u) = envG(v). Thus E is injective.

Proposition 2.6.2 The mapping G : (MGE(G),≺) −→ (Strat(G)/ ',v), defined
by G(u) = [lsg(u)], is an isomorphism.

Proof. Immediate, if we use the diagram

(MGE(G),≺) -
envG

(Env(G),¿)

?

E

(Strat(G)/ ',v)

HHHHHHHHHHj

G

This diagram is commutative and envG and E are isomorphisms.
In the next proposition we characterize Strat(G)/' as a join semilattice.

Proposition 2.6.3 The pair (Strat(G)/',v) is a join semilattice with greatest el-
ement. More precisely,

1) If G(u) ∈ Strat(G)/' and G(v) ∈ Strat(G)/' are two arbitrary elements
then there exists sup{G(u),G(v)} ∈ Strat(G)/' and

sup{G(u),G(v)} = G(u ∨ v)

2) G(θG(prodS)) is the greatest element in (Strat(G)/',v).

Proof. Immediate by Proposition 2.3.6 and Proposition 2.6.2.

2.7 Distinguished representatives

In the previous sections we introduced some partial order between equivalence classes
such that there exists the greatest equivalence class. In this section we specify some
property for the elements of an equivalence class. This is stated in the next definition
and afterwards we show that for each equivalence class just one element satisfies
this property. In this way each equivalence class contains a ”special” representative,
which is uniquely determined.
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Definition 2.7.1 Let be u ∈ R(prodS). We consider the set

Su = {v ∈ R(prodS) | lsg(v) ' lsg(u)}

The element lsg(u0) is called the distinguished representative of [lsg(u)] if u0

is the least element of (Su,≺).

The distinguished representative of an equivalence class is uniquely determined by
the uniqueness of the least element (if any) of the set (Su,≺). We shall develop this
idea in what follows but before this, we remark the following fact. Each equivalence
class of Strat(G)/' and Strat(G) itself, is partially ordered by the relation defined
in the following definition:

Definition 2.7.2 For every u, v ∈ R(prodS) we define

lsg(u) ≤ lsg(v) iff u ≺ v

In view of this definition one might say that the distinguished representative of an
equivalence class is the least element of the corresponding class.

The next proposition is devoted to the existence of the distinguished represen-
tative.

Proposition 2.7.1 For each u ∈ R(prodS) there exists the distinguished represen-
tative of the class [lsg(u)] and moreover, this is the element lsg(θG(u)).

Proof. The element θG(u) belongs to Su and it is the least element of Su. Really,
if v ∈ Su is an arbitrary element then

• envG(u) = envG(v), therefore envG(θG(u)) = envG(θG(v))

• θG(u), θG(v) ∈ MGE(G)

Applying Corollary 2.4.1 we obtain θG(u) = θG(v). But θG(v) ≺ v, therefore θG(u) ≺
v. Thus θG(u) is the least element of Su.

Corollary 2.7.1 For each u ∈ MGE(G) the element lsg(u) is the distinguished
representative of G(u). Particularly, lsg(θG(prodS)) is the distinguished representa-
tive of G(θG(prodS)).

Proof. In view of Proposition 2.7.1, if u ∈ MGE(G) then lsg(θG(u)) is the distin-
guished representative of G(u). But for u ∈ MGE(G) we have shown that θG(u) = u,
therefore lsg(θG(u)) = lsg(u).

This result allows us to denote

DR(u) = lsg(θG(u))

for each u ∈ R(prodS). In other words, DR(u) is the distinguished representative of
the equivalence class defined by u ∈ R(prodS).
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Proposition 2.7.2 For each u, v ∈ R(prodS) the following conditions are equiva-
lent:

[lsg(u)] v [lsg(v)]

DR(u) ≤ DR(v)

Proof. The following conditions are equivalent:

[lsg(u)] v [lsg(v)]

θG(u) ≺ θG(v)

lsg(θG(u)) ≤ lsg(θG(v))

DR(u) ≤ DR(v)

Because G(θG(prodS)) is the greatest element of (Strat(G)/',v), it follows that
for every u ∈ R(prodS) we have

[lsg(u)] v G(θG(prodS)) = [lsg(θG(prodS))]

In virtue of Proposition 2.7.2 we deduce that

DR(u) ≤ DR(θG(prodS))

for every u ∈ R(prodS). In other words, DR(θG(prodS)) is the greatest element of
the set {DR(u) | u ∈ R(prodS)}. For this reason, the element DR(θG(prodS)) is
called the greatest distinguished LSG over G and it is denoted by GD.

2.8 Conclusions and open problems

In this chapter we presented several algebraic properties of labelled stratified graphs.
Thus, we introduced a set MGE(G) of mappings which generate in a bijective
manner all the labelled stratified graphs over some labelled graph G. We introduced
an equivalence relation ' on Strat(G) and we organized the factor set Strat(G)/ '
as a join semilattice with greatest element.

We defined a partial order ≤ on the set Strat(G). For each equivalence class
C ∈ Strat(G)/ ' there is a distinguished representative and this is the least ele-
ment of C with respect to ≤. Particularly, this property is true for the greatest
element of Strat(G)/ ' and the corresponding representative is named the greatest
distinguished LSG over G.

In conclusion, the set Strat(G) is first divided into equivalence classes as in
Figure 2.1, where by EC we denoted an equivalence class. The elements of a class
are grouped by the fact that they have the same environment. The partial order
v is drawn by a double arrow and it is given by the order between environments.
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On the highest level it is drawn the greatest equivalence class GEC. The inner
side of an equivalence class is shown in Figure 2.2. The elements of an equivalence
class EC are partially ordered by ≤, which is represented by a single arrow. On
the lowest level of each class EC we find its distinguished element DE, which is the
least element of EC.

ECk ECp

EC1 ECn

GEC
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Figure 2.1: The factor set Strat(G)/ '

Several questions with respect to the subject treated in this chapter are left as
open problems. We are interested in developing the following aspects:

• Find a method to extract automatically the objects and the relations specified
in a knowledge piece.

• Apply some methods of graph drawing to draw the attached labelled graph
in such a way that its objects and relations are easy to read and understand.
As a model of such work can be taken the project of the German Science
Foundation ([7]).

• Define inf{u, v}, where u, v ∈ MGE(G); use this definition to find the greatest
lower bound of two labelled stratified graphs, if any; identify an application of
this concept.

• Consider envG(u) and envG(v) for u, v ∈ MGE(G). Evaluate the components
of envG(u ∨ v) by means of the components of envG(u) and envG(v). For
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Figure 2.2: An equivalence class

example, try to prove HG(u ∨ v) = HG(u) ∪HG(v) and/or other appropriate
relations.

• Apply the concept of LSG to model an inference process.



Chapter 3

Applications of LSG

3.1 Knowledge bases with output

3.1.1 Introduction

This section is devoted to knowledge base with output (KBO), which are based on
labelled stratified graphs. For such a knowledge base we distinguish a structure
and two kinds of computations. The structure can be described by the equation
KBO = LSG+OS, that is a knowledge base with output is a labelled stratified graph
K and an output space Y . The connection of these two components is accomplished
by means of some mapping, which is named the output function. The output space Y
is endowed with an algebraic operation and K is obtained taking into consideration
a labelled graph G. The structural aspect of a KBO is obtained by specifying the
elements K, Y , the output function and the algebraic operation of Y . The structure
of the labelled stratified graph K allows us to obtain the partial algebra Treeus(K).
Using the output function an algebraic morphism from Treeus(K) to Y is obtained.

The computations performed in a KBO are represented in Figure 3.1 by two
levels: the syntactic level and the semantic level.

An interrogation or a query is obtained by specifying an ordered pair of objects.
This pair is taken into consideration by the syntactic level, the information included
in K is used and consequently some subset of Treeus(K) is obtained. The answer,
i.e. the result of the semantic computation, is the image of this set by the algebraic
morphism.

All the properties specified in this section are proved in a separate section. Sev-
eral examples are taken in order to specify the main aspects of the method.

This section is organized as follows: in Section 3.1.2 we introduce the concept of
knowledge base with output; Section 3.1.3 and Section 3.1.4 contain the descriptions
of the syntactic, respectively semantic computations in a KBO; in Section 3.1.6 we
present an application in travel scheduling; finally, Section 3.1.5 contains the proofs
of all the properties specified in Section 3.1.3.

39
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Query=⇒

Labelled
stratified
graph K

Labelled
graph G

Syntactic level

=⇒ Treeus(K) =⇒
Algebraic

morphism
Y =⇒Answer

Semantic level

Figure 3.1: Computational levels in a KBO

3.1.2 The structure of a KBO

In what follows we introduce the concept of knowledge base with output. We consider
a labelled graph G = (S, L0, T0, f0). We denote

Elem(G) = {(x, r, y) ∈ S × L0 × S | (x, y) ∈ f(r)}

and their elements are called the basic elements of G.

Definition 3.1.1 Let K = (G,L, T, u, f) be a labelled stratified graph over G. Let
Y be an arbitrary nonempty set and ∗ : Y × Y −→ Y an algebraic operation. Let
g : Elem(G) −→ Y be an arbitrary function. The system (K, Y, g, ∗) is called a
knowledge base with output (KBO) and g is called the output function. For
every u ∈ Elem(G) the element g(u) is called the output element corresponding
to the basic element u.

We observe that the structure of a KBO is given by the following three entities:

1) a labelled stratified graph G
2) an algebra (Y, ∗)
3) a link between the above entities, that is the output function

Two kinds of computations can be accomplished in a KBO. They are named syntac-
tic computations and semantic computations. They must be performed in this order.
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The final result of a syntactic computation is taken into consideration to obtain a
semantic computation and the result of such computation is an element of Y . Let us
consider a pair (x, y) ∈ S × S. If there is a ∈ L0 such that (x, a, y) ∈ Elem(G) then
g(x, a, y) is a meaning assigned to (x, y). This is the simplest computation. More
complex computations are accomplished if there is a path from x to y in G. For
this reason we shall specify in the next definition the concept of path and several
notations.

Definition 3.1.2 Let G be a labelled graph. Let be x, y ∈ S and n ≥ 1. A path
(of length n) from x to y in G is a pair ([x1, x2, . . . , xn+1], [a1, a2, . . . , an]), where
x1 = x, xn+1 = y and (xi, ai, xi+1) ∈ Elem(G) for every i ∈ {1, . . . , n}. For a given
n ≥ 1 we consider the set Pathn(x, y) of all the paths of length n from x to y and
we denote

PG(x, y) =
⋃

n≥1

Pathn(x, y); PATH(G) =
⋃

(x,y)∈S×S

PG(x, y)

3.1.3 Syntactic computations in KBOs

At the beginning of this section we shall give the intuitive meaning for the concept of
syntactic computation in K. The result of this computation is represented in Figure
3.1 by an element of Treeus(K).

Let be (x, y) ∈ S × S. A syntactic computation for (x, y) is accomplished as
follows. We consider a path p = ([x1, . . . , xn+1], [a1, . . . , an]) in G such that x1 = x
and xn+1 = y. We denote by d1(p) the following sequence of basic elements

d1(p) : z1, . . . , zn (3.1)

where zj = (xj , aj , xj+1) for j = 1, . . . , n. We choose i ∈ {1, . . . , n − 1} such that
(ai, ai+1) ∈ dom(σL). The subsequence zi, zi+1 of the sequence (3.1) is replaced
by the element (xi, σL(ai, ai+1), xi+2) and we obtain the following sequence d2(p)
containing n− 1 elements:

d2(p) : z1, . . . , zi−1, (xi, σL(ai, ai+1), xi+2), zi+2, . . . , zn (3.2)

We repeat step by step the replacement process and finally we obtain a sequence
dn(p) of the form

dn(p) : (x1, u, xn+1) (3.3)

for some u ∈ L. The element dn(p) is a result of the syntactic computation. Taking
all the elements p ∈ PG(x, y) and all the possible replacements of two consecutive
elements in dr(p) for r ≥ 1 we obtain all the syntactic computations for the pair
(x, y).

Some elements p ∈ PG(x, y) can be useless paths. They are those paths that can
not give any syntactic computation. The problem is to identify these paths.

In order to give a formal description of this computation we shall represent the
steps (3.1),(3.2), . . . , by means of some labelled tree. The following notations will be
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used in what follows. If t is a labelled tree then root(t) denotes the node which is the
root of t and label(s) denotes the label of the node s. For every node s, label(s) will
be an element of S ×L× S. For i < j we denote by CON j

l=i(wl) the concatenation
of the symbols wi, wi+1, . . . , wj . If s1, . . . , sn are all terminal nodes of the labelled
tree t from left to right in this order and label(s1) = w1, . . ., label(sn) = wn then
CONn

l=1(wl) is the frontier of t and it is denoted by front(t).
The next definition will show the manner in which a syntactic computation can

be represented by means of a labelled tree.

