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1. From semantic networks to semantic
schemas

1.1 Introduction

In this chapter we present the concept of semantic schema from an intuitive
point of view. The concept of semantic schema was introduced to extend
that of semantic network. This idea explains why Section 1.2 deals with an
intuitive description for semantic networks. In Section 1.3 we prepare the
formalism given in the subsequent sections of the next chapter.

The aim of this chapter is to give an intuitive description of the transition
from semantic networks to semantic schemas.

1.2 Semantic networks: an intuitive description

In general a semantic network is a graph structure which uses its nodes
to represent concepts and its arcs to represent relations among concepts.
We remark that such a structure represents the relationships between the
concepts in some specific domain of knowledge. There are different kinds of
relationships that are represented in a semantic network. The most common
kinds are the relationships ako, isa and has. The abbreviations ako and isa
mean a kind of and is a respectively.

In order to take an example we consider the relationships isa, eako, eis
and ehas whose meanings are specified in Table 1.1.

Relationship Meaning
(x, y) ∈ isa x is a y

(x, y) ∈ eako every x is a kind of y
(x, y) ∈ eis every x is y

(x, y) ∈ ehas every x has y
(x, y) ∈ has x has y

Table 1.1.
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Let us consider the following knowledge piece KP1:
Bob is a bird. Every bird is a kind of animal. Every bird has wings. Every
animal is alive.

It is not difficult to represent KP1 as in Figure 1.1.

Bob - bird

wings

- animal - alive

?

isa eako eis

ehas

Fig. 1.1. Semantic network for KP1

In this chapter we consider that a semantic network has the following
features:

• the nodes designate some objects of a real world;
• the arc labels have arbitrary meanings, not only the meanings specified

above;
• the reasoning process is based on the concept of path; because two

nodes can be connected by several arcs, a path is viewed as a pair
([x1, . . . , xn+1], [a1, . . . , an]), where x1, . . . , xn+1 are nodes and a1, . . . , an

are labels such that for every i ∈ {1, . . . , n} there is an arc labeled by ai

leaving the node xi and entering xj ;
• the conclusion of the reasoning is a sentence in a natural language.

A representation of a semantic network includes:

- a labeled graph;
- a rule which specifies the combination of the arc labels; this rule can

be defined by means of a partial operation between the arc labels; more
precisely, if the arc labels u and v can be combined and the result of the
combination is w then we denote this fact by ϕ(u, v) = w;

- the meaning of each arc label.

A semantic network can be used not only to represent knowledge but also to
process the knowledge. This means that some reasoning can be performed.
In essence, two nodes n and m must be specified and a path from n to m
is searched. Step by step two consecutive labels of the path are combined
and the result replaces these labels. Finally only one label is obtained and
this label specifies some property linking the initial and the final nodes of the
path. For example, if we compose isa and ehas we obtain has. The conclusion
obtained from the path ([Bob, bird, wings], [isa, ehas]) is the sentence Bob has
wings. We observe the output is a sentence in a natural language.
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The reasoning performed in a semantic network is a path-driven one. Two
kinds of reasoning can be developed in a semantic network:

- a direct reasoning
- a confluent reasoning

Suppose that x and y are two nodes of the labeled graph and

p = ([x1, . . . , xn+1], [a1, . . . , an])

is a path from x to y, that is x1 = x and xn+1 = y. We define the concept of
virtual path generated by p as an element of the greatest set V (d) satisfying
the following conditions:

• ([x1, . . . , xn+1], [a1, . . . , an]) ∈ V (d);
• if ([zi1 , . . . , zik+1 ], [bi1 , . . . , bik

]) ∈ V (d) and ϕ(bir , bir+1) = c for some
r ∈ {1, . . . , k − 1} then

([yj1 , . . . , yjk
], [cj1 , . . . , cjk−1 ]) ∈ V (d)

where ([yj1 , . . . , yjk
] is obtained from ([zi1 , . . . , zik+1 ] by removing zir+1

and [cj1 , . . . , cjk−1 ] is obtained from the list [bi1 , . . . , bik
] by removing the

elements bir , bir+1 and introducing the element c on the place r.

An element of the form ([x, y], [e]) ∈ V (d) is called a final virtual path from
x to y. The computation performed to obtain a final virtual path is a direct
reasoning and the conclusion assigned to this computation is the meaning of
the label e.

In order to exemplify this situation we consider the following knowledge
piece KP2: Bob is the son of Helen and George is the son of Peter. Peter is
the brother of Susan and Helen is the sister of Susan. Bob plays tennis with
Helen. Helen

Bob

?
Helen Susan- Peter¾

George

?

son−of son−of

sister brother

Fig. 1.2. Semantic network for KP2

We say that two distinct paths ([x1, . . . , xn+1], [a1, . . . , an]) and ([y1, . . . ,
yk+1], [b1, . . . , bk]) are confluent if xn+1 = yk+1. For example, in Figure 1.2
the paths

([Bob,Helen, Susan], [son−of, sister])
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([George, Peter, Susan], [son−of, brother])

are confluent paths. The confluence node is Susan. The confluent paths allow
to perform additional deduction. For example, from the above representation
we can deduce that Bob is George’s cousin, Helen is Peter’s sister and so on.

1.3 An intuitive extension of semantic networks

We consider the finite and nonempty sets X and A0. Let θ be a symbol for a
binary algebraic operation. We denote by A0 the Peano θ–algebra generated
by A0, therefore A0 =

⋃
n≥0 Mn where Mn are defined recursively as follows

(Rudeanu (1991)):
{

M0 = A0

Mn+1 = Mn ∪ { θ(u, v) | u, v ∈ Mn}, n ≥ 0

Let us consider the graphical representation from Figure 1.3. Let us consider

x1

?
x2 x3- x4¾

x5

?

a1 a1

a2 a3

Fig. 1.3. An abstract representation

the following entities, which can be identified in an obvious manner from this
figure:

• X = {x1, x2, x3, x4, x5}
• A0 = {a1, a2, a3}
• R0 = {(x1, a1, x2), (x2, a2, x3), (x5, a1, x4), (x4, a3, x3)}

In addition we consider the following sets:

• A = A0 ∪ {θ(a1, a2), θ(a1, a3)}
• R = R0 ∪ {(x1, θ(a1, a2), x3), (x5, θ(a1, a3), x3)}

We observe that X is the set of the nodes and A0 is the set of arc labels.
Moreover, we have A0 ⊆ A ⊆ A0 and the set R0 is the set of all labeled arcs
of the graph. Every element of R is a triple such that two of its components
represent some nodes of the graph. The first component of a triple is the
initial node and the last is the final node.

We observe also that R ⊆ X×A×X and the following properties establish
a connection between R and A:
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• If (x, θ(u, v), y) ∈ R then there is z ∈ X such that (x, u, z) ∈ R and
(z, v, y) ∈ R
• Let be θ(u, v) ∈ A. For all x, y, z ∈ X if (x, u, z) ∈ R and (z, v, y) ∈ R
then (x, θ(u, v), y) ∈ R
• pr2R = A

where pr2R = {α | ∃x, y ∈ X : (x, α, y) ∈ R}.
These properties can be interpreted intuitively as follows:

- Every element of R \ R0 can be broken into two ”connected” entities of
R; the connection is specified by the fact that the final node of the first
entity is the initial node of the second entity.