Definition 3.1.3 Let ([x1, . . . , xn+1], [a1, . . . , an]) be a path in G. We define the set
T ([x1, . . . , xn+1], [a1, . . . , an]) as follows:

1. for n = 1, T ([x1, x2], [a1]) contains only one tree, consisting in a single node.
This is the root of the tree and it is labelled by (x1, a1, x2).

2. for n ≥ 2, the labelled tree t is an element of T ([x1, . . . xn+1], [a1, . . . , an]) if
and only if the following conditions are satisfied:

• front(t) = CONn
i=1((xi, ai, xi+1)).

• every node s of t, which is not a terminal node, has two direct descendants:
the left descendant sl and the right descendant sr. If label(s) = (x, r, y)
then the following conditions are fulfilled:

(a) there are u, v ∈ L, z ∈ S such that label(sl) = (x, u, z), label(sr) =
(z, v, y)

(b) (u, v) ∈ dom(σL) and r = σL(u, v)

The process by means of which we obtain an element of T (p) is a syntactic com-
putation assigned to p ∈ PATH(G). If T (p) = ∅ then p is named useless path.

We are interested to solve the following two problems:

(P1) identify the useless paths in G; consequently, we find the pairs from S×S
for which we can accomplish the corresponding syntactic computations

(P2) establish the properties connecting the components of label(root(t)) for
each t ∈ T (p), where p is not an useless path in G

In order to solve these problems we introduce the following notation. The arity of
a mapping will be denoted as a superscript of the mapping symbol. If h(2) ≺ prodS

then for every n ≥ 3 we can define h(n) recursively as follows:

(ρ1, ρ2, . . . , ρn) ∈ dom(h(n)) and h(n)(ρ1, ρ2, . . . , ρn) = ρ

if and only if at least one of the following conditions is fulfilled:

1) (ρ1, h
(n−1)(ρ2, . . . , ρn)) ∈ dom(h(2)), ρ = h(2)(ρ1, h

(n−1)(ρ2, . . . , ρn))

2) (h(n−1)(ρ1, . . . , ρn−1), ρn) ∈ dom(h(2)), ρ = h(2)(h(n−1)(ρ1, . . . , ρn−1), ρn)
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3) there is k ∈ {2, . . . , n− 2} such that

3.1) (ρ1, . . . , ρk) ∈ dom(h(k)), (ρk+1, . . . , ρn) ∈ dom(h(n−k))

3.2) (h(k)(ρ1, . . . , ρk), h(n−k)(ρk+1, . . . , ρn)) ∈ dom(h(2))

3.3) ρ = h(2)(h(k)(ρ1, . . . , ρk), h(n−k)(ρk+1, . . . , ρn))

The above definition seems to be trivial because it is known that prodS is an asso-
ciative binary operation. But sometimes h is not an associative operation as we can
see in the following example.

x1 x2 x3

x4

x5

- -

?
¾

?

a1 a2

a2 a3

a4

Figure 3.2: The labelled graph for Example 3.1.1

Example 3.1.1 Let be S = {x1, x2, x3, x4, x5}. We take ρ1 = {(x1, x2)}; ρ2 =
{(x2, x3), (x2, x4)}; ρ3 = {(x3, x4)}; ρ4 = {(x4, x5)}. We suppose T0 = {ρ1, ρ2, ρ3,
ρ4}. Let be T = {ρi}i∈{1,...,7}, where ρ5 = {(x2, x4)}; ρ6 = {(x2, x5)}; ρ7 =
{(x1, x5)}. Let us take L0 = {a1, a2, a3, a4} and f0 : L0 −→ T0, f0(ai) = ρi for
i ∈ {1, . . . , 4}. The tuple G = (S,L0, T0, f0) is a labelled graph and it is drawn in
Figure 3.2. Let us consider the mapping u ≺ prodS, which is defined as follows:

u(ρ2, ρ3) = ρ5; u(ρ5, ρ4) = ρ6; u(ρ1, ρ6) = ρ7

Obviously Clu(T0) = T and AT = (T, u) becomes a partial algebra. Building a
labelled stratified graph over G we obtain successively:

D0 = L0 = {a1, a2, a3, a4}

D1 = {σ(a2, a3)}, f1(σ(a2, a3)) = ρ5

D2 = {σ(σ(a2, a3), a4)}, f2(σ(σ(a2, a3), a4)) = ρ6

D3 = {σ(a1, σ(σ(a2, a3), a4))}, f3(σ(a1, σ(σ(a2, a3), a4))) = ρ7
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Now we obtain the labelled stratified graph G = (G,L, T, u, f), where L = {a1, a2, a3,
a4,m1,m2,m}, m1 = σ(a2, a3), m2 = σ(m1, a4), m = σ(a1,m2), f(ai) = ρi for
i ∈ {1, 2, 3, 4}, f(m1) = ρ5, f(m2) = ρ6 and f(m) = ρ7.
We observe that the operation u is not an associative one although u ≺ prodS and
prodS is associative. Really, u(ρ2, u(ρ3, ρ4)) is not defined, whereas u(u(ρ2, ρ3), ρ4))
= ρ6. It follows that u(3) is defined in (ρ2, ρ3, ρ4) and u(3)(ρ2, ρ3, ρ4) = ρ6.

Let K = (G,L, T, u, f) be a labelled stratified graph over G = (S,L0, T0, f0).
We consider an arbitrary element p = ([x1, . . . , xn+1], [a1, . . . , an]) ∈ PATH(G).
The answers for the problems (P1) and (P2) are the following and their proofs are
included in Section 3.1.5:

(1) p is useless iff (f(a1), . . . , f(an)) /∈ dom(u(n)) (Corollary 3.1.3)

(2) if t ∈ T (p) then there is r ∈ L, uniquely determined, such that

label(root(t)) = (x1, r, xn+1),
(x1, xn+1) ∈ f(r),
f(r) = u(n)(f(a1), . . . , f(an)) ( Proposition 3.1.3 and Proposition 3.1.4)

(3) if a1, . . . , an ∈ L0 are arbitrary elements such that (f(a1), . . . , f(an)) ∈
dom(u(n)) then for every (x, y) ∈ u(n)(f(a1), . . . , f(an)) there is a labelled tree
t such that label(root(t)) = (x, r, y) for some r ∈ L (Proposition 3.1.5)

In other words, each syntactic computation assigned to a path whose arc sequence
is a1, . . . , an will produce an element of the form (x1, r, xn+1), where r is a label
of the same binary relation, namely u(n)(f(a1), . . . , f(an)), the first component is
the initial node and the last component is the final node of the corresponding path.
Moreover, all the elements of u(f(a1), . . . , f(an)) are used in the syntactic compu-
tations. Equivalently we can say that the set of all elements from S × S for which
we obtain syntactic computations is exactly the set

⋃

n≥2

⋃

a1,...,an∈L0

u(n)(f(a1), . . . , f(an))

Example 3.1.2 Let us consider the path ([x1, x2, x3, x4, x5], [a1, a2, a3, a4]) in G,
where G is defined in Figure 3.2. We have

u(4)(f(a1), . . . , f(a4)) = u(2)(ρ1, u
(2)(u(2)(ρ2, ρ3), ρ4)) = ρ7

therefore by Proposition 3.1.6 we have T ([x1, . . . , x5], [a1, . . . , a4]) 6= ∅. It is easy
to show that T ([x1, . . . , x5], [a1, . . . , a4]) contains only one element, that is the tree
which is represented in Figure 3.3.

We observe that
T ([x1, x2, x4, x5], [a1, a2, a4]) = ∅

although the pair ([x1, x2, x4, x5], [a1, a2, a4]) is a path in the corresponding labelled
graph. This is explained by the fact that u(3)(f(a1), f(a2), f(a4)) = ∅.

On the other hand we have
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Figure 3.3: The unique element of T ([x1, . . . , x5], [a1, . . . , a4])

u(3)(f(a2), f(a3), f(a4)) = u(2)(u(2)(f(a2), f(a3)), f(a4)) =
f(m2) = ρ6 = {(x2, x5)}

Thus the syntactic structure of m2 = σ(σ(a2, a3), a4) gives us the computation de-
scribed in Figure 3.3 by the subtree having (x2, m2, x5) as root label.

In conclusion, only for the paths ([x1, . . . , xn+1], [a1, . . . , an]) for which

(f(a1), . . . , f(an)) ∈ dom(u(n))

we can accomplish syntactic computations.

We consider a knowledge base with output KBO = (K, Y, g, ∗), where K =
(G,L, T, u, f). Frequently some restrictions concerning the connections between the
objects are specified in a knowledge piece. These restrictions can appear in various
manners and they are finally imposed on the set L. For this reason only a subset
Lus of L will be used in the deduction process. Such restrictions can be seen in the
application described in Section 3.1.6 of this chapter.

Let be Lus such that L0 ⊆ Lus ⊆ L. The elements of Lus are called useful labels.
We define

TREE(K) =
⋃

p∈PATH(G)

T (p)

Let us consider t1, t2 ∈ TREE(K). We write (t1, t2) ∈ dom(σK) iff the following
conditions are fulfilled:

1) label(root(t1)) = (x, r1, z) and label(root(t2)) = (z, r2, y) for some nodes
x, y, z and r1, r2 ∈ L

2) (r1, r2) ∈ dom(σL) and σL(r1, r2) ∈ Lus
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If this is the case we define σK(t1, t2) = t, where t is the tree such that t1 is the
left subtree, t2 is the right subtree of t and label(root(t)) = (x, σL(r1, r2), y). Thus
(TREE(K), σK) becomes a partial algebra.

Let K0 be the set of all syntactic computations corresponding to the basic ele-
ments of G, that is

K0 =
⋃

(x1,a,x2)∈Elem(G)

T ([x1, x2], [a])

This means that every element t ∈ K0 consists in a single node nt and front(t) =
label(root(t)) ∈ Elem(G).

Definition 3.1.4 We denote by Treeus(K) the closure of K0 in (TREE(K), σK),
that is Treeus(K) = ClσK (K0). The elements of Treeus(K) are called syntactic
computations.

Every node label of an element t ∈ Treeus(K) belongs to S×Lus×S. Equivalently,
if Tus(p) denotes the set of all trees t ∈ T (p) such that label(n) ∈ S × Lus × S for
every node n of t then Treeus(K) =

⋃
p∈PATH(G) Tus(p).

In conclusion, all the results of the syntactic computations performed for the
pair (x, y) ∈ S × S are the elements of the set

⋃
p∈PG(x,y) Tus(p).

3.1.4 Semantic computations in KBOs and inference

If S denotes the set of the objects belonging to some real world described by a
knowledge piece and Y is the output space then the answer function will appear as
a mapping Ans : S × S −→ 2Y . The elements of Y can be sentences in a natural
language, pieces of images and so on. An interrogation will be obtained by specifying
an ordered pair of objects, (o1, o2) ∈ S×S. The order in which we specify the objects
is taken into consideration. The simplest way to explain this property is based on the
fact that the labelled graph is oriented one, but this can be viewed also in particular
cases. If the elements of Y are sentences in a natural language then Ans(o1, o2) will
consist in all the properties of the object o1 with respect to o2. If all the properties
of o1 are needed then we take the set

⋃
o∈S Ans(o1, o).

We consider the knowledge base with output (K, Y, g, ∗), the partial algebra
(Treeus(K), σK) and the algebra (Y, ∗). Let g̃ : K0 −→ Y be the mapping g̃(t) =
g(x, a, y), where label(root(t)) = (x, a, y). There is a morphism G̃ : Treeus(K) −→
Y , uniquely determined, such that G̃(t) = g̃(t) for t ∈ K0. Thus if t1, t2 ∈ Treeus(K)
and (t1, t2) ∈ dom(σK) then G̃(σK(t1, t2)) = G̃(t1) ∗ G̃(t2).

We observe that in Definition 3.1.1 the mapping ∗ may be a partial algebraic
operation. Really, the following condition must be fulfilled: if t1, t2 ∈ Treeus(K)
and (t1, t2) ∈ dom(σK) then (G̃(t1), G̃(t2)) ∈ dom(∗).

Definition 3.1.5 Let KBO = (K, Y, g, ∗) be a knowledge base with output and Lus

such that L0 ⊆ Lus ⊆ L. Let G̃ : Treeus(K) −→ Y be the morphism determined
by g̃ : K0 −→ Y . The computation performed to obtain the value G̃(t) for some



3.1. KNOWLEDGE BASES WITH OUTPUT 47

t ∈ Treeus(K) is called semantic computation. The element G̃(t) ∈ Y is the
result of this computation. The function Ans : S × S −→ 2Y defined by

Ans(x, y) =
⋃

p∈PG(x,y)

⋃

t∈Tus(p)

{G̃(t)}

is called the answer function of KBO.

We observe that the answer function is defined by means of the paths in the
corresponding labelled graph. We shall remark that for some (x, y) ∈ S × S we can
have PG(x, y) 6= ∅, but Tus(p) = ∅ for every p ∈ PG(x, y) even if

⋃
p∈PG(x,y) T (p) 6= ∅.

In the application presented in Section 3.1.6 we see that (x6, x4) is such a pair. In
order to avoid this situation we give another description of the answer function,
which is used in applications.

We denote
Us(x, y) = {r ∈ Lus | (x, y) ∈ f(r)}
Tr(x, y) = {t ∈ Treeus(G) | label(root(t)) = (x, r, y)}

Proposition 3.1.1 For every (x, y) ∈ S × S we have

Ans(x, y) =
⋃

r∈Us(x,y)

⋃

t∈Tr(x,y)

{G̃(t)}

Proof. We verify the following relation

⋃

p∈PG(x,y)

Tus(p) =
⋃

r∈Us(x,y)

Tr(x, y)

If for some p ∈ PG(x, y) we have t ∈ Tus(p) then by Proposition 3.1.3 and by the
definition of Tus(p) there is r ∈ Lus such that label(root(t)) = (x, r, y). By Proposi-
tion 3.1.4 we have also (x, y) ∈ f(r), therefore r ∈ Us(x, y). Obviously t ∈ Tr(x, y).
Conversely, if t ∈ Tr(x, y) for some r ∈ Us(x, y) then the frontier front(t) =
(x, a1, x1)(x1, a2, x2) . . . (xn, an+1, y) gives the path p = ([x, x1, . . . , xn, y], [a1, . . .
, an+1]) ∈ PG(x, y) such that t ∈ Tus(p).

The expression given in Proposition 3.1.1 is useful in some cases, for example
when Lus ∈ Initial(L0). We observe that if this is the case then for every r ∈
Us(x, y) we have Tr(x, y) 6= ∅. This property can be proved as follows. If r ∈
Us(x, y) then r ∈ Lus and (x, y) ∈ f(r). Using the fact that Lus ∈ Initial(L0)
it is not difficult to verify by induction on the length of trace(r) that there is t ∈
Treeus(K) such that label(root(t)) = (x, r, y). Thus t ∈ Tr(x, y) and therefore
Tr(x, y) 6= ∅.

Definition 3.1.6 In a KBO the inference relation `⊆ (S × S) × 2Y is defined by
(x, y) ` M iff Ans(x, y) = M .



48 CHAPTER 3. APPLICATIONS OF LSG

3.1.5 Proofs of the theoretical results

We give in this section the formal proofs for the properties of the syntactic compu-
tations, which are presented in Section 3.1.3.

We introduce now the following notation, which is used also in the next sections.

Definition 3.1.7 For every α ∈ L we define trace(α) as follows:

(1) if α ∈ L0 then trace(α) = (α)

(2) if α = σ(u, v) then trace(α) = (p, q), where trace(u) = (p) and trace(v)
= (q)

The number n such that trace(α) ∈ Ln
0 is called the length of trace(α).

The proof of Proposition 3.1.7 uses the following remark, which can be verified
by induction on the length of trace(α):

Remark 3.1.1 If trace(α) = (a1, . . . , an) and (f(a1), . . . , f(an)) ∈ dom(u(n)) then

f(α) =





f0(α) if n = 1

u(n)(f(a1), . . . , f(an)) if n ≥ 2

Proposition 3.1.2 Let be n ≥ 2. If t ∈ T ([x1, x2, . . . , xn+1], [a1, a2, . . . , an]) then
there is i ∈ {2, . . . , n} such that tl ∈ T ([x1, x2, . . . , xi], [a1, . . . , ai−1]) and tr ∈
T ([xi, . . . , xn+1], [ai, . . . , an]), where tl and tr are the subtrees corresponding to the
left descendant, respectively right descendant of root(t).

Proof. Obviously

front(t) = CONn
l=1((xl, al, xl+1)) = front(tl).front(tr)

therefore there is i ∈ {2, . . . , n} such that

front(tl) = CON i−1
l=1 ((xl, al, xl+1)), front(tr) = CONn

l=i((xl, al, xl+1))

Thus tl ∈ T ([x1, . . . , xi], [a1, . . . , ai−1]) and tr ∈ T ([xi, . . . , xn+1], [ai, . . . , an]).

Proposition 3.1.3 If t ∈ T ([x1, x2, . . . , xn+1], [a1, a2, . . . , an]) then label(root(t))
= (x1, r, xn+1) for some r ∈ L. Moreover, trace(r) = (a1, a2, . . . , an).

Proof. Obviously the property is true for n = 1. If T ([x1, x2, x3], [a1, a2]) 6= ∅ then
this set contains only one tree, namely the tree t which is defined by the conditions:

front(t) = (x1, a1, x2)(x2, a2, x3), label(root(t)) = (x1, σL(a1, a2), x3)
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therefore the proposition is true for n = 2. We suppose that the property is true
for n ∈ {1, . . . , m − 1} and let be t ∈ T ([x1, x2, . . . , xm+1], [a1, a2, . . . , am]). By
Proposition 3.1.2 it follows that there is i ∈ {2, . . . , m} such that

tl ∈ T ([x1, x2, . . . , xi], [a1, . . . , ai−1]), tr ∈ T ([xi, . . . , xm+1], [ai, . . . , am])

where tl and tr are the subtrees corresponding to the left descendant, respectively
right descendant of root(t). By inductive assumption we have label(root(tl)) =
(x1, r1, xi) for some r1 ∈ L and label(root(tr)) = (xi, r2, xm+1) for some r2 ∈
L. Moreover, trace(r1) = (a1, . . . , ai−1) and trace(r2) = (ai, . . . , am). Since t ∈
T ([x1, x2, . . . , xm+1], [a1, a2, . . . , am]) we obtain

• (r1, r2) ∈ dom(σL)

• label(root(t)) = (x1, σL(r1, r2), xm+1)

Obviously we have trace(σL(r1, r2)) = (a1, a2, . . . , am).
We denote by Tree([a1, . . . , an]) the union set of all T ([x1, . . . , xn+1], [a1, . . . , an])

such that ([x1, . . . , xn+1], [a1, . . . , an]) ∈ Pathn(x1, xn+1). This set contains precisely
all the syntactic computations which can be realized in K by means of the sequence
a1, . . . , an.

Proposition 3.1.4 Let be n ≥ 2 and t ∈ Tree([a1, . . . , an]). If label(root(t)) =
(x, r, y) then (x, y) ∈ f(r) = σ

(n)
T (f(a1), . . . , f(an)).

Proof. First, we verify the property for n = 2. We suppose t ∈ Tree([a1, a2]) =⋃
x1,x2,x3∈S T ([x1, x2, x3], [a1, a2]). We denote label(root(t)) = (x, r, y). There is

z ∈ S such that t ∈ T ([x, z, y], [a1, a2]), therefore (x, a1, z) ∈ Elem(G), (z, a2, y) ∈
Elem(G). We have also r = σL(a1, a2), therefore (f(a1), f(a2)) ∈ dom(u). Since
u ≺ prod, (x, z) ∈ f(a1) and (z, y) ∈ f(a2) it follows that (x, y) ∈ u(f(a1), f(a2)) =
f(σL(a1, a2)) = f(r).
We suppose the proposition is true for n ∈ {2, . . . , m} and we prove it for n = m+1.
Let us consider t ∈ Tree([a1, . . . , am+1]) and we denote label(root(t)) = (x, r, y).
From the definition of Tree([a1, . . . , am+1]) we deduce that there are x2, . . . , xm+1 ∈
S such that t ∈ T ([x, x2, . . . , xm+1, y], [a1, . . . , am+1]). We denote by tl, tr the sub-
trees corresponding to the left descendant, respectively right descendant of root(t).
By Proposition 3.1.2 it follows that there is k ∈ {2, . . . , m + 1} such that

tl ∈ T ([x, x2, . . . , xk], [a1, . . . , ak−1]), tr ∈ T ([xk, . . . , xm+1, y], [ak, . . . , am+1])

First, we assume k 6= 2 and k 6= m + 1. By Proposition 3.1.3 we have label(root(tl))
= (x, r1, xk), label(root(tr)) = (xk, r2, y) and r = σL(r1, r2) for some r1, r2 ∈ L. By
inductive assumption we have

(x, xk) ∈ f(r1) = u(k−1)(f(a1), . . . , f(ak−1))

(xk, y) ∈ f(r2) = u(m+2−k)(f(ak), . . . , f(am+1))
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Since (r1, r2) ∈ dom(σL) it follows that (f(r1), f(r2)) ∈ dom(u). Because u ∈
R(prodS), we have

(x, y) ∈ u(2)(f(r1), f(r2)) = u(2)(u(k−1)(f(a1), . . . , f(ak−1)),

u(m+2−k)(f(ak), . . . , f(am+1))) = u(m+1)(f(a1), . . . , f(am+1))

We have also

f(r) = f(σL(r1, r2)) = u(f(r1), f(r2)) = u(m+1)(f(a1), . . . , f(am+1))

If k = 2 then label(root(tl)) = (x, a1, x2), label(root(tr)) = (x2, r2, y) and r =
σL(a1, r2). From (x, a1, x2) ∈ Elem(G) it follows that (x, x2) ∈ f(a1). From
tr ∈ Tree([a2, . . . , am+1]) by inductive assumption it follows (x2, y) ∈ f(r2) =
u(m)(f(a2), . . . , am+1)). As in the previous case we have (a1, r2) ∈ dom(σL), there-
fore (f(a1), f(r2)) ∈ dom(u) and (x, y) ∈ f(r) = u(f(a1), f(r2))=
u(f(a1), u(m)(f(a2), . . . , f(am+1)))= u(m+1)(f(a1), . . . , f(am+1)).
The case k = m + 1 is similar to the case k = 2.

Corollary 3.1.1 If T ([x1, x2, . . . , xn+1], [a1, a2, . . . , an]) 6= ∅ then

(x1, xn+1) ∈ u(n)(f(a1), . . . , f(an))

Proof. Let be t ∈ T ([x1, x2, . . . , xn+1], [a1, a2, . . . , an]). By Proposition 3.1.3 there
is r ∈ L euch that label(root(t)) = (x1, r, xn+1). By Proposition 3.1.4 we have
(x1, xn+1) ∈ f(r) = u(n)(f(a1), . . . , f(an)).

Proposition 3.1.5 Let be n ≥ 2 and a1, . . . , an ∈ L0 such that (f(a1), . . . , f(an))
∈ dom(u(n)). For every (x, y) ∈ u(n)(f(a1), . . . , f(an)) there is a labelled tree t ∈
Tree([a1, . . . , an]) such that label(root(t)) = (x, r, y) for some r ∈ ⋃n−1

k=1 Dk.

Proof. We verify the property for n = 2. If (f(a1), f(a2)) ∈ dom(u(2)) then
(a1, a2) ∈ dom(σL). Let be (x, y) ∈ u(2)(f(a1), f(a2)). It follows that there is
z ∈ S such that (x, z) ∈ f(a1), (z, y) ∈ f(a2). Thus (x, a1, z) ∈ Elem(G),
(z, a2, y) ∈ Elem(G). The set T ([x, z, y], [a1, a2]) contains only one element, namely
the tree t which is defined by label(root(t)) = (x, σL(a1, a2), y) and front(t) =
(x, a1, z)(z, a2, y). Thus the property is true for n = 2.
We suppose the property is true for n ∈ {2, . . . , m} and (f(a1), . . . , f(am+1)) ∈
dom(u(m+1)). Let us consider an arbitrary element (x, y) ∈ u(m+1)(f(a1), . . . ,
f(am+1)). We analyse the following three cases:

I) We denote u = f(a1), v = (f(a2), . . . , f(am+1)) and suppose v ∈ dom(u(m)),
(u, u(m)(v)) ∈ dom(u(2)).
It follows that u(m+1)(f(a1), . . . , f(am+1)) = u(2)(u, u(m)(v)). From (x, y) ∈
u(2)(u, u(m)(v)) it follows that there is z ∈ S such that (x, z) ∈ u, (z, y) ∈
u(m)(v). Applying the inductive assumption it follows that there is a labelled
tree t2 ∈ Tree([a2, . . . , am+1]) such that label(root(t2)) = (z, r2, y) for some
r2 ∈

⋃m−1
k=1 Dk. By Proposition 3.1.4 we have f(r2) = u(m)(v). Taking into
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account that a1 ∈ D0, r2 ∈
⋃m−1

k=1 Dk and (u, f(r2)) ∈ dom(u(2)) we deduce
that (a1, r2) ∈ dom(σL). We take r = σL(a1, r2), which belongs to

⋃m
k=2 Dk.

There are y1, . . . ym−1 ∈ S such that t2 ∈ T ([z, y1, . . . ym−1, y], [a2, . . . , am+1]).
We consider the tree t which is defined by the following conditions:

• label(root(t)) = (x, σL(a1, r2), y)

• the label of the left descendant of root(t) is (x, a1, z)

• the right descendant of root(t) is labelled by (z, r2, y) and its correspond-
ing subtree is t2

Obviously t ∈ Tree([a1, . . . , am+1]).