- Two elements (x, u, z) ∈ R and (z, v, y) ∈ R are presumed to give some
element of R because they are connected by the node z. If θ(u, v) ∈ A
then these elements give really the element (x, θ(u, v), y) from R.

- Because R ⊆ X×A×X it follows that pr2R ⊆ A. The condition pr2R ⊇ A
gives an additional information: the set A does not contain ”foreign”
elements. In other words, each element of A contributes to some element
of R.

We consider a function symbol h of arity 1 and take the set M of all elements
of the form h(z), where z ∈ R0. We obtain

M = {h(x1, a1, x2), h(x2, a2, x3), h(x5, a1, x4), h(x4, a3, x3)}
where in order to use a shorter notation we substituted the element h((x, a, y))
by h(x, a, y).

We consider a symbol σ and denote by H the Peano σ-algebra generated
by M . It follows that H =

⋃
n≥0 Mn, where Mn are defined recursively as

follows (Rudeanu (1991)):
{

M0 = M
Mn+1 = Mn ∪ { σ(u, v) | u, v ∈ Mn}, n ≥ 0

We can introduce a derivation process as follows:

• At every step an element (x, a, y) ∈ R0 is derived into h(x, a, y); thus
each element z ∈ R0 introduces a letter h. The next step we can ap-
ply again the same rule and the element h(x, a, y) derives the element
hh(x, a, y). This process is an infinite one and we specify each step of
this computation as follows:

(x, a, y) ⇒ h(x, a, y) ⇒ hh(x, a, y) ⇒ . . .

We observe that only in the first step we obtain an element of H, the
other elements do not belong to this structure.
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• If we start with an element (x, θ(u, v), y) ∈ R \ R0 then based on the
properties of R \ R0 we know that there is an element z ∈ X such that
(x, u, z) ∈ R and (z, v, y) ∈ R. These elements are used in the derivation
process and for one step we write

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y))

We denote by ⇒∗ the reflexive and transitive closure of the relation ⇒. This
means that we have w ⇒∗ ω if and only if one of the following condition is
satisfied:

• w = ω
• There are w1, . . . wn such that w1 = w, wn = ω and wi ⇒ wi+1 for every

i ∈ {1, . . . , n− 1}
As an example of computations we obtain for our case:

(x1, a1, x2) ⇒ h(x1, a1, x2) ⇒ hh(x1, a1, x2) ⇒ . . .
(x1, θ(a1, a2), x3) ⇒ σ((x1, a1, x2), (x2, a2, x3))

If we denote by hn the word of length n of the form hn = h . . . h then from
the above computations we obtain

(x1, a1, x2) ⇒∗ hk(x1, a1, x2)
(x2, a2, x3) ⇒∗ hm(x2, a2, x3)
(x1, θ(a1, a2), x3) ⇒∗ σ(hk(x1, a1, x2), hm(x2, a2, x3))

for every k ≥ 1 and m ≥ 1. We remark that only the elements for k = m = 1
belong to H.

In general we can extract from H those elements which can be derived
from the elements of R. For the particular case presented in Figure 1.3 we
obtain the following set:

T = {h(x1, a1, x2), h(x2, a2, x3), h(x5, a1, x4), h(x4, a3, x3),

σ(h(x1, a1, x2), h(x2, a2, x3)), σ(h(x5, a1, x4), h(x4, a3, x3))}
The elements obtained are abstract entities. Our task is to assign a meaning
for each of them. In order to perform this process we proceed as follows:

• In the first step we have to interpret the nodes from Figure 1.3. To per-
form this task we consider a set Ob of 5 objects and a bijective mapping
ob : X −→ Ob. For our case we take
¡ Ob = {Bob, Helen, Susan, Peter,George}
¡ ob(x1) = Bob; ob(x2) = Helen; ob(x3) = Susan; ob(x4) = Peter;

ob(x5) = George
• In the second step we interpret the elements of R0. This can be performed

by means of a mapping Jh : T0 −→ Y , where T0 = {h(x, a, y) | (x, a, y) ∈
R0} ⊆ T and Y is the ”output” space or the ”semantic” space. For our
case we consider:
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¡ Y is the following set of sentences, where x and y are arbitrary ele-
ments of Ob:

p1(x, y) = ”x is the son of y”
p2(x, y) = ”x is the sister of y”
p3(x, y) = ”x is the brother of y”
p4(x, y) = ”x is the nephew of y”

¡ The mapping Jh is defined as follows:
Jh(h(x, a1, y)) = p1(ob(x), ob(y))
Jh(h(x, a2, y)) = p2(ob(x), ob(y))
Jh(h(x, a3, y)) = p3(ob(x), ob(y))

• In the third step we consider a partial binary operation Jσ : Y ×Y −→ Y
and for our case we consider the mapping:

Jσ(p1(x, y), p2(y, z)) = p4(x, z)
Jσ(p1(x, y), p3(y, z)) = p4(x, z)

where x, y and z are arbitrary elements in Ob.
• In the last step we consider the mapping

J : T −→ Y

as follows:




J(h(x, a, y)) = Jh(h(x, a, y)) if h(x, a, y) ∈ T0

J(σ(u, v)) = Jσ(J(u), J(v))

The valuation computation for our case is described below:

• J(h(x1, a1, x2)) = p1(Bob, Helen)
• J(h(x2, a2, x3)) = p2(Helen, Susan)
• J(h(x5, a1, x4)) = p1(George, Peter)
• J(h(x4, a3, x3)) = p3(Peter, Susan)
• J(σ(h(x1, a1, x2), h(x2, a2, x3))) =

Jσ(J(h(x1, a1, x2)), J(h(x2, a2, x3))) =
Jσ(p1(Bob, Helen), p2(Helen, Susan)) = p4(Bob, Susan) =
”Bob is the nephew of Susan”

• J(σ(h(x5, a1, x4), h(x4, a3, x3))) =
Jσ(J(h(x5, a1, x4), J(h(x4, a3, x3))) =
Jσ(p1(George, Peter), p3(Peter, Susan)) =
p4(George, Susan) = ”George is the nephew of Susan”

Remark 1.3.1. It is easy to observe the connection between the semantic
network from Figure 1.2 and the structure represented in Figure 1.3. It is
not difficult to read the information represented in Figure 1.2 because both
the nodes and the arcs are directly represented in an intuitive manner. The
situation is not the same for the representation from Figure 1.3. This is due to
the fact that the structure from Figure 1.3 is an abstract one. For a particular
choice of all nodes and arcs from Figure 1.3, as we proceeded in this section,
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we recovered the knowledge from Figure 1.2. For other choice of the same
entities from Figure 1.3 we can obtain a knowledge representation which can
not be obtained by semantic networks. For example, this is the case of the
output space containing images, as we see in the next chapters.

Remark 1.3.2. The mapping Jσ is a partial one. The mapping J has the same
property. In this vision we read the equality J(σ(u, v)) = Jσ(J(u), J(v)) as
follows: J(σ(u, v)) is defined if J(u) and J(v) are defined and in addition, Jσ

is defined in (J(u), J(v)).

Remark 1.3.3. The space Y is a set of sentences. Because x and y are arbi-
trary elements in Ob some sentences are ”useless” as for example: Helen is
the son of George, George is the sister of Susan and so on. As we observe the
elements of Y are selected by the mapping ob, the meanings of the label arcs
and the mapping J .



2. Semantic schemas

2.1 Overview

The concept of semantic schema was introduced in (Ţăndăreanu (2004d)) and
this structure extends the concept of semantic network (Ţăndăreanu (2004f)).
A semantic schema is an abstract structure, which can represent knowledge
by means of an appropriate interpretation. Such a structure S is a tuple of
four entities, S = (X,A0, A, R), each of which specifying some features of the
representation process. For a given semantic schema S an interpretation I1

represents a knowledge piece KP1. If we change I1 by I2 then S represents
other knowledge piece KP2. Various interpretations can be used for the same
semantic schema.

The concepts and results based on semantic schemas were applied in
a client-server technology trying to model some aspects concerning the
use of this structure in the domain of logic programming with constraints
(Ţăndăreanu (2004d)), knowledge management (Ţăndăreanu (2005b)), dis-
tributed knowledge and reasoning by analogy (Ţăndăreanu (2005a)). These
applications are treated in a separate chapter.

Two aspects are relieved in connection with a semantic schema S:

1) A formal aspect in S by which some formal computations in a Peano
σ-algebra are obtained. The computations are based on the concept of
derivation (Ţăndăreanu and Ghindeanu (2006a)) and the set of the re-
sults is denoted by Fcomp(S) (Figure 2.1). In this chapter we introduce
the concept of sort for the formal entities of Fcomp(S). A sort is an el-
ement of A, which is a subset of the Peano θ-algebra generated by A0.
Based on this concept we divide Fcomp(S) into equivalence classes. An
equivalence class includes all the elements of the same sort.
2) An evaluation aspect with respect to some interpretation. The entities
obtained in the previous step get values from the semantic space Y . Every
entity from an equivalence class [u]F , where u is a sort, is transformed
to obtain its semantics. By such a transformation, a subset Yu of Y is
obtained and each object of Yu has the class u. The space Y becomes the
union of classes of objects (Figure 2.1).

In Figure 2.1 we represented on the first level the set R, which is a component
of a semantic schema S. An element of R is a triple (x, u, y), where u ∈ A.
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The formal computations, based on derivation, give the equivalence class
[u]F , each element of this set has the sort u and is transformed by means of
an interpretation in an object of class u. In this manner, an element of A is
a sort of a formal entity and a class of an object from the semantic space.

Fig. 2.1. Overview of the computations

2.2 Basic concepts

Consider a symbol θ of arity 2 and a finite non-empty set A0. We denote by
A0 the Peano θ-algebra (Rudeanu (1991)) generated by A0, therefore A0 =⋃

n≥0 An where An are defined recursively as follows (Rudeanu (1991)):

An+1 = An ∪ { θ(u, v) | u, v ∈ An}, n ≥ 0 (2.1)

For every α ∈ A0 we define trace(α) as follows: if α ∈ A0 then
trace(α) =< α >; if α = θ(u, v) then trace(α) =< p, q >, where trace(u) =
< p > and trace(v) =< q >.

Definition 2.2.1. (Ţăndăreanu (2004d)) A semantic θ-schema (shortly,
semantic schema) is a system S = (X,A0, A, R) where

• X is a finite non-empty set of symbols and its elements are named object
symbols
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• A0 is a finite non-empty set of elements named label symbols and
A0 ⊆ A ⊆ A0, where A0 is the Peano θ-algebra generated by A0

(Rudeanu (1991))
• R ⊆ X×A×X is a non-empty set which fulfills the following conditions:

(x, θ(u, v), y) ∈ R =⇒ ∃z ∈ X : (x, u, z) ∈ R, (z, v, y) ∈ R (2.2)

θ(u, v) ∈ A, (x, u, z) ∈ R, (z, v, y) ∈ R =⇒ (x, θ(u, v), y) ∈ R (2.3)

u ∈ A ⇐⇒ ∃(x, u, y) ∈ R (2.4)

We denote:
R0 = R ∩ (X ×A0 ×X) (2.5)

A basic property for A is described in the next proposition.

Proposition 2.2.1. Let S = (X, A0, A,R) be a semantic schema. The set
A satisfies the following property:

θ(u, v) ∈ A =⇒ u ∈ A, v ∈ A

Proof. Suppose θ(u, v) ∈ A. Using (2.4) we deduce that there are x, y ∈ X
such that (x, θ(u, v), y) ∈ R. From (2.2) it follows that there is z ∈ X such
that (x, u, z) ∈ R and (z, v, y) ∈ R. Using again (2.4) we obtain u ∈ A and
v ∈ A.

A semantic schema can be represented as a labeled graph as follows:
• The elements of X are the nodes of the graph and they are graphically

represented by rectangles.
• We draw an arc from x to y, which is labeled by α if and only if

(x, α, y) ∈ R.
If a semantic schema is represented as a labeled graph then the satisfiability
of the conditions (2.2), (2.3) and (2.4) can be easily verified. As an example,
the graph drawn in Figure 2.2 is based on the semantic schema

({x1, x2, x3}, {a, b}, {a, b, θ(a, b)}, {(x1, a, x2),

(x2, b, x3), (x1, θ(a, b), x3)})
whereas the graph drawn in Figure 2.3 can not represent any semantic
schema. Really, we have (x3, a, y1) ∈ R, (y1, b, y2) ∈ R, θ(a, b) ∈ A and
(2.3) is not satisfied.

Based on these properties we remark that a graphical representation of a
semantic schema is a pair (G,A) where

• G is a graphical representation of a labeled graph, which relieves the set
X of nodes and the set A0 of labels.

• A is a set such that A0 ⊆ A ⊆ A0 and A satisfies also the condition: if
θ(u, v) ∈ A then u ∈ A and v ∈ A.
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x1 x2 x3- -

6
θ(a, b)

a b

Fig. 2.2. A graph representing a semantic schema

x1 x2 x3 y1 y2- - - -

6
θ(a, b)

a b a b

Fig. 2.3. A graph, which can not represent a semantic schema

If we accept this point of view then the set R is obtained immediately:

• R0 is obtained directly from the graphical representation G. The other
elements of R are obtained by (2.3).

Let us consider the graphical representation of G from Figure 2.4.

x1 x2 x3 y1 y2

z1 z2 z3

- - - -

- -

6

b b a b

a b

a

Fig. 2.4. Graphical representation of G

From this representation we deduce:

• X = {x1, x2, x3, y1, y2, z1, z2, z3}
• A0 = {a, b}

Now, if we take

A = A0 ∪ {θ(a, b), θ(b, a), θ(b, θ(b, a))}
then we obtain:

R0 = {(x1, b, x2), (x2, b, x3), (x3, a, y1), (y1, b, y2), (x3, a, z1),

(z1, b, z2), (z2, a, z3)}
R \R0 = {(x3, θ(a, b), y2), (x3, θ(a, b), z2), (x2, θ(b, a), y1),

(x2, θ(b, a), z1), (z1, θ(b, a), z3), (x3, θ(a, θ(b, a)), z3)}
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2.3 The join semilattice of schemas

In this section we introduce a partial order between two θ-schemas and we
show that there is sup{S1,S2} for arbitrary schemas S1 and S2. Moreover,
this element can be effectively obtained in a finite number of steps from the
components of S1 and S2.