II) We denote u = (f(a1), . . . , f(am)), v = f(am+1). Suppose u ∈ dom(u(m)),
(u(m)(u), v) ∈ dom(u(2)). This is treated in a similar manner as in the previous
case.

III) We denote u = (f(a1), . . . , f(ak)) and v = (f(ak+1), . . . , f(am+1)), where
k ∈ {2, . . . , m− 1}. Suppose u ∈ dom(u(k)), v ∈ dom(u(m−k+1)) and (u(k)(u),
u(m−k+1)(v)) ∈ dom(u(2)). It follows that

u(m+1)(f(a1), . . . , f(am+1)) = u(2)(u(k)(u), u(m−k+1)(v))

We denote A = [a1, . . . , ak] and B = [ak+1, . . . , am+1]. Let us consider an
arbitrary element (x, y) ∈ u(m+1)(f(a1), . . . , f(am+1)). There is z ∈ S such
that (x, z) ∈ u(k)(u), (z, y) ∈ u(m−k+1)(v). By inductive assumption there are
tl ∈ Tree(A), tr ∈ Tree(B) satisfying the conditions

label(root(tl)) = (x,m1, z); label(root(tr)) = (z, m2, y)

for some m1 ∈
⋃k−1

p=1 Dp, m2 ∈
⋃m−k

q=1 Dq. By Proposition 3.1.4 we obtain:

(x, z) ∈ f(m1) = u(k)(u); (z, y) ∈ f(m2) = u(m−k+1)(v)

We have (m1,m2) ∈ L×L and (f(m1), f(m2)) ∈ dom(u(2)), therefore (m1,m2)
∈ dom(σL). If we denote r = σL(m1,m2) then r ∈ ⋃m

l=1 Dl. We take the tree
which is defined by the following conditions:

label(root(t)) = (x, r, y)

tl is the subtree corresponding to the left descendant of root(t)

tr is the subtree corresponding to the right descendant of root(t)

There are y1, . . . , yk−1, z1, . . . , zm−k ∈ S such that

tl ∈ T ([x, y1, . . . , yk−1, z], A), tr ∈ T ([z, z1, . . . , zm−k, y], B)

It follows that t ∈ T ([x, y1, . . . , yk−1, z, z1, . . . , zm−k, y], [a1, . . . , am+1]), there-
fore t ∈ Tree([a1, . . . , am+1])
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Corollary 3.1.2 Tree([a1, . . . , an]) 6= ∅ iff (f(a1), . . . , f(an)) ∈ dom(u(n))

Proof. We apply Proposition 3.1.4 and Proposition 3.1.5.

Proposition 3.1.6 Let be n ≥ 2 and ([x1, . . . , xn+1], [a1, . . . , an]) ∈ PATH(G). If
(f(a1), . . . , f(an)) ∈ dom(u(n)) then T ([x1, . . . , xn+1], [a1, . . . , an]) 6= ∅.

Proof. We proceed by induction on n. For n = 2 the property is true. Suppose
the property is true for every n < r and we prove it for n = r. Let be p =
([x1, . . . , xr+1], [a1, . . . , ar]) ∈ PATH(G) such that (f(a1), . . . , f(ar)) ∈ dom(u(r)).
Three cases are possible, but we shall examine here only the case when there is
k ∈ {2, . . . , r − 2} such that

(f(a1), . . . , f(ak)) ∈ dom(u(k))

(f(ak+1), . . . , f(ar)) ∈ dom(u(r−k))

(u(k)(f(a1), . . . , f(ak)), u(r−k)(f(ak+1), . . . , f(ar))) ∈ dom(u(2))

u(r)(f(a1), . . . , f(ar)) =
u(2)(u(k)(f(a1), . . . , f(ak)), u(r−k)(f(ak+1), . . . , f(ar)))

We denote

p1 = ([x1, . . . , xk+1], [a1, . . . , ak]), p2 = ([xk+1, . . . , xr+1], [ak+1, . . . , ar])

We have p1, p2 ∈ PATH(G). By the inductive assumption we have T (p1) 6= ∅ and
T (p2) 6= ∅. Let be t1 ∈ T (p1) and t2 ∈ T (p2). By Proposition 3.1.3 and Proposi-
tion 3.1.4 we have label(root(t1)) = (x1, u1, xk+1), label(root(t2)) = (xk+1, u2, xr+1)
for some u1, u2 ∈ L, (x1, xk+1) ∈ f(u1) = u(k)(f(a1), . . . , f(ak)), (xk+1, xr+1) ∈
f(u2) = u(r−k)(f(ak+1), . . . , f(ar)). Thus we have (x1, xr) ∈ u(2)(f(u1), f(u2))
= u(r)(f(a1), . . . , f(ar)).
Because

{(u, v) ∈ L× L | (f(u), f(v)) ∈ dom(u)} ⊆ dom(σL)

and (f(u1), f(u2)) ∈ dom(u(2)), we obtain σL(u1, u2) ∈ L. We consider the tree t
such that label(root(t)) = (x1, σL(u1, u2), xr) and obviously t ∈ T (p).

Corollary 3.1.3 Let be p = ([x1, . . . , xn+1], [a1, . . . , an]) ∈ PATH(G). We have
T (p) 6= ∅ iff (f(a1), . . . , f(an)) ∈ dom(u(n)).

Proof. Suppose T (p) 6= ∅. If by contrary we have (f(a1), . . . , f(an)) /∈ dom(u(n))
then Tree([a1, . . . , an]) = ∅ therefore T (p) = ∅, which is not true. The converse
implication is obtained by Proposition 3.1.6.



3.1. KNOWLEDGE BASES WITH OUTPUT 53

3.1.6 An application of KBOs in travel scheduling.

The concept of KBO can be used in writing of interfaces for expert systems, problem
solving, rewriting systems and other domains. In this section we consider a simple
application of this concept. Let us consider the following knowledge piece KP2:

We consider the airports x1, . . . , xm. The companies L1, . . . , Lk organize some
non-stop flights between these airports. It is known a set R of restrictions
concerning the continuation of a travel for a passenger. An element of R is
a rule of the form Li −→ Pi, where Pi is a nonempty subset of {L1, . . . , Lk}.
Such rule specifies the following property: if a passenger arrives in some airport
using the company Li then he may continue his travel with the company L only
if L ∈ Pi. Give the answer to the following interrogation: given a pair (x, y) of
airports, is there a flight from x to y having at most n intermediary airports?
In the affirmative case find all the solutions.

In order to solve this problem we consider S = {x1, . . . , xm} and we denote by
ρi the following binary relation on S, where i ∈ {1, . . . , k}: (xp, xq) ∈ ρi iff the
company Li organizes a non-stop flight from xp to xq. We take L0 = {l1, . . . , lk},
T0 = {ρ1, . . . , ρk} and f0 : L0 −→ T0, where f0(li) = ρi for i ∈ {1, . . . , k}. Thus
we obtain the labelled graph G = (S, L0, T0, f0). We consider the greatest labelled
stratified graph G = (G,L, T, prodS , f) over G. We shall specify R as a set of pairs
of the form (ls, lr) as follows: (ls, lr) ∈ R iff there is a rule Ls −→ Ps such that
Lr ∈ Ps.

Intuitively, an useful label is an element α ∈ L such that if trace(α) = (li1 , . . . , lis)
then there is a path in G giving a solution of the problem, that is the path satisfies
the restrictions and the corresponding non-stop flights are realized respectively by
Li1 , . . . , Lis . We denote last(α) = lis .

We define inductively the set Lus of the useful labels as follows:

• L0 ⊆ Lus

• α = σ(u, v) ∈ Lus iff u ∈ Lus, v ∈ L0, (last(u), v) ∈ R and trace(u) ∈ ⋃n+1
k=1 Lk

0

Proposition 3.1.7 There is a solution of the problem from xi to xj if and only if
Us(xi, xj) 6= ∅. Moreover, if α ∈ Us(xi, xj) and trace(α) = (li1 , . . . , lis) then the
sequence Li1 , . . . , Lis gives a solution.

Proof. If there is a solution from xi to xj then there is a path p in G such that
p = ([xi, xi1 , . . . , xis , xj ], [li1 , . . . , lis+1 ]), (liu , liu+1) ∈ R for u ∈ {1, . . . , s} and 0 ≤
s ≤ n. If s = 0 then p = ([xi, xj ], li1) is a path in G, therefore Us(xi, xj) 6= ∅ because
li1 ∈ Us(xi, xj). For the case s ≥ 1 we define recursively

li1 = α0

σ(αu, liu+2) = αu+1 for u ∈ {0, . . . , s− 1}
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Applying the definition of Dk (k ≥ 0) and using the fact that u = prodS we deduce
that αi ∈ Di for i ∈ {0, . . . , s}. The path p gives a solution for KP2, therefore
{(li1 , li2), (li2 , li3), . . . , (lis , lis+1)} ⊆ R. Equivalently we have (last(αu), liu+2) ∈ R
for each u ∈ {0, . . . , s − 1}. But 0 ≤ s ≤ n and trace(αs) = (li1 , . . . , lis+1) ∈ Ls+1

0 ,
therefore αs ∈ Lus. Moreover, (xi, xi1) ∈ f0(li1) = f(li1), . . ., (xis , xj) ∈ f0(lis+1) =
f(lis+1) and thus (xi, xj) ∈ prodS(f(li1), . . . , f(lis+1)). Taking into account Remark
3.1.1 and the choice u = prodS , it follows that (xi, xj) ∈ f(αs). Thus αs ∈ Us(xi, xj)
and therefore Us(xi, xj) 6= ∅.
Conversely, suppose (xi, xj) ∈ f(α) and α ∈ Lus. Either α ∈ L0 or there are s ≥ 2
and li1 , . . . , lis ∈ L0 such that α = αs−1, where

σ(li1 , li2) = α1

σ(αu, liu+2) = αu+1 for u ∈ {1, . . . , s− 2}
and (liq , liq+1) ∈ R for q ∈ {1, . . . , s− 1}. Moreover, s ≤ n + 1.
If α ∈ L0 then there is a non-stop flight from xi to xj and thus there is a solution
for KP2.
If the second case holds, that is α = αs−1, then by the morphism property of f we
obtain

f(αs−1) = f(σ(αs−2, lis)) = σ
(2)
T (f(αs−2), f(lis))

From (xi, xj) ∈ f(αs−1) we deduce that there is ys−2 ∈ S such that (xi, ys−2) ∈
f(αs−2) and (ys−2, xj) ∈ f(lis). We iterate this property and thus there are y0, . . . ,
ys−2 ∈ S such that (xi, y0) ∈ f(li1), (y0, y1) ∈ f(li2), . . .,(ys−2, xj) ∈ f(lis). It
follows that ([xi, y0, . . . , ys−2, xj ], [li1 , . . . , lis ]) is a path in G and it gives a solution
for KP2 because there are at most n intermediary nodes.

If X ⊆ L and Y ⊆ L0 then we denote X⊗Y = {(u, v) ∈ X×Y | (last(u), v) ∈ R}.
We denote D

(us)
k = Dk ∩ Lus for any k ≥ 0. It is not difficult to observe that

D
(us)
0 = L0 and D

(us)
k+1 = {σ(u, v) | (u, v) ∈ D

(us)
k ⊗ D

(us)
0 , f(u) ◦ f(v) 6= ∅} for

0 ≤ k ≤ n − 1. Thus in order to compute the set Lus we compute D
(us)
0 , . . . , D

(us)
n

and we take Lus =
⋃n

k=0 D
(us)
k .

In order to illustrate the computation we consider m = 9, n = 2, k = 3 and the
following binary relations on S = {x1, . . . , x9}:

ρ1 = {(x1, x2), (x2, x3), (x2, x6)},
ρ2 = {(x3, x4), (x4, x5), (x6, x7), (x7, x8), (x8, x9), (x9, x5)}
ρ3 = {(x1, x3), (x3, x5), (x7, x4)}

We obtain the labelled graph G = (S, L0, T0, f0) from Figure 3.4.
We suppose the restrictions of the problem are represented by the fact that

the company L3 does not take over the passengers of L1 or L2. It follows that
R = {(l1, l1), (l2, l2), (l3, l3), (l1, l2), (l2, l1), (l3, l1), (l3, l2)}. We obtain the following
computations:
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x1 - x2 - x3 - x4 - x5

x6 - x7 - x8 - x9

l1 l1 l2 l2

l2 l2 l2

?

l3

?

l3

?

l1
6
l2

6l3

Figure 3.4: Labelled graph for KP2, where m = 9, n = 2, k = 3

1)D(us)
0 = {l1, l2, l3};
f0(l1) = ρ1; f0(l2) = ρ2; f0(l3) = ρ3

2)D(us)
1 = {σ(l1, l1), σ(l1, l2), σ(l2, l2), σ(l3, l2), σ(l3, l3)};
f(σ(l1, l1)) = ρ4; f(σ(l1, l2)) = ρ5; f(σ(l2, l2)) = ρ6;

f(σ(l3, l2)) = ρ7; f(σ(l3, l3)) = ρ8,

where

ρ4 = {(x1, x3), (x1, x6)}, ρ5 = {(x2, x4), (x2, x7)},
ρ6 = {(x3, x5), (x6, x8), (x7, x9), (x8, x5)},
ρ7 = {(x1, x4), (x7, x5)}, ρ8 = {(x1, x5)}

3)D(us)
2 = {σ(σ(l1, l1), l2), σ(σ(l1, l2), l2), σ(σ(l2, l2), l2), σ(σ(l3, l2), l2)};
f(σ(σ(l1, l1), l2)) = ρ9; f(σ(σ(l1, l2), l2)) = ρ10; f(σ(σ(l2, l2), l2)) = ρ11;
f(σ(σ(l3, l2), l2)) = ρ8,

where

ρ9 = {(x1, x4), (x1, x7)}, ρ10 = {(x2, x5), (x2, x8)},
ρ11 = {(x6, x9), (x7, x5)}

It follows that Lus = D
(us)
0 ∪D

(us)
1 ∪D

(us)
2 .