Based on (2.1) we observe that if A is a set such that A0 ⊆ A ⊆ A0 the
we can write

A = A0 ∪
⋃

i≥1

(A ∩Ai) (2.6)

Remark 2.3.1. In general, if X ⊆ Y1 × . . . × Yn and i ∈ {1, . . . , n} then we
denote priX = {x | ∃(y1, . . . , x, . . . , yn) ∈ X}.
The following proposition is useful in what follows:

Proposition 2.3.1.
A0 ∪B0 ⊆ A0 ∪B0 (2.7)

Proof. Applying (2.1) we obtain

Bn+1 = Bn ∪ { θ(u, v) | u, v ∈ Bn}, n ≥ 0 (2.8)




C0 = A0 ∪B0

Cn+1 = Cn ∪ { θ(u, v) | u, v ∈ Cn}, n ≥ 0
(2.9)

and A0 ∪B0 =
⋃

n≥0 Cn.
We prove by induction on n that

An ∪Bn ⊆ Cn (2.10)

For n = 0 the relation (2.10) is true. Suppose (2.10) is true for n and we
verify (2.10) for n + 1. Take an arbitrary element x ∈ An+1 ∪Bn+1. Suppose
x ∈ An+1. If x ∈ An then x ∈ Cn by (2.10). But Cn ⊆ Cn+1, therefore
x ∈ Cn+1. If x ∈ An+1 \ An then x = θ(u, v) for some u, v ∈ An. But
An ⊆ Cn, therefore x = θ(u, v) for some u, v ∈ Cn. Thus, x ∈ Cn+1.

Definition 2.3.1. Consider the θ-schemas S = (X,A0, A,R) and P =
(Y, B0, B, Q). We define the relation S v P if X ⊆ Y and R ⊆ Q.

Proposition 2.3.2. Consider the θ-schemas S = (X,A0, A, R) and P =
(Y, B0, B, Q). If S v P then A0 ⊆ B0 and A ⊆ B.

Proof. We have A = pr2R, B = pr2Q and R ⊆ Q therefore A ⊆ B.
On the other hand, using (2.6) we obtain A = A0 ∪

⋃
i≥1(A ∩ Ai), B =

B0∪
⋃

i≥1(B∩Bi). But A ⊆ B and A0 ⊆ A therefore A0 ⊆ B0∪
⋃

i≥1(B∩Bi).
But A0∩Bi = ∅ for i ≥ 1 because there is no element in A0 of the form θ(u, v).
It remains that A0 ⊆ B0.
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Proposition 2.3.3. The relation v is reflexive, antisymmetric and transi-
tive, therefore it is a partial order.

Proof. Obviously the relation is reflexive and transitive. If S = (X,A0, A,
R), P = (Y, B0, B, Q) S v P and P v S then X ⊆ Y , Y ⊆ X, R ⊆ Q
and Q ⊆ R. It follows that X = Y and R = Q. By Proposition 1 we have
A0 = B0 and A = B, therefore S = P.

Proposition 2.3.4. Consider the θ-schemas S1 = (X, A0, A, R) and S2 =
(Y, B0, B, Q). We define recursively the sets:





Z0 = R0 ∪Q0

Zi+1 = Zi ∪ Vi, i ≥ 0
(2.11)

where Vi = {(x, θ(u, v), y) ∈ (X ∪ Y ) × (A ∪ B) × (X ∪ Y ) | ∃z : (x, u, z) ∈
Zi, (z, v, y) ∈ Zi} and R0, Q0 are defined as in (2.5).

The sequence {Zi}i≥0 satisfies the following properties:

i) There is a natural number n0 such that

Z0 ⊂ Z1 ⊂ . . . ⊂ Zn0 = Zn0+1 = . . .

ii) If we denote

S1 ∨ S2 = (X ∪ Y, A0 ∪B0, A ∪B, Zn0) (2.12)

then S1 ∨ S2 is a θ-schema. Moreover, S1 ∨ S2 = sup{S1,S2}.
Proof. We verify by induction on n the following inclusion:

Zn ⊆ (X ∪ Y )× (A ∪B)× (X ∪ Y ) (2.13)

From (2.11) we have Z0 = R0∪Q0 ⊆ (X×A0×X)∪(Y ×B0×Y ) ⊆ (X∪Y )×
(A0∪B0)×(X∪Y ), therefore (2.13) is true for n = 0. Suppose (2.13) is true for
n. We have Zn+1 = Zn ∪ (Zn+1 \Zn). From the second line of (2.11) we have
Zn+1 \Zn ⊆ (X ∪Y )× (A∪B)× (X ∪Y ). By inductive assumption we have
(2.13), therefore (2.13) is true for n+1. Because (X∪Y )×(A∪B)×(X∪Y ) is
a finite set we deduce that there is a natural number n such that Zn = Zn+1.
Let n0 be the least number satisfying this property. It is easy to prove by
induction on t that Zn0 = Zn0+t for every t ≥ 1.
From (2.13) we have

pr2Zn0 ⊆ A ∪B (2.14)

Let us prove that
R ⊆ Zn0 (2.15)

If we take into consideration (2.6) then A =
⋃

i≥0(A∩Ai). For each i ≥ 0 we
denote Ri = R ∩ (X × (A ∩Ai)×X). Obviously
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⋃

i≥0

Ri =
⋃

i≥0

(R ∩ (X × (A ∩Ai)×X)) =

R ∩ (X ×
⋃

i≥0

(A ∩Ai)×X) = R

In order to prove (2.15) we observe that it is enough to prove

Ri ⊆ Zn0 (2.16)

for every i ≥ 0. For i = 0 the inclusion is true because R0 ⊆ Z0 ⊆ Zn0 .
Suppose (2.16) is true for i ∈ {0, . . . , k}. Take an element (x, θ(u, v), y) ∈
Rk+1. But Rk+1 ⊆ R and therefore applying (2.2) we deduce that there
is z such that (x, u, z) ∈ R and (z, v, y) ∈ R. Moreover, we can say that
(x, u, z) ∈ Rn and (z, v, y) ∈ Rm for some n ≤ k and m ≤ k. Applying the
inductive assumption we have (x, u, z) ∈ Zn0 and (z, v, y) ∈ Zn0 , therefore
(x, θ(u, v), y) ∈ Zn0+1 = Zn0 . Thus, (2.16) is true for every i ≥ 0. Now, from
(2.16) we deduce (2.15) and similarly we have

Q ⊆ Zn0 (2.17)

The condition (2.4) can be written also as A = pr2R. Then, from (2.15) we
deduce A = pr2R ⊆ pr2Zn0 and similarly, B = pr2Q ⊆ pr2Zn0 . It follows
that A ∪B ⊆ pr2Zn0 and taking into consideration (2.14) we obtain

A ∪B = pr2Zn0 (2.18)

We observe now that A0 ∪ B0 ⊆ A ∪ B ⊆ A ∪ B and by Proposition 1 we
obtain A0 ∪ B0 ⊆ A ∪ B ⊆ A ∪B. The relation (2.4) for (2.12) becomes
(2.18), which is fulfilled.
Let us verify (2.2) and (2.3) for (2.12). Suppose (x, θ(u, v), y) ∈ Zn0 . There
is i ∈ {0, . . . , n0 − 1} such that (x, θ(u, v), y) ∈ Zi+1 \ Zi. From (2.11) we
deduce that there is z ∈ X ∪Y such that (x, u, z) ∈ Zi and (z, v, y) ∈ Zi. But
Zi ⊆ Zn0 , therefore (x, u, z) ∈ Zn0 and (z, v, y) ∈ Zn0 . It follows that (2.2) is
satisfied by (2.12).
Suppose θ(u, v) ∈ A ∪B, (x, u, z) ∈ Zn0 and (z, v, y) ∈ Zn0 . Applying (2.11)
we obtain (x, θ(u, v), y) ∈ Zn0+1 = Zn0 . Thus, (2.4) is satisfied. It follows
that S1 ∨ S2 is a θ-schema.
We have Si v S1 ∨ S2 for i ∈ {1, 2}. Let S = (Z, C0, C, P ) such that S1 v S
and S2 v S. Consequently we have X ⊆ Z, Y ⊆ Z, R ⊆ P and Q ⊆ P .
We have also X ∪ Y ⊆ Z, A = pr2R ⊆ pr2P , B = pr2Q ⊆ pr2P , therefore
A ∪ B ⊆ pr2P = C. We observe that if {Zn}n≥0 is given by (2.11) then for
each natural number n,

Zn ⊆ P (2.19)

Really, for n = 0 the relation (2.19) is verified because Z0 = R0 ∪ Q0

and R0 ⊆ R ⊆ P , Q0 ⊆ Q ⊆ P . Suppose (2.19) is satisfied by Zn.
Take (x, θ(u, v), y) ∈ Zn+1. If (x, θ(u, v), y) ∈ Zn then by (2.19) we have



20 2. Semantic schemas

(x, θ(u, v), y) ∈ P . Otherwise, there is z ∈ X∪Y such that (x, u, z) ∈ Zn ⊆ P
and (z, v, y) ∈ Zn ⊆ P . By the property (2.3) of P we have (x, θ(u, v), y) ∈ P .
Thus, (2.19) is verified for every n ≥ 0. Particularly we have Zn0 ⊆ P . In
conclusion, S1 ∨ S2 ⊆ S and therefore S1 ∨ S2 is the least upper bound for
{S1,S2}.
Corollary 2.3.1. The collection of all θ-schemas is a join semilattice.

Proof. Really, a partially ordered set (S,⊆) is a join semilattice if for every
x, y ∈ S there exists sup{x, y}.

2.4 Syntactical aspects

2.4.1 Overview

In this chapter we present the concept of derivation in a semantic schema S,
we define the mapping generated by S, we define the set Fcomp(S) contain-
ing the final result of the derivation process, we establish several algebraic
properties for the set Fcomp(S), we prepare the notions requested by the in-
terpretation concept (the sort of an element from Fcomp(S) and the class of
an object).

2.4.2 The mapping generated by S

Let S = (X,A0, A,R) be a semantic schema. We consider a symbol h of arity
1, a symbol σ of arity 2 and take the set:

M = {h(x, a, y) | (x, a, y) ∈ R0}
We denote by H the Peano σ-algebra generated by M .

We denote by Z the alphabet which includes the symbol σ, the elements
of X, the elements of A, the left and right parentheses, the symbol h and
comma. We denote by Z∗ the set of all words over Z. As in the case of a
rewriting system we define two rewriting rules in the next definition.

Definition 2.4.1. Let be w1, w2 ∈ Z∗. We define the binary relation ⇒ as
follows:

• If (x, a, y) ∈ R0 then w1(x, a, y)w2 ⇒ w1h(x, a, y)w2

• Let be (x, θ(u, v), y) ∈ R. If (x, u, z) ∈ R and (z, v, y) ∈ R then

w1(x, θ(u, v), y)w2 ⇒ w1σ((x, u, z), (z, v, y))w2

The relation ⇒ is named direct derivation over Z∗. We denote by ⇒∗ and
⇒+ the reflexive and transitive closure of the relation ⇒, respectively the
transitive closure. The relation ⇒∗ will be called simply derivation over Z∗.
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Definition 2.4.2. For each w ∈ Z∗ where w = w1 . . . wn with wi ∈ Z, i ∈
{1, ..., n}, n ≥ 1, we denote first(w) = w1 and last(w) = wn.

Definition 2.4.3. The mapping generated by S is the mapping

GS : R −→ 2H

defined as follows:

• GS(x, a, y) = {h(x, a, y)} for a ∈ A0

• GS(x, θ(u, v), y) = {w ∈ H | (x, θ(u, v), y) ⇒∗ w}
The set H is an infinite one. We extract from H those elements which can be
derived from R and we denote this set by Fcomp(S). In other words,

Fcomp(S) = {w ∈ H | ∃(x, u, y) ∈ R : (x, u, y) =⇒∗ w}
Obviously we have

Fcomp(S) =
⋃

(x,u,y)∈R

GS(x, u, y) (2.20)

Proposition 2.4.1. Suppose (x, θ(u, v), y) ∈ R. If (x, θ(u, v), y) ⇒+ w then:

i) There is z ∈ X such that (x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) ⇒∗ w
ii) There are α and β such that:

1) w = σ(α, β)
2) (x, u, z) ⇒∗ α, (z, v, y) ⇒∗ β

Proof. The assertion i) is obviously true. We verify by induction on n ≥ 1
that if σ((x, u, z), (z, v, y)) ⇒n w then ii) is true and moreover, last(α) ∈ {)}
and first(β) ∈ {(, σ, h}.
For n = 1 the following cases can be encountered:

1) u ∈ A0 and w = σ(h(x, u, z), (z, v, y)). In that case α = h(x, u, z),
β = (z, v, y) and (x, u, z) ⇒ h(x, u, z).
2) v ∈ A0 and w = σ((x, u, z), h(z, v, y)). We have α = (x, u, z), β =
h(z, v, y) and (z, v, y) ⇒ h(z, v, y).
3) u = θ(u1, v1), w = σ(σ((x, u1, z1), (z1, v1, z)), (z, v, y)),
α = σ((x, u1, z1), (z1, v1, z)), β = (z, v, y) for some z1 ∈ X.
4) v = θ(u2, v2), w = σ((x, u, z), σ((z, u2, z2), (z2, v2, y))), α = (x, u, z),
β = σ((z, u2, z2), (z2, v2, y)) for some z2 ∈ X.