In order to obtain the solutions of the given problem we proceed as follows. Let
be (xi, xj) ∈ S × S. We consider the sets Us(xi, xj). If Us(xi, xj) = ∅ then it does
not exist any solution. Otherwise, every element of Us(xi, xj) will give a solution
of the problem. For example, in order to learn if there is a flight from x1 to x4 we
observe that Us(x1, x4) = {σ(l3, l2), σ(σ(l1, l1), l2)}. It follows that there are two
solutions. The same problem for (x2, x4) has only one solution, namely σ(l1, l2).
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We consider the labelled stratified graph G = (G, L, T, prodS , f), where G =
(S,L0, T0, f0). In order to obtain a KBO we denote by Y the space of all the
sentences of the form use the companies Li1 , . . . , Lis and use the company L, where
s ≥ 2 and Li1 , . . . , Lis , L ∈ {L1, L2, L3}. We define the following partial algebraic
operation ∗ on Y :

1) If p=use the companies Li1 , . . . , Lis and q=use the company L then

p ∗ q =

{
p if L ∈ {Li1 , . . . , Lis}
r otherwise

where r=use the companies Li1 , . . . , Lis , L.

2) If p=use the company Li1 and q=use the company Li2 then

p ∗ q =

{
p if Li1 = Li2

r otherwise

where r=use the companies Li1 , Li2 .

We consider the mapping g̃ : K0 −→ Y defined by g̃(x, li, y) = use the company Li

for i ∈ {1, 2, 3}.
In order to compute Ans(x, y) we use Proposition 3.1.1. For example, if we are

interested for the solutions from x1 to x4 then we find Us(x1, x4) = {α, β}, where
α = σ(l3, l2) and β = σ(σ(l1, l1), l2). If we denote Tα(x1, x4) = {t1} and Tβ(x1, x4) =
{t2} then G̃(t1) =use the companies L3, L2 and G̃(t2) =use the companies L1, L2.
Thus we have

Ans(x1, x4) = { use the companies L3, L2; use the companies L1, L2 }

Similarly we have Ans(x6, x4) = ∅. It is not difficult to give an algorithm to solve
the problem for an arbitrary natural number n.

Remark 3.1.2 We observe that in this application the elements of L are not effec-
tively enumerated. Only the elements of the set Lus are used. We observe also that
∗ is a partial algebraic operation.

Remark 3.1.3 The method presented in this section to obtain an inference in a
KBO is based on the set Lus, which is a part of the set L. Thus, the main problem
is reduced to the extraction of the set Lus. In the next section we present another
aspect concerning the inference process based on labelled stratified graphs. In this
case the inference is obtained by means of an interpretation defined for a labelled
stratified graph.
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3.2 Inference based on LSGs and applications

3.2.1 Overview

In this section we present another facet of the inference process based on labelled
stratified graphs. We introduce the concept of structured path and we introduce
in this way some order on a given path. In comparison with the inference based
on KBO, we establish this order instead of the useful labels from the set L. Two
applications of this method are presented: one for the case when the conclusion of
the inference process is given in a natural language and other case when we process
geometric images.

3.2.2 Structured paths in a LSG

We consider a path
d = ([x1, . . . , xn+1], [a1, . . . , an]) (3.4)

in a labeled graph G = (S,L0, T0, f0).

Definition 3.2.1 Consider the least set STR(d) satisfying the following conditions:

• ([xi, xi+1], ai) ∈ STR(d), i ∈ {1, . . . , n}

• if ([xi, . . . , xk], b1) ∈ STR(d) and ([xk, . . . , xr], b2) ∈ STR(d), where 1 ≤ i <
k < r ≤ n + 1, then ([xi, . . . , xr], [b1, b2]) ∈ STR(d)

The maximal length elements of STR(d), namely, the elements of the form

([x1, . . . , xn+1], c) ∈ STR(d)

are called structured paths over d.

We consider the projection of STR(d) under the second axis:

STR2(d) = {β | ∃α : (α, β) ∈ STR(d)}

Consider for example the path

d = ([x1, x2, x3, x4], [a, b, a])

in an arbitrary labeled graph.
We have

STR(d) = {([x1, x2], a), ([x2, x3], b), ([x3, x4], a),

([x1, x2, x3], [a, b]), ([x2, x3, x4][b, a]), ([x1, x2, x3, x4],

[[a, b], a]), ([x1, x2, x3, x4], [a, [b, a]])}
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therefore
STR2(d) = {a, b, [a, b], [b, a], [[a, b], a], [a, [b, a]]} (3.5)

Thus, two structured paths are obtained:

([x1, x2, x3, x4], [[a, b], a]), ([x1, x2, x3, x4], [a, [b, a]])

Let d be a path as in (3.4). We define the mapping

h : STR2(d) −→ B

where B is defined in (1.3), as follows:

• h(x) = x for x ∈ L0

• h([u, v]) = σ(h(u), h(v))

For the case given in (3.5) we obtain, for example, h([a, b]) = σ(a, b), h([a, [b, a]]) =
σ(a, σ(b, a)).

Definition 3.2.2 The structured path ds ∈ STR(d) is named an accepted struc-
tured path over G if ds = ([x1, . . . , xn+1], c) and h(c) ∈ L. We denote by ASP (G)
the set of all accepted structured paths over G.

In order to benefit by the properties of L as a subset of a Peano algebra, it
is convenient to denote a structured path by ds = ([x1, . . . , xn+1], h(c)) instead of
ds = ([x1, . . . , xn+1], c). This notation simplifies also the decision concerning the
acceptability of a structured path.

The following notations will be used in what follows. If t is a labeled tree then
root(t) denotes the node which is the root of t and label(s) denotes the label of
the node s. For every node s, label(s) will be an element of S×L×S. For i < j we
denote by CON j

l=i(wl) the concatenation of the symbols wi, wi+1, . . . , wj .
If s1, . . . , sn are the leaves of the labeled tree t from left to right in this order

and label(s1) = w1, . . . , label(sn) = wn then CONn
l=1(wl) is the frontier of t and it

is denoted by front(t).
Let us consider a structured path

ds = ([x1, . . . , xn+1], h(c)) ∈ STR(d)

for the path d considered in (3.4).
We denote by t(ds) some tree defined as follows. If n = 1 then t(ds) reduces to

a single node, which is the root of the tree and its label is (x1, a1, x2). If n ≥ 2 then
t(ds) satisfies the following rules:

• front(t) = CONn
i=1((xi, ai, xi+1)).

• every node s of t, which is not a leaf, has two direct descendants: the left
descendant sl and the right descendant sr. If label(s) = (x, r, y) then the
following conditions are fulfilled: there are u, v ∈ h(STR2(d)) and z ∈ S such
that label(sl) = (x, u, z), label(sr) = (z, v, y) and r = σ(u, v).
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x1 x2 x3 x4

x5

- --

?

--a1

a4

a2

a3

a5

a1

x6-a6

Figure 3.5: A labelled graph

We say that t(ds) is a tree over B. The element h(c) is the label of root(t(ds)) and
obviously h(c) ∈ B.

Definition 3.2.3 If t is a tree over B then we say that t is an accepted tree for G
if label(root(t)) ∈ L. We denote by AT (G) the set of all accepted trees for G.

Example 3.2.1 We consider a labeled graph G0 as in Figure 3.5, where we have a
set S = {x1, . . . , x6} of nodes and several arcs labeled by a1, . . . , a6. We denote by
L0 = {a1, . . . , a6} the set of all these labels.

We consider the following binary relations:




ρ1 = {(x1, x2), (x3, x4)};
ρ2 = {(x2, x3)}; ρ3 = {(x2, x5)};
ρ4 = {(x3, x4)}; ρ5 = {(x5, x6)}

(3.6)

and take T0 = {ρ1, ρ2, ρ3, ρ4, ρ5}, the surjective mapping f0 : L0 −→ T0 defined by
f0(a1) = ρ1, f0(a2) = f0(a4) = ρ2, f0(a3) = ρ3, f0(a5) = ρ4, f0(a6) = ρ5.

Take for the graph represented in Figure 3.5 the following values:

u(ρ1, ρ3) = ω1 = {(x1, x5)}; u(ω1, ρ5) = ω2 = {(x1, x6)};
u(ρ3, ρ5) = ω3 = {(x2, x6)}; u(ρ1, ω3) = ω2

We obtain the following components of the corresponding LSG:

T = T0 ∪ {ω1, ω2, ω3};
L = L0 ∪ {σ(a1, a3), σ(a3, a6), σ(σ(a1, a3), a6), σ(a1, σ(a3, a6))}
f(σ(a1, a3)) = ω1; f(σ(a3, a6)) = ω3

f(σ(σ(a1, a3), a6)) = f(σ(a1, σ(a3, a6))) = ω2

As we shall see in a separate section, in the inference process we use a path based
mechanism. By the above choice of u only the path passing through the nodes
x1, x2, x5, x6 can be used. If we intend to use also the node x3 then we have to
use also ρ2 in the definition of u.

For the path d = ([x1, x2, x5, x6], [a1, a3, a6]) there are only two structured paths:
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Figure 3.7: The element t(d2
s)

d1
s = ([x1, x2, x5, x6], σ(σ(a1, a3), a6)) ∈ STR(d)

d2
s = ([x1, x2, x5, x6], σ(a1, σ(a3, a6))) ∈ STR(d)

The elements t(d1
s) and t(d2

s) are drawn in Figure 3.6 and Figure 3.7 respectively,
where:

n2 = σ(σ(a1, a3), a6), n1 = σ(a1, a3)

m2 = σ(a1, σ(a3, a6)),m1 = σ(a3, a6)

Both t(d1
s) and t(d2

s) are trees over B. Moreover, t(d1
s) ∈ AT (G) and t(d2

s) ∈
AT (G) because σ(σ(a1, a3), a6) ∈ L, σ(a1, σ(a3, a6)) ∈ L. In fact, an accepted tree
is obtained only from an accepted structured path.

Let be ds = ([x1, . . . , xn+1], σ(v1, v2)) ∈ ASP (G), where n ≥ 2. From σ(v1, v2) ∈
L and L ∈ Initial(L0) we deduce that v1 ∈ L and v2 ∈ L. We have also

label(root(t(ds))) = (x1, σ(v1, v2), xn+1)

Because t(ds) is a binary tree, there is two direct descendants of root(t(ds)). We
denote by tl the subtree corresponding to the left descendant and by tr the subtree
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defined by the right descendant of root(t(ds)). Obviously, there is one and only one
i ∈ {2, . . . , n} such that

front(tl) = CON i−1
l=1 (xl, al, xl+1)

front(tr) = CONn
l=i(xl, al, xl+1)

label(root(tl)) = v1; label(root(tr)) = v2

Moreover, we have

([x1, . . . , xi], v1) ∈ ASP (G)

([xi, . . . , xn+1], v2) ∈ ASP (G)

Thus we proved the following proposition:

Proposition 3.2.1 For every accepted structured path

([x1, . . . , xn+1], σ(v1, v2)) ∈ ASP (G)

where n ≥ 2, there is one and only one i ∈ {2, . . . , n} such that the following two
conditions are fulfilled:

([x1, . . . , xi], v1) ∈ ASP (G)

([xi, . . . , xn+1], v2) ∈ ASP (G)

In other words, Proposition 3.2.1 states that every accepted structured path over G
can be broken into two accepted structured paths over G. The number i stated in
Proposition 1 is named the break index for the path ds and is denoted by ind(ds). In
general, if v ∈ B =

⋃
k≥0 Bk then there is k, uniquely determined, such that v ∈ Bk.

We denote |v| = k + 1 and this means that |v| is the number of elements from L0

that appear in v. Now, the value ind(ds) can be expressed as follows:

ind(ds) = |v1|+ 1

For example, if ds = ([x1, x2, x5, x6], σ(σ(a1, a3), a6)) is an accepted structured path
over G considered in Example 3.2.1, then ind(ds) = 3.