We observe that the assertion is true for these cases. Suppose the assertion
is true for n and consider a derivation:

σ((x, u, z), (z, v, y)) ⇒n w1 ⇒ w

By the inductive assumption, there are α1 and β1 such that

w1 = σ(α1, β1),
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(x, u, z) ⇒∗ α1, (z, v, y) ⇒∗ β1,
last(α1) ∈ {)} and first(β1) ∈ {(, σ, h}

We have w1 ⇒ w, therefore the following cases can be encountered:

i1) σ(α1, β1) = ω1(x1, a, y1)ω2 ⇒ ω1h(x1, a, y1)ω2 = w, a ∈ A0

i2) σ(α1, β1) = ω1(x1, θ(u1, v1), y1)ω2 ⇒ ω1σ((x1, u1, z1), (z1, v1, y1))ω2

= w for some z1 ∈ X

Let us take into consideration the assumption last(α1) ∈ {)} and first(β1) ∈
{(, σ, h}. It follows that the word

last(α1), first(β1)

can be only one of the following words:

), (

), σ

), h

therefore either α1 is a subword of ω1 or β1 is a subword of ω2.
The following cases are taken into consideration:

a) Suppose α1 is a subword of ω1.
From i1) and i2) we deduce that (x1, a, y1) or (x1, θ(u1, v1), y1) is a sub-
word of β1.
• If (x1, a, y1) is a subword of β1 then β1 = µ1(x1, a, y1)µ2 for some

words µ1 and µ2. In that case, from i1) we deduce that

σ(α1, β1) = σ(α1, µ1(x1, a, y1)µ2) ⇒ σ(α1, µ1h(x1, a, y1)µ2) = w

therefore w = σ(α, β) for α = α1 and β = µ1h(x1, a, y1)µ2. But

(x, u, z) ⇒∗ α1 ⇒∗ α

(z, v, y) ⇒∗ β1 ⇒ β

last(α) = last(α1) ∈ {)}, first(β) = first(µ1) = first(β1) if µ1 is a
non-empty word and first(β) = h if µ1 is the empty word.

• Let us suppose that (x1, θ(u1, v1), y1) is a subword of β1. In that case
we obtain β1 = µ1(x1, θ(u1, v1), y1)µ2 and from i2) we deduce that
σ(α1, β1) = σ(α1, µ1(x1, θ(u1, v1), y1)µ2)
σ(α1, µ1(x1, θ(u1, v1), y1)µ2) ⇒ σ(α1, µ1σ((x1, u1, z1), (z1, v1, y1))µ2)
σ(α1, µ1σ((x1, u1, z1), (z1, v1, y1))µ2) = w
therefore we have w = σ(α, β) for α = α1 and β = µ1σ((x1, u1, z1),
(z1, v1, y1))µ2.



2.4 Syntactical aspects 23

b) Suppose now that β1 is a subword of ω2. From i1) and i2) we deduce
that (x1, a, y1) or (x1, θ(u1, v1), y1) is a subword of α1. Suppose that
(x1, a, y1) is a subword of α1, therefore α1 = µ1(x1, a, y1)µ2. From i1) we
deduce that σ(α1, β1) = σ(µ1(x1, a, y1)µ2, β1) ⇒ σ(µ1h(x1, a, y1)µ2, β1)
= w, therefore w = σ(α, β) for α = µ1h(x1, a, y1)µ2 and β = β1.
But (x, u, z) ⇒∗ α1 and α1 ⇒ α, therefore (x, u, z) ⇒∗ α. We have
also (z, v, y) ⇒∗ β1 and β1 = β, therefore (z, v, y) ⇒∗ β. In addition,
first(β) = first(β1) and last(α) ∈ {)} if µ2 is the empty word. If µ2 is
a non-empty word, then last(α) = last(µ2) = last(α1).

Thus the proposition is proved.

Proposition 2.4.2. If (x, u, y) ⇒+ α and α ∈ ({σ} ∪M)∗ then α ∈ H.

Proof. We prove by induction on n that if (x, u, y) ⇒n α and α ∈ ({σ} ∪
M)∗ then α ∈ H. We verify this property for n=1. If (x, u, y) ⇒ α then two
cases are possible:

1) u ∈ A0 and α = h(x, u, y). In this case we have α ∈ H.
2) u ∈ A \A0, therefore u = θ(u1, v1). In thhis case

α = σ((x, v1, z1), (z1, v2, y))

for some z1 ∈ X. This case is not possible because α 6∈ ({σ} ∪M)∗.

Suppose the assertion is true for n ∈ {1, ..., k} and take a derivation
(x, u, y) ⇒k+1 α such that α ∈ ({σ} ∪ M)∗. Because k + 1 ≥ 2 and
α ∈ ({σ} ∪ M)∗ we have u = θ(v1, v2) for some v1, v2 ∈ A. Really, if by
contrary we suppose that u ∈ A0 then we have:

(x, u, y) ⇒ h(x, u, y) ⇒k hk(x, u, y) = α

therefore α 6∈ ({σ} ∪M)∗.
The derivation (x, u, y) ⇒k+1 α can be written as follows:

(x, θ(v1, v2), y) ⇒ σ((x, v1, z), (z, v2, y)) ⇒k α

for some z ∈ X. Applying Proposition 2.4.1 we deduce that there are β1, β2

such that (x, v1, z) ⇒∗ β1, (z, v2, y) ⇒∗ β2 and α = σ(β1, β2). Because α ∈
({σ}∪M)∗ we have β1, β2 ∈ ({σ}∪M)∗. Applying the inductive assumption
we have β1, β2 ∈ H, therefore α = σ(β1, β2) ∈ H.

Proposition 2.4.3. Suppose that w ∈ GS(x, θ(u, v), y) and denote by α and
β those elements of H, uniquely determined, such that w = σ(α, β). There is
z ∈ X, such that

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) ⇒∗ w
α ∈ GS(x, u, z) and β ∈ GS(z, v, y)
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Proof. We have (x, θ(u, v), y) ⇒+ w and w ∈ H because w ∈ GS(x, θ(u, v),
y). But H is a Peano σ-algebra, therefore w is written as w = σ(α, β) for
α, β ∈ H uniquely determined. By Proposition 2.4.1 there is z ∈ X such that:

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) ⇒∗ w

and there are α1, β1 such that w = σ(α1, β1), (x, u, z) ⇒∗ α1, (z, v, y) ⇒∗ β1.
By Proposition 2.4.2 we obtain α1 ∈ H and β1 ∈ H. But w = σ(α, β) =
σ(α1, β1), where α, β, α1, β1 ∈ H. By the property of the Peano σ-algebra H,
we have α = α1 and β = β1. In conclusion, the proposition is proved.

Remark 2.4.1. Finally we shall prove that just one element z satisfies the
conditions of the previous proposition.

Proposition 2.4.4. If (x, u, z) ⇒∗ α and (z, v, y) ⇒∗ β then

σ((x, u, z), (z, v, y)) ⇒∗ σ(α, β)

Proof. There are the following derivations:

(x, u, z) ⇒ ω1 ⇒ ω2 ⇒ ... ⇒ ωk ⇒ α
(z, v, y) ⇒ w1 ⇒ w2 ⇒ ... ⇒ wr ⇒ β

We know that if µ ⇒ ν is a direct derivation and w ∈ Z∗ then wµ ⇒ wν and
µw ⇒ νw. Based on this property we obtain the following derivations:

σ((x, u, z), (z, v, y)) ⇒ σ(ω1, (z, v, y)) ⇒ ... ⇒ σ(α, (z, v, y))
σ(α, (z, v, y)) ⇒ σ(α, w1) ⇒ ... ⇒ σ(α, β)

and the proposition is proved.

Corollary 2.4.1.

GS(x, θ(u, v), y) =
⋃

z∈X

GS(x, u, z)⊗ GS(z, v, y)

where P ⊗Q = {σ(u, v) | u ∈ P, v ∈ Q}.
Proof. By Proposition 2.4.3, if w ∈ GS(x, θ(u, v), y) then w ∈ GS(x, u, z)⊗σ

GS(z, v, y). Conversely, consider w = σ(α, β), where α ∈ GS(x, u, z) and β ∈
GS(z, v, y).