3.2.3 Interpretations of labelled stratified graphs

Consider a stratified graph G = (G0, L, T, u, f) over G0 = (S,L0, T0, f0). In this
section we deal with the inference process generated by an accepted structured path
over G. A basic concept is introduced in the next definition.

Definition 3.2.4 An interpretation for G is a tuple

Σ = (Ob, i,D,P)

where:
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• Ob is a finite set of objects such that

Card(Ob) = Card(S)

• i : S −→ Ob is a bijective mapping

• D = (Y, ∗) is a partial algebra; Y is called the domain of Σ and ∗ is a partial
binary operation on Y

• P = {pa}a∈L0, where pa : Ob×Ob −→ Y

In general, an interpretation is used to evaluate terms in mathematical logic. In
our case, a term will be an element of ASP (G). The evaluation process is described
in the next definition.

Definition 3.2.5 The valuation mapping generated by Σ is the mapping

valΣ : ASP (G) −→ Y

defined inductively as follows:




valΣ([x, y], a) = pa(i(x), i(y))

valΣ(x(1;n + 1), σ(v1, v2)) = valΣ(x(1; i), v1) ∗ valΣ(x(i; n + 1), v2)
(3.7)

where i = ind([x1, . . . , xn+1], σ(v1, v2)) and x(i; j) = [xi, . . . , xj ].

Applying this definition for the path ds = ([x1, x2, x5, x6], σ(σ(a1, a3), a6)) con-
sidered in the last part of the previous section we obtain:

• v1 = σ(a1, a3); v2 = a6; |v1| = 2; |v2| = 1

• ind(ds) = 3

• The value of the mapping valΣ for ds:
valΣ(ds) = valΣ([x1, x2, x5], σ(a1, a3))∗valΣ([x5, x6], a6) = (valΣ([x1, x2], a1)∗
valΣ([x2, x5], a3)) ∗ valΣ([x5, x6], a6) = (pa1(i(x1), i(x2)) ∗ pa3(i(x2), i(x5))) ∗
pa6(i(x5), i(x6))

Because a stratified graph is an abstract structure, an inference process and its
conclusion are defined with respect to some interpretation. These concepts are
stated in the following definition.

Definition 3.2.6 Consider a stratified graph G = (G0, L, T, u, f) over G0 = (S,L0,
T0, f0) and Σ = (Ob, i, D,P) an interpretation for G. A pair (x, y) ∈ S ×S is called
interrogation. For a given interrogation (x, y) we designate by ASP (x, y) the set
of all accepted structured paths from x to y in G. The answer mapping is the
mapping

Ans : S × S −→ Y ∪ {no}
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defined as follows:




Ans(x, y) = no if ASP (x, y) = ∅

Ans(x, y) = {valΣ(d) | d ∈ ASP (x, y)} if ASP (x, y) 6= ∅
(3.8)

The inference process generated by ds ∈ ASP (G) is the computation performed to
obtain valΣ(ds) by (3.7). The element valΣ(ds) is the conclusion of the corresponding
process.

3.2.4 First application: conclusion is given in a natural language

In this section we deal with the case when the answer of an interrogation is given
in a natural language. In general, for some simplified cases concerning the meaning
of the binary relations, this problem can be modeled by a semantic network. In
comparison with a semantic network, there is no restriction concerning the meaning
of a binary relation in a LSG.

Consider the labeled graph G0 represented in Figure 3.5 and take u = prodS .
Suppose the following knowledge piece KP1 is given:
Peter is a friend of Emily. Emily is a teacher. Every teacher likes to drive a car.
Emily learns Ann to drive a car. Usually, Emily helps Ann to learn mathematics.
Ann likes to play tennis with Tom.
We observe KP1 contains 6 objects and 6 binary relations. We can establish a
connection between the labeled graph represented in Figure 3.5 and KP1. More
precisely, we can define the following interpretation Σ1 = {Ob, i,D,P} for G:

• Ob = {Peter, Emily, Ann, Tom, teacher, car}

• i(x1) = Peter; i(x2) = Emily; i(x3) = Ann;
i(x4) = Tom; i(x5) = teacher; i(x6) = car;

• P = {pai}i∈{1,...,6}, where each mapping pai is such that pai(x, y) is some
sentence. For our case we choose the following sentences:

pa1(x, y)= ”x is a friend of y”;

pa2(x, y)= ”x learns y to drive a car”;

pa3(x, y)= ”x is a y”;

pa4(x, y)= ”usually x helps y to learn mathematics”;

pa5(x, y)= ”x likes to play tennis with y”;

pa6(x, y)= ”every x likes to drive a y”

• For every x, y, z ∈ Ob we define:

pa1(x, y) ∗ pa3(y, z) = r1(x, z), where r1(x, z)= ”x is a friend of a z”
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r1(x, y) ∗ pa6(y, z) = r2(x, z), where r2(x, z)= ”x is a friend of a person
which likes to drive a z”

pa3(x, y) ∗ pa6(y, z) = r3(x, z), where r3(x, z)= ”x is a person which likes
to drive a z”

pa1(x, y) ∗ r3(y, z) = r2(x, z)

and so on.

Taking Y the set of all these sentences we obtain the partial algebra (Y, ∗).
Computing the valuation mapping for some particular case we obtain:

valΣ1([x1, x2, x5, x6], σ(σ(a1, a3), a6)) =

valΣ1([x1, x2, x5], σ(a1, a3)) ∗ valΣ1([x5, x6], a6) =

(valΣ1([x1, x2], a1) ∗ valΣ1([x2, x3], a3)) ∗ valΣ1([x5, x6], a6) =

(pa1(i(x1), i(x2)) ∗ pa3(i(x2), i(x5))) ∗ pa6(i(x5), i(x6)) =

r1(i(x1), i(x5)) ∗ pa6(i(x5), i(x6)) = r2(i(x1), i(x6))

= ”Peter is a friend of a person which likes to drive a car”

The same conclusion is obtained if we valuate

valΣ1([x1, x2, x5, x6], σ(a1, σ(a3, a6)))

3.2.5 Second application: conclusion is a geometric image

This section is devoted to the case when the conclusion is a geometric image. Two
accepted structured paths for the same path are used such that different conclusions
are obtained. To highlight the fact that a stratified graph is an abstract structure
we shall use the same stratified graph as in the previous section, but the context
is given by other interpretation. So we change the context by choosing another
interpretation.

Consider the stratified graph G from the previous section and the following in-
terpretation Σ2 = {Ob, i, D,P} for G:

• Ob = {A0(k, 0), B0(k+3, 0), C0(k+5, 0), D0(k+7, 0), E0(k+11), F0(k+15, 0)}
Thus Ob contains 6 points of the real plan, where k is some constant.

• i(x1) = A0; i(x2) = B0; i(x3) = E0, i(x4) = F0, i(x5) = C0; i(x6) = D0

• P = {pai}i∈{1,...,6}
where each pai(x, y) is a geometric figure in the plan R × R, uniquely deter-
mined by the points x and y. For our purpose we choose the following figures:

pa1(x, y) is the square having the diagonal xy;
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pa3(x, y) is the circle of diameter xy;

pa6(x, y) is the regular triangle such that xy is one of its altitude and x
is a vertex of the triangle;

• The space Y is the set of all geometric figures of the plan R×R such that each
figure has an axis of symmetry (a circle, a regular or isosceles triangle etc).
Moreover, if we obtain α ∗ β for some α, β ∈ Y then the following condition is
satisfied: α, β and α ∗ β have the same axis of symmetry.

In order to define the elements of Y we use the notation plr(X1, . . . , Xr) to designate
the polygonal line passing successively by the points X1, . . . , Xr. Based on this
convention, pa1 and pa6 can be expressed by means of pl5 and pl4 respectively.

We relieve the following aspect of the operation ∗ from Y : if X and Y are two
polygonal lines then X ∗Y is, in general, the ”least” polygon containing both X and
Y . Now we give a detailed definition:

pa1(M,Z)∗pa3(Z, V ) = pl4(A,B, C, A), where A,B, C, Z, V,M are represented
in Figure 3.8a)

pl4(A,B, C,A) ∗ pa6(E, V ) = pl7(A,G, D, F, R, B, A), where all the points are
represented in Figure 3.8b)

pa3(M,A) ∗ pa6(A,H) = pl5(D, E, F, G,D) as we show in Figure 3.9a). The
figure DEFG is an isosceles trapezoid and is obtained as follows: the regular
triangle ABC is uniquely determined by the points A and H; the straight line
MG, which is parallel with AB, cuts the circle in D; similarly is obtained the
point E.

pa1(A,C) ∗ pl4(E, F, G,H) = pl8(A,B, E, F,G, H, D,A), where all the points
are represented in Figure 3.9b). The figure EFGH is an isosceles trapezoid
having a common axis of symmetry with the square ABCD: the straight line
passing by the points A and C.

Computing the valuation mapping for the accepted structured path

([x1, x2, x5, x6], σ(σ(a1, a3), a6))

we obtain:

valΣ2([x1, x2, x5, x6], σ(σ(a1, a3), a6))) =

valΣ2([x1, x2, x5], σ(a1, a3)) ∗ valΣ2([x5, x6], a6) =

(valΣ2([x1, x2], a1) ∗ valΣ2([x2, x5], a3)) ∗ valΣ2([x5, x6], a6) =

(pa1(i(x1), i(x2)) ∗ pa3(i(x2), i(x5))) ∗ pa6(i(x5), i(x6)) =

(pa1(A0, B0) ∗ pa3(B0, C0)) ∗ pa6(C0, D0) = pl4(D,M,H, D) ∗ pa6(C0, D0) =



66 CHAPTER 3. APPLICATIONS OF LSG

·····
·····
·····
·····
·····
·····
·····

µ´
¶³

³³³³³³³

£
£
£
£
£
£
£

@
@

@
@@

B

C

A

Z

V

M

a)

B

aaaaaaaaa

A

!!!!!!!!!
C

bbbbbb

F

""""""

D

E
G

R

V

b)

Figure 3.8: Operation ∗

G B C F

"!

#Ã

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢¢

A
A
A
A
A
A

A
A
A
A
A
A
A
A
AA

A
D E

M

H
a)

¡
¡¡

@
@@

@
@@

¡
¡¡ Q

QQ

´
´́

»»»»»

XXXXX

A C

D
H

G

B
E

F

b)

Figure 3.9:

hhhhhhhh
hhhh

((((((((
((((

©©©©

HHHH

◦A0

M

H

◦
B0

◦
C0

A

U

◦D0

B

F

C

E
D

Figure 3.10:



3.2. INFERENCE BASED ON LSGS AND APPLICATIONS 67

¡
¡¡

@
@@

"""""""