It follows that (x, u, z) ⇒∗ α, (z, v, y) ⇒∗ β and α ∈ H, β ∈ H. On the
other hand, if (x, u, z) ⇒∗ α and (z, v, y) ⇒∗ β then

σ((x, u, z), (z, v, y)) ⇒∗ σ(α, β) = w (2.21)

as is stated in Proposition 2.4.4. But θ(u, v) ∈ A, (x, θ(u, v), y) ∈ R, (x, u, z) ∈
R and (z, v, y) ∈ R. It follows that:

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y))

therefore using (2.4.1) we deduce (x, θ(u, v), y) ⇒∗ w. We recall that α, β ∈ H
and w = σ(α, β), therefore w ∈ H. In this way we have w ∈ GS(x, θ(u, v), y)
and the proposition is proved.
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Definition 2.4.4. We define:

H(h(x, a, y)) =< h(x, a, y) > for h(x, a, y) ∈ M
H(σ(α, β)) =< p, q >, where H(α) =< p > and H(β) =< q >, σ(α, β) ∈
H, α ∈ H, β ∈ H.

Proposition 2.4.5. Let be u ∈ A such that trace(u) =< a1, . . . , an >. For
every α ∈ GS(x1, u, z1) there are y1, . . . , yn−1 ∈ X such that H(α) =<
h(x1, a1, y1), h(y1, a2, y2), . . . , h(yn−1, an, z1) > for n ≥ 2 and H(α) =<
h(x1, u, z1) > for n = 1.

Proof. We proceed by induction on n. For n=1 we have trace(u) =< a1 >,
therefore u = a1 ∈ A0. If α is an arbitrary element of GS(x1, u, z1) then
(x1, u, z1) ⇒∗ α and α ∈ H. This derivation is a direct one, that is
(x1, u, z1) ⇒ h(x1, u, z1) = α. It follows that H(α) =< h(x1, u, z1) > and
the property is verified for n=1.

Consider k ≥ 1 and suppose the proposition is true for n ∈ {1, . . . , k}.
Take an element u ∈ A such that trace(u) =< a1, . . . , ak+1 >. There is
u1, v1 ∈ A such that u = θ(u1, v1). Take an element α ∈ GS(x1, u, z1) =
GS(x1, θ(u1, v1), z1). By Corollary 2.4.1 we deduce that there is z ∈ X
such that α = σ(α1, β1), where α1 ∈ GS(x1, u1, z) and β1 ∈ GS(z, v1, z1).
We use the inductive assumption. Because u = θ(u1, v1) and trace(u) =<
a1, . . . , ak+1 >, it follows that there is i ∈ {1, . . . , k} such that trace(u1) =<
a1, . . . , ai > and trace(v1) =< ai+1, . . . , ak+1 >.

By the inductive assumption we have the following properties:

1) there are y1, . . . , yi−1 ∈ X such that

H(α1) =< h(x1, a1, y1), h(y1, a2, y2), . . . , h(yi−1, ai, z) >

2) there are t1, . . . , tk−i ∈ X such that

H(β1) =< h(z, ai+1, t1), h(t1, ai+2, t2), . . . , h(tk−i, ak+1, z1) >

But α = σ(α1, β1), therefore H(α) is the following system:

< h(x1, a1, y1), h(y1, a2, y2), . . . , h(yi−1, ai, z),

h(z, ai+1, t1), . . . , h(tk−i, ak+1, z1) >

and the proposition is proved.

Corollary 2.4.2. If GS(x1, u, z1)∩GS(x2, v, z2) 6= ∅ then x1 = x2, trace(u) =
trace(v) and z1 = z2.

Proof. If α ∈ GS(x1, u, z1) ∩ GS(x2, v, z2) and trace(u) =< a1, . . . , an >,
trace(v) =< b1, . . . , bk > then by Proposition 2.4.5 there are y1, . . . , yn−1,
t1, . . . , tk−1 ∈ X such that:

H(α) =< h(x1, a1, y1), h(y1, a2, y2), . . . , h(yn−1, an, z1) >
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H(α) =< h(x2, b1, t1), h(t1, b2, t2), . . . , h(tk−1, bk, z2) >

therefore n = k, a1 = b1, . . ., an = bk, x1 = x2, y1 = t1, . . ., yn−1 = tk−1 and
z1 = z2. Thus, x1 = x2, trace(u) = trace(v) and z1 = z2.

Corollary 2.4.3. The element z ∈ X from Proposition 2.4.3 is uniquely
determined.

Proof. If α ∈ GS(x, u, z1) ∩ GS(x, u, z2) then z1 = z2 by Corollary 2.4.2.

2.4.3 Algebraic properties of Fcomp(S)

In this section several new properties of the set Fcomp(S) are established.
Because we work with two semantic schemas S and P, we denote by HS and
HP the Peano σ-algebras generated by S, respective P.

Proposition 2.4.6. Fcomp(S) ∈ Initial(HS)

Proof. Let be w ∈ Fcomp(S) and α, β ∈ HS such that w = σ(α, β). Ap-
plying Proposition 2.4.3 we deduce that there are (x, u, z) ∈ R, (z, v, y) ∈ R
such that (x, u, z) ⇒∗ α, (z, v, y) ⇒∗ β, therefore α, β ∈ Fcomp(S).

An useful property of the Peano algebras is specified in the following
proposition:

Proposition 2.4.7. A0 ∩B0 = A0 ∩B0

Proof. Using (2.1) we can write

A0 =
⋃

i≥0

Mi, B0 =
⋃

i≥0

Pi

where M0 = A0, Mi+1 = Ai+1 \ Ai, P0 = B0, Pi+1 = Bi+1 \ Bi (i ≥ 0). We
observe that for every i ≥ 0 and j ≥ 0 we have

Mi+1 =
i⋃

k=0

(Mk ⊗Mi) ∪
i−1⋃

k=0

(Mi ⊗Mk) (2.22)

Pj+1 =
j⋃

k=0

(Pk ⊗ Pj) ∪
j−1⋃

k=0

(Pj ⊗ Pk) (2.23)

We verify by induction on i (i ≥ 1) that

Mk ∩ Ps = ∅, k 6= s, k, s ∈ {0, . . . , i} (2.24)

Obviously M0 ∩ P1 = M1 ∩ P0 = ∅ and therefore (2.24) is true for i = 1.
Suppose (2.24) is true for i and due to the symmetry of the reasoning we
observe that to prove (2.24) for i + 1 is enough to verify that

Mi+1 ∩ Ps = ∅ (2.25)
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for every s ∈ {0, . . . , i}. For s = 0 the property (2.25) is obviously true. From
(2.23) we have

Ps =
s−1⋃
r=0

(Pr ⊗ Ps−1) ∪
s−2⋃
r=0

(Ps−1 ⊗ Pr) (2.26)

for s ≥ 1. Using the distributivity of the set operations, the inductive as-
sumption and the following properties:

• (Mk ⊗Mi) ∩ (Pr ⊗ Ps−1) = ∅ because s− 1 < i
• (Mk ⊗Mi) ∩ (Ps−1 ⊗ Pr) = ∅ because r ≤ s− 2 < i
• (Mi ⊗Mk) ∩ (Pr ⊗ Ps−1) = ∅ because r ≤ s− 1 < i
• (Mi ⊗Mk) ∩ (Ps−1 ⊗ Pr) = ∅ because s− 1 < i

we obtain (2.25) from (2.22) and (2.26).