bbbbbbb

````̀

ÃÃÃÃÃ
◦

A0

M

E

◦
B0

◦
C0

A

D

◦
D0

B

C

Figure 3.11:

pl4(D, M, H, D) ∗ pl4(C0, B, F, C0) = pl10(M, A, B,C, D, E, F, U,H,M)

where all the points are represented in Figure 3.10.
Now we compute the valuation mapping for the accepted structured path

([x1, x2, x5, x6], σ(a1, σ(a3, a6)))

and obtain successively:

valΣ2([x1, x2, x5, x6], σ(a1, σ(a3, a6)))) =

valΣ2([x1, x2], a1) ∗ valΣ2([x2, x5, x6], σ(a3, a6)) =

valΣ2([x1, x2], a1) ∗ (valΣ2([x2, x5], a3)) ∗ valΣ2([x5, x6], a6)) =

pa1(i(x1), i(x2)) ∗ (pa3(i(x2), i(x5)) ∗ pa6(i(x5), i(x6))) =

pa1(A0, B0) ∗ (pa3(B0, C0) ∗ pa6(C0, D0)) =

pa1(A0, B0) ∗ pl5(A,B, C, D,A) = pl8(M,A, B, C,D, E, A0,M)

where all the points are represented in Figure 3.11.
We shall remark that we considered the path

d = ([x1, x2, x5, x6], [a1, a3, a6])

and the following accepted structured paths of d:

d1 = ([x1, x2, x5, x6], σ(σ(a1, a3), a6))

d2 = ([x1, x2, x5, x6], σ(a1, σ(a3, a6)))

Computing the valuation mapping for these structured paths with respect to the
interpretation Σ2 we obtain different conclusions. Applying (3.8) we conclude that
Ans(x1, x6) contains two geometric figures, but Ans(x6, x1) = no. The method
presented in this section can be used in image synthesis.
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3.3 An application for greatest distinguished LSGs

We consider a directed graph G0 = (S, Γ), where S = {x1, . . . , xm} is the set of its
nodes. Let A = {a1, . . . , ak} be a set of properties or attributes for the elements of
Γ. The attributes a1, . . . , ak may represent colours or other properties. For example,
if A = {black, yellow, green} then the arcs of G0 may be coloured with black, yellow
or green. Other attributes may represent properties such as closed road, works in
progress, rain and so on.

An attribute graph is a tuple (G0, A, attr), where

• G0 = (S, Γ) is a directed graph

• A = {a1, . . . , ak} is the set of attribute names

• attr : Γ −→ 2A \ {∅} is a mapping such that attr(xi, xj) is the set of all
attributes associated to (xi, xj) ∈ Γ

• for each i ∈ {1, . . . , k} there is (xp, xq) ∈ Γ such that ai ∈ attr(xp, xq)

A path in an attribute graph (G0, A, attr) is a pair ([x1, . . . , xn], [a1, . . . , an−1]), where
(xi, xi+1) ∈ Γ and ai ∈ attr(xi, xi+1) for i ∈ {1, . . . , n− 1}.

We consider the mappings R : A −→ 2A, K : A −→ 2A and a subset N0 ⊆ A.
By definition, an accepted path from y1 to yn is a path ([y1, . . . , yn], [b1, . . . , bn−1])
in (G0, A, attr) such that b1 ∈ A \N0 and bi+1 ∈ R(bi) \K(bi) for i ∈ {1, . . . , n− 2}.
The tuple (R, K,N0) defines the restrictions imposed on accepted paths. We shall
denote by Pathacc(y1, yn) the set of the accepted paths from y1 to yn.

Given two arbitrary nodes y, z ∈ S and a natural number r the following prob-
lems arise:

P1) Decide whether or not the set
⋃r

s=0 Paths
acc(y, z) is a non-empty set, where

Paths
acc(y, z) denotes the set of all accepted paths from y to z that contain

exactly s intermediary nodes. In other words, the problem is to decide whether
or not there is an accepted path from y to z containing at most r intermediary
nodes.

P2) In the affirmative case, find all these paths.

In order to transpose this problem in terms of labelled graphs we take L0 = A =
{a1, . . . , ak} and for each i ∈ {1, . . . , k} we consider the following binary relation on
S:

f0(ai) = {(xp, xq) ∈ Γ | ai ∈ attr(xp, xq)} (3.9)

We consider T0 = {ρ | ∃ai ∈ A : f0(ai) = ρ}. We obtain the labelled graph
G = (S, L0, T0, f0), where f0 : L0 −→ T0 is the mapping defined in (3.9).
In order to exemplify this situation we consider the directed graph G0 = (S, Γ),
where

S = {x1, x2, x3, x4}
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Γ = {(x1, x2), (x2, x3), (x3, x4)}

Let us take:

A = {a1, a2, a3}

attr(x1, x2) = {a1, a2}; attr(x2, x3) = {a1, a2}; attr(x3, x4) = {a3}

We obtain the attribute graph (G0, A, attr). For this example we obtain:

f0(a1) = f0(a2) = {(x1, x2), (x2, x3)} = ρ1

f0(a3) = {(x3, x4)} = ρ2

In this case we have L0 = {a1, a2, a3} and T0 = {ρ1, ρ2}.
We consider the greatest distinguished LSG over G, that is DR(θG(prodS)):

G(θG(prodS)) = (G,L, T, θG(prodS), f)

where (L, T, f) = envG(θG(prodS)). This is the LSG used to solve the problems P1
and P2. An essential aspect is that only some elements of L and T are used and the
selection of these elements is described in what follows.

For every α ∈ L we define trace(α) as follows:

(1) if α ∈ L0 then trace(α) = (α)

(2) if α = σ(u, v) then trace(α) = (p, q), where trace(u) = (p) and trace(v) =
(q)

For example, trace(a) = (a) for a ∈ L0, trace(σ(a, b)) = (a, b), trace(σ(σ(a, b),
σ(a, c))) = (a, b, a, c) and so on. We observe that if α ∈ L then there are s ≥ 1
and ai1 , . . . , ais ∈ L0 such that trace(α) = (ai1 , . . . , ais). If this is the case, then we
denote last(α) = ais .

If U ⊆ L then we denote

U⊗ = {(u, v) | u ∈ U, v ∈ R(last(u)) \K(last(u))} (3.10)

As we stated above, only some of the elements of L will be used to solve the
problems P1 and P2. We shall denote by Lus the set of these elements, which are
called useful labels. In order to extract the set Lus we define recursively

{
Q0 = L0 \N0

Qn+1 = {σ(u, v) | (u, v) ∈ Q⊗
n , (f(u), f(v)) ∈ dom(θG(prodS))} (3.11)

and take Lus =
⋃r

n=0 Qn.

Remark 3.3.1 If α ∈ Qn then trace(α) ∈ Ln+1
0 .
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We verify by induction on n that Qn ⊆ L and thus we shall have Lus ⊆ L. Obviously
Q0 ⊆ L. Suppose Qn ⊆ L for some n. If σ(u, v) ∈ Qn+1 then (u, v) ∈ Q⊗

n and
(f(u), f(v)) ∈ dom(θG(prodS)). Applying (3.10) and the inductive assumption we
obtain u ∈ Qn ⊆ L, v ∈ R(last(u)) \ K(last(u)) ⊆ A = L0 ⊆ L. Using (1.7) we
obtain (u, v) ∈ dom(σL), therefore σ(u, v) ∈ L. Thus Qn ⊆ L for each n.

Applying (2.16) for u = prodS we obtain

dom(θG(prodS)) = (HG(prodS)×HG(prodS)) ∩ dom(prodS)

therefore the following relations are equivalent:

(ρi, ρj) ∈ dom(θG(prodS)) (3.12)

ρi, ρj ∈ HG(prodS), ρi ◦ ρj 6= ∅ (3.13)

Because envG(θG(prodS)) = (L, T, f), we have f(L) = T = HG(θG(prodS)) =
HG(prodS). Based on (3.12) and (3.13) we deduce that the following relations are
equivalent for u, v ∈ L:

(f(u), f(v)) ∈ dom(θG(prodS)) (3.14)

f(u) ◦ f(v) 6= ∅ (3.15)

Consequently, (3.11) can be written equivalently
{

Q0 = L0 \N0

Qn+1 = {σ(u, v) | (u, v) ∈ Q⊗
n , f(u) ◦ f(v) 6= ∅} (3.16)

and in applications we shall use (3.16) instead of (3.11).
For each (x, y) ∈ S × S we denote

Us(x, y) = {α ∈ Lus | (x, y) ∈ f(α)} (3.17)

For a given sequence b1, b2, . . . of elements from L0 we define

seq(b1) = b1

seq(b1 . . . bj+1) = σ(seq(b1 . . . bj), bj+1)

Thus we have seq(b1, b2) = σ(b1, b2), seq(b1, b2, b3) = σ(σ(b1, b2), b3) and so on.
We observe that if α ∈ Qn then there are b1, . . . , bn+1 ∈ L0 such that α =

seq(b1, . . . , bn+1). Based on the fact that Lus =
⋃r

n=0 Qn we deduce that for each
α ∈ Lus there are n ≤ r and b1, . . . , bn+1 such that α = seq(b1, . . . , bn+1).

Proposition 3.3.1 The following properties are fulfilled:

1) If α = seq(b1, . . . , bs+1) ∈ Us(xi, xj) then s ≤ r and there are z1, . . . , zs ∈ S
such that ([xi, z1, . . . , zs, xj ], [b1, . . . , bs+1]) ∈ Paths

acc(xi, xj).
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2) Let be s ≤ r and b1, . . . , bs+1 ∈ L0. If ([y1, . . . , ys+2], [b1, . . . , bs+1]) ∈
Paths

acc(y1, ys+2) then seq(b1 . . . bj) ∈ Us(y1, yj+1) for j = 1, . . . , s + 1.

Proof. Let us prove the first property. We consider α = seq(b1, . . . , bs+1) ∈
Us(xi, xj). As we observed before we have s ≤ r. We prove that there are
z1, . . . , zs ∈ S such that ([xi, z1, . . . , zs, xj ], [b1, . . . , bs+1]) ∈ Pathacc (xi, xj). We
proceed by induction on s.
1) Initial step. If s = 0 then α = b1 ∈ Us(xi, xj)∩L0 ⊆ Lus∩L0 = Q0 = L0\N0. By
the definition of Us(xi, xj) we deduce (xi, xj) ∈ f(b1) = f0(b1), therefore (xi, xj) ∈ Γ
and b1 ∈ attr(xi, xj). Thus, ([xi, xj ], [b1]) ∈ Pathacc(xi, xj).
2) Inductive step. We suppose the property is true for some s < r and take
α = seq(b1, . . . , bs+2) ∈ Us(xi, xj). Because Us(xi, xj) ⊆ Lus =

⋃r
n=0 Qn, it fol-

lows that α ∈ Qs+1. Using (3.10) and (3.16) we deduce that α = σ(β, bs+2),
β = seq(b1, . . . , bs+1) ∈ Qs and bs+2 ∈ R(last(β)) \ K(last(β)). Moreover, f(β) ◦
f0(bs+2) 6= ∅. From α ∈ Us(xi, xj) we deduce (xi, xj) ∈ f(α). But f is a morphism
in the structure of G(θG(prodS)), therefore f(α) = f(σ(β, bs+2)) = θG(prodS)(f(β),
f0(bs+2)) = f(β) ◦ f0(bs+2). It follows that there is z ∈ S such that (xi, z) ∈ f(β)
and (z, xj) ∈ f0(bs+2). From β ∈ Qs ⊆ Lus and (xi, z) ∈ f(β), by (3.17) we obtain
β ∈ Us(xi, z). Applying the inductive assumption for β it follows that there are
z1, . . . , zs ∈ S such that

([xi, z1, . . . , zs, z], [b1, . . . , bs+1]) ∈ Pathacc(xi, z)

It follows that

([xi, z1, . . . , zs, z, xj ], [b1, . . . , bs+1, bs+2]) ∈ Pathacc(xi, xj)

because (z, xj) ∈ f0(bs+2) and bs+2 ∈ R(bs+1) \K(bs+1). Thus the proof of the first
part is finished.
In order to prove the second part we suppose

([y1, . . . , ys+2], [b1, . . . , bs+1]) ∈ Paths
acc(y1, ys+2)

where s ≤ r. Graphically, we have the following path in G:

y1 - y2 - . . . -ys+1 -ys+2
b1 b2 bs bs+1

We denote lm = seq(b1 . . . bm) for m = 1, . . . , s+1. We prove that lm ∈ Us(y1, ym+1)
∩Qm−1 for m = 1, . . . , s + 1. To do this we proceed by induction on m. We have
b1 ∈ L0 \N0 = Q0 ⊆ Lus and (y1, y2) ∈ f0(b1) by (3.9). Thus, l1 ∈ Us(y1, y2) ∩Q0

and the property is true for m = 1. We suppose lm ∈ Us(y1, ym+1) ∩ Qm−1 for
some m ≤ s. We have bm+1 ∈ R(bm) \K(bm) = R(last(lm)) \K(last(lm)), therefore
(lm, bm+1) ∈ Q⊗

m−1. Moreover, from lm ∈ Us(y1, ym+1) we deduce

(y1, ym+1) ∈ f(lm) (3.18)
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We have also
(ym+1, ym+2) ∈ f0(bm+1) = f(bm+1) (3.19)

by (3.9). From (3.18) and (3.19) we deduce

(f(lm), f(bm+1)) ∈ dom(prodS)

and
(y1, ym+2) ∈ prodS(f(lm), f(bm+1))

The relation (3.15) is satisfied by the elements lm and bm+1, therefore by (3.14) we
shall have (f(lm), f(bm+1)) ∈ dom(θG(prodS)). Using again (3.18) and (3.19) we
can now state that (y1, ym+2) ∈ θG(prodS)(f(lm), f(bm+1)). Taking into account
the property (lm, bm+1) ∈ Q⊗

m−1 and using (3.11) we deduce σ(lm, bm+1) ∈ Qm,
that is lm+1 ∈ Qm ⊆ Lus. We have (y1, ym+2) ∈ θG(prodS)(f(lm), f(bm+1)) =
f(σ(lm, bm+1)) = f(lm+1) and lm+1 ∈ Qm ⊆ Lus, therefore lm+1 ∈ Us(y1, ym+2)
∩Qm. The proof is complete.

Corollary 3.3.1
⋃r

s=0 Paths
acc(xi, xj) 6= ∅ if and only if Us(xi, xj) 6= ∅.

Thus the problem P1 is solved by Corollary 3.3.1. In order to solve the problem P2
we use the following property:

Proposition 3.3.2 Let be s ≤ r and b1, . . . , bs+1 ∈ L0. The following conditions
are equivalent:

([xi, z1, . . . , zs, xj ], [b1, . . . , bs+1]) ∈ Paths
acc(xi, xj) (3.20)

{
seq(b1 . . . bs+1) ∈ Us(xi, xj)
(xi, z1) ∈ f0(b1), (z1, z2) ∈ f0(b2), . . . , (zs, xj) ∈ f0(bs+1)

(3.21)

Proof. If (3.20) is true then seq(b1 . . . bs+1) ∈ Us(xi, xj) by Proposition 3.3.1 and




(xi, z1) ∈ Γ, b1 ∈ attr(xi, z1),
(z1, z2) ∈ Γ, b2 ∈ attr(z1, z2),
. . . . . . . . .
(zs, xj) ∈ Γ, bs+1 ∈ attr(zs, xj)

(3.22)

Equivalently we have (3.21). Conversely, if (3.21) is satisfied then (3.22) is satisfied
from the definition of f0. But seq(b1 . . . bs+1) ∈ Us(xi, xj) therefore seq(b1 . . . bs+1) ∈
Qs. It follows that bs+1 ∈ R(bs) \ K(bs). Moreover, seq(b1 . . . bs) ∈ Qs−1, . . .,
seq(b1, b2) ∈ Q1. Thus, bj ∈ R(bj−1) \K(bj1) for j = s + 1, . . . , 2, b1 ∈ Q0 = L0 \N0

and therefore we have (3.20).

Remark 3.3.2 We observe that the second part of the condition (3.21) gives an
ordinary path ([xi, z1, . . . , zs, xj ], [b1, . . . , bs+1]) in G0. Thus, Proposition 3.3.2
states that the accepted paths from xi to xj are exactly the ordinary paths which
are "guided" by the elements of Us(xi, xj).
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In conclusion, in order to solve the problems P1 and P2 we can apply the following
steps:

Step 1: compute Q0, Q1, . . . , Qr and take Lus =
⋃r

n=0 Qn

Step 2: compute the values of the mapping f only for the elements of Lus

Step 3: let be x, y two nodes; take Us(x, y) = {α ∈ Lus | (x, y) ∈ f(α)}

Step 4: if Us(x, y) = ∅ then
⋃r

s=0 Paths
acc(xi, xj) = ∅

Step 5: otherwise, for each α ∈ Us(x, y) compute all the sequences z1, . . . , zs ∈
S such that (x, z1) ∈ f0(b1), (z1, z2) ∈ f0(b2), . . . , (zs, y) ∈ f0(bs+1), where
α = seq(b1 . . . bs+1)

Now it is not difficult to append several steps to obtain other properties such as the
length of the shortest path and so on.

3.4 Collaboration between distinguished
representatives

In this section we present a simple application, which can be stated shortly as follows:
given G(u) and G(v) use G(u ∨ v). In this application we use a ”graphs merging”
operation for two labelled graphs. In order to realize this aim we consider the
following problem: the companies C1 and C2 accomplish transport services between
some centers of the same county; the conveyance is performed by goods trains such
that if a final center for a company is encountered then in order to continue the
movement by means of other company, the goods are moved to the headquarter of
the corresponding company; by some agreement which stipulates that C1 and C2

become members of a common association CA, the goods arrived to a final center
for some company are taken over directly by the other company; the quality of the
services are known for each company. The problem is the following: for a given pair
(x, y) of centers is there a direct conveyance realized by CA?

The services accomplished by Ci are described by a labelled graph Gi (i =
1, 2). In order to obtain a satisfactory description we have to consider the mappings
u = θG1(prodS), v = θG2(prodS) and u ∨ v. We are interested to integrate DR(u)
and DR(v) in DR(u ∨ v). Some collaboration between DR(u) and DR(v) will be
obtained in a natural manner but in order to impose additional collaboration we
have to complete the graph DR(u ∨ v). The description of these operations is the
aim of this section.

In order to fix the ideas we shall consider the labelled graphs G1 from Figure
3.12 and G2 from Figure 3.13.

We shall take:

1) G1 = (S,L
(1)
0 , T

(1)
0 , f

(1)
0 ) where
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• S = {x1, x2, x3, x4, x5, x6, x7}
• L

(1)
0 = {a1, b1, c1}

• T
(1)
0 = {ρ1, ρ2, ρ3}, where

ρ1 = {(x1, x2), (x3, x4)}, ρ2 = {(x2, x3), (x5, x6)}, ρ3 = {(x6, x7)}
• f0(a1) = ρ1, f0(b1) = ρ2, f0(c1) = ρ3

Taking u = θG1(prodS) we obtain Table 3.1, where x denotes the fact that the
corresponding relations can not be composed by the product operation and

µ1 = {(x1, x3)}, µ2 = {(x2, x4)}, µ3 = {(x5, x7)}, µ4 = {(x1, x4)}
Computing the components of G(G1, u) = (G1, L

(1), T (1)), f (1) we obtain:

• D
(1)
0 = L

(1)
0 = {a1/ρ1, b1/ρ2, c1/ρ3}

• D
(1)
1 = {σ(a1, b1)/µ1, σ(b1, a1)/µ2, σ(b1, c1)/µ3}

• D
(1)
2 = {σ(a1, σ(b1, a1))/µ4, σ(σ(a1, b1), a1)/µ4}

• L(1) = D
(1)
0 ∪D

(1)
1 ∪D

(1)
2

• T (1) = {ρ1, ρ2, ρ3, µ1, µ2, µ3, µ4}
where we denoted by α/ρ the property f (1)(α) = ρ.

2) G2 = (S, L
(2)
0 , T

(2)
0 , f

(2)
0 ) where

• S = {x1, x2, x3, x4, x5, x6, x7}
• L

(2)
0 = {a2, b2, c2}

• T
(2)
0 = {ρ1, ρ2, ρ4}, where ρ4 = {(x4, x5)}

• f0(a2) = ρ1, f0(b2) = ρ2, f0(c2) = ρ4

Taking v = θG2(prodS) we obtain Table 3.2, where

µ5 = {(x1, x5)}; µ6 = {(x2, x5)}; µ7 = {(x2, x6)}
µ8 = {(x3, x6)}; µ11 = {(x1, x6)}

If we compute the components of G(G2, v) = (G2, L
(2), T (2), v, f (2)) we obtain:

• D
(2)
0 = L

(2)
0 = {a2/ρ1, b2/ρ2, c2/ρ4}

• D
(2)
1 = {σ(a2, b2)/µ1, σ(a2, c2)/ν1, σ(b2, a2)/µ2, σ(c2, b2)/ν2}

• D
(2)
2 = {σ(a2, σ(b2, a2))/µ4, σ(a2, σ(c2, b2))/µ8, σ(b2, σ(a2, c2))/µ6,

σ(σ(a2, b2), a2)/µ4, σ(σ(a2, b2), σ(a2, c2))/µ5, σ(σ(b2, a2), c2)/µ6,

σ(σ(b2, a2), σ(c2, b2))/µ7, σ(σ(a2, c2), b2)/µ8}
• D

(2)
3 = {σ(a2, σ(b2, σ(a2, c2)))/µ5, σ(a2, σ(σ(b2, a2), c2))/µ5,
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u ρ1 ρ2 ρ3 µ1 µ2 µ3 µ4

ρ1 x µ1 x x µ4 x x
ρ2 µ2 x µ3 x x x x
ρ3 x x x x x x x
µ1 µ4 x x x x x x
µ2 x x x x x x x
µ3 x x x x x x x
µ4 x x x x x x x

Table 3.1: The mapping u for G1

σ(a2, σ(σ(b2, a2), σ(c2, b2)))/µ11, σ(b2, σ(a2, σ(c2, b2)))/µ7,

σ(b2, σ(σ(a2, c2), b2))/µ7, σ(σ(a2, b2), σ(σ(a2, c2), b2))/µ11,

σ(σ(a2, b2), σ(a2, σ(c2, b2)))/µ11, σ(σ(a2, σ(b2, a2)), c2)/µ5,

σ(σ(σ(a2, b2), a2), c2)/µ5, σ(σ(a2, σ(b2, a2)), σ(c2, b2))/µ11,

σ(σ(σ(a2, b2), a2), σ(c2, b2))/µ11, σ(σ(σ(a2, b2), σ(a2, c2)), b2)/µ11,

σ(σ(b2, σ(a2, c2)), b2)/µ7, σ(σ(σ(b2, a2), c2), b2)/µ7}
• L(2) = D

(2)
0 ∪D

(2)
1 ∪D

(2)
2 ∪D

(2)
3

• T (2) = T
(2)
0 ∪ {µ1, µ2, ν1, ν2, µ4, µ5, µ6, µ7, µ8, µ11}

x1 x2 x5 x6

x3 x4 x7

- -

-
? ?

a1 b1

a1

b1 c1

Figure 3.12: Labelled graph G1



76 CHAPTER 3. APPLICATIONS OF LSG

x1 x2 x5 x6

x3 x4

- -

-
?

a2 b2

a2

b2

6

c2

Figure 3.13: Labelled graph G2

v ρ1 ρ2 ρ4 µ1 µ2 ν1 ν2 µ4 µ5 µ6 µ7 µ8 µ11

ρ1 x µ1 ν1 x µ4 x µ8 x x µ5 µ11 x x
ρ2 µ2 x x x x µ6 x x x x x µ7 x
ρ4 x ν2 x x x x x x x x x x x
µ1 µ4 x x x x µ5 x x x x x µ11 x
µ2 x x µ6 x x x µ7 x x x x x x
ν1 x µ8 x x x x x x x x x x x
ν2 x x x x x x x x x x x x x
µ4 x x µ5 x x x µ11 x x x x x x
µ5 x µ11 x x x x x x x x x x x
µ6 x µ7 x x x x x x x x x x x
µ7 x x x x x x x x x x x x x
µ8 x x x x x x x x x x x x x
µ11 x x x x x x x x x x x x x

Table 3.2: The mapping v for G2
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x1 x2 x5 x6

x3 x4 x7

-
-

-
-

-
-

?? ?

6

a1

a2

b1

b2

a1

a2

b2b1 c1c2

Figure 3.14: Labelled graph G1∪2

Taking the union graph for G1 and G2 we obtain the labelled graph G1∪2 repre-
sented in Figure 3.14.

The mapping u∨v is given in Table 3.3. If we compute the set Lu∨v of the labels
for G(G1∪2, u ∨ v) we obtain

Lu∨v = L(1) ∪ L(2) ∪ L(1,2) (3.23)

Each element α ∈ L(1,2) has the property that trace(α) contains both elements

from L
(1)
0 and elements from L

(2)
0 . Thus the elements of L(1,2) have a structure that

shows that DR(u) and DR(v) collaborate in DR(u ∨ v).
If we examine the set L(1,2) we find that there is a path from x1 to x6 because

(x1, x6) ∈ µ11 and there is, for example, the ”combined” label

α = σ(σ(a1, b2), σ(a1, σ(c2, b1)))

such that f(α) = µ11.
In the same time, none of the binary relations ρ in Table 3.3 satisfies the condition

(x1, x7) ∈ ρ. Equivalently, this means that G(G1∪2, u ∨ v) does not authorize the
use of any path from x1 to x7 in G1∪2. In order to benefit of such a path we have
to fill in some position in Table 3.3. If we proceed in this manner then we obtain a
completion of G(G1∪2, u ∨ v). For example, if in the place corresponding to the line
µ11 and column ρ3 we append in Table 3.3 the element

prodS(µ11, ρ3) = µ12

then the new LSG will authorize the use of the path

([x1, x1, x3, x4, x5, x6, x7], [a1, b2, a1, c2, b1, c1])

in G1∪2 because σ(α, c1) becomes a label for this LSG.
Various completions for G(G1∪2, u∨v) can be obtained. If we fill in all the empty

places in Table 3.3 then we take:
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prodS(ν1, µ3) = prodS(µ8, ρ3) = µ9

prodS(ρ4, µ3) = prodS(ν2, ρ3) = µ10

prodS(µ11, ρ3) = prodS(µ5, µ3) = µ12

prodS(µ7, ρ3) = prodS(µ6, µ3) = µ13

Let us denote by Lc the label set for this case. We can imagine the following
situation appeared in an application: the nodes of a labelled graph represent local-
ities of a county; the arcs represent variants for motor-ways; a label represents the
weather state for a variant. We may be interested to convey some goods from x1 to
x7. Suppose the conditions imposed by the quality of the goods require the use of a
path containing a minimum number of symbols a2, b2, c2. This problem reduces to
the finding of the set

Lµ12 = {α ∈ Lc | f(α) = µ12, P l(α) = min}

where Pl(α) represents the number of places from α such that each place contains
a symbol a2, b2 or c2.

If we compute the elements of Lc we find that for each α ∈ Lµ12 we have

trace(α) = (a1, b1, a1, c2, b1, c1)

We can conclude by this particular computation that there is only one authorized
path satisfying the conditions imposed above and this path has the length 6.

3.4.1 Conclusions and open problems

In this section we inaugurated a possible research line concerning the combination
of two such structures which are built over distinct labelled graphs. Various comple-
tions of G(G, u∨v) can be obtained in order to obtain a better collaboration between
G(G1, u) and G(G2, v). We are interested to develop the following questions:

• Consider the label set L(1,2) from (3.23) and give an expression by means
of which we can compute this set only by the components of G(G1, u) and
G(G2, v). This expression will give an analytical characterization for the col-
laboration between DR(u) and DR(v) in DR(u ∨ v).

• Consider the concept of distinguished representative and study the impact
of the ideas presented in this section concerning various combination of such
representatives which are built over different labelled graphs.
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