Proposition 2.4.8. If Fcomp(S) ⊆ HS and Fcomp(P) ⊆ HP then

Fcomp(S) ∩ Fcomp(P) ∈ Initial(HS ∩HP)

Proof. Take w ∈ Fcomp(S) ∩ Fcomp(P). Denote HS = C0 and HP = D0.
It follows that w ∈ Fcomp(S) ⊆ HS = C0 and w ∈ Fcomp(P) ⊆ HP = D0

therefore w ∈ HS ∩ HP . By Proposition 2.4.7 we have HS ∩ HP = C0 ∩D0

therefore w ∈ C0 ∩D0. Suppose w = σ(α, β), where α, β ∈ C0 ∩D0.
From the fact that w ∈ Fcomp(S) ∈ Initial(HS) we deduce that there
are αS , βS ∈ Fcomp(S), uniquely determined, such that w = σ(αS , βS).
Similarly, from w ∈ Fcomp(P) ∈ Initial(HP) we deduce that there are
αP , βP ∈ Fcomp(P), uniquely determined, such that w = σ(αP , βP ). We
conclude that the following relations were obtained:

w = σ(α, β) ∈ Fcomp(S) ⊆ HS
α, β ∈ HS ∩HP ⊆ HS
w = σ(αS , βS)
αS , βS ∈ Fcomp(S) ⊆ HS

From these relations we deduce that α = αs and β = βS . Similar we obtain
α = αP and β = βP . But αS ∈ Fcomp(S), αP ∈ Fcomp(P) and α = αS = αP .
It follows that α ∈ Fcomp(S) ∩ Fcomp(P). Similar we have β ∈ Fcomp(S) ∩
Fcomp(P).

In order to simplify the proof of some properties we introduce the following
definition.

Definition 2.4.5. A left derivation is a derivation w1 ⇒ w2 ⇒ . . .such
that for every i ≥ 1 the direct derivation wi ⇒ wi+1 has the property that the
leftmost triple from wi is replaced to obtain wi+1.

Obviously we have the following property:

Proposition 2.4.9. If w is derived from (x, u, y) then there is a left deriva-
tion of w from (x, u, y).
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Proposition 2.4.10. We consider two semantic schemas S and P. If w ∈
Fcomp(S)∩Fcomp(P) then (x, u, y) ⇒∗ w is a left derivation in S if and only
if it is a left derivation in P.

Proof. Consider the schemas S = (X, A0, A, R) and P = (Y,B0, B, Q) and
denote R0 = R ∩ (X × A0 × X), Q0 = Q ∩ (Y × B0 × Y ). Obviously it is
enough to prove the following property: if (x, u, y) ⇒∗ w is a left derivation
in S then it is a left derivation in P. We consider the increasing sequence of
natural numbers 1 = l1 < l2 < . . . such that li is the length of a derivation
in S. In order to verify our sentence we proceed by induction on i.

• If i = 1 then w = h(x, u, y) and (x, u, y) ∈ R0. But w ∈ Fcomp(P),
therefore (x, u, y) ∈ Q0 and thus the property is true for i = 1.

• Suppose the property is true for l1, . . . , li and take a left derivation
(x, θ(u, v), y) ⇒∗ w of length li+1 in S. By Proposition 2.4.6 and Proposition
2.4.8 there are α, β ∈ Fcomp(S) ∩ Fcomp(S) and there is z such that w =
σ(α, β) and the following computations give left derivations in S:

(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) ⇒∗ w
(x, u, z) ⇒∗ α, (z, v, y) ⇒∗ β

By the inductive assumption (x, u, z) ⇒∗ α and (z, v, y) ⇒∗ β are deriva-
tions in P. We have also (x, u, z) ∈ R ∩ Q and (z, v, y) ∈ R ∩ Q. Thus
(x, θ(u, v), y) ⇒ σ((x, u, z), (z, v, y)) is a left derivation in P and the propo-
sition is proved.

Proposition 2.4.11. If S v P then Fcomp(S) ⊆ Fcomp(P).

Proof. We observe that R =
⋃

n≥0 Rn, where Rn = {(x, u, y) ∈ R | u ∈
An}. We verify by induction on n the following property:

GS(x, u, y) ⊆ GP(x, u, y) (2.27)

for every (x, u, y) ∈ Rn.
• If (x, u, y) ∈ R0 then u ∈ A0. In this case, if w ∈ GS(x, u, y) then

w = h(x, a, y). But x, y ∈ A0, u ∈ A0, X1 ⊆ X2 and A0 ⊆ B0, therefore
h(x, a, y) ∈ GP(x, u, y). Thus (2.27) is verified for n = 1.

• Suppose (2.27) is true for n = k and take an element w ∈ GS(x, u, y)
such that (x, u, y) ∈ Rk+1. It follows that u = θ(u1, v1) ∈ Ak+1. Either
u ∈ Ak or u ∈ Ak+1 \ Ak. If u ∈ Ak then (x, u, y) ∈ Rk and the property is
true for n = k. If u ∈ Ak+1 \ Ak then u1, v1 ∈ Ak. But from Corollary 2.4.1
we have

GS(x, θ(u1, v1), y) =
⋃

z∈X1

GS(x, u1, z)⊗ GS(z, v1, y)

It follows that we find z ∈ X1, α ∈ GS(x, u1, z), β ∈ GS(z, v1, y) such that
w = σ(α, β). We observe that (x, u1, z) ∈ Rk and (z, v1, y) ∈ Rk there-
fore we can apply the inductive assumption. Based on this assumption we
have GS(x, u1, z) ⊆ GP(x, u1, z) and GS(x, v1, z) ⊆ GP(x, v1, z). therefore
α ∈ GP(x, u1, z), β ∈ GP(x, v1, z). But
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GP(x, θ(u1, v1), y) =
⋃

t∈X2

GP(x, u1, t)⊗ GP(t, v1, y)

On the other hand z ∈ X1 and X1 ⊆ X2, therefore z ∈ X2. Choosing t = z
we obtain σ(α, β) ∈ GP(x, u, y) and (2.27) is proved. Using (2.27) we obtain

⋃

(x,u,y)∈R

GS(x, u, y) ⊆
⋃

(x,u,y)∈R

GP(x, u, y)

But R ⊆ Q therefore
⋃

(x,u,y)∈R

GP(x, u, y) ⊆
⋃

(x,v,y)∈Q

GP(x, u, y)

Now the proposition is proved if we use (2.20).

2.4.4 Sorted elements

In order to introduce the concept of sorted element some preliminary results
are needed. An useful property is proved in the following proposition.

Proposition 2.4.12. If w ∈ GS(x, u1, z) ∩ GS(x, u2, z) then u1 = u2.

Proof. First we observe that by Corollary 2.4.2 we have trace(u1) =
trace(u2). If trace(u) =< a1, . . . , as > then we denote length(u) = s. Us-
ing this notation we consider the increasing sequence l1 = 1 < l2 < . . .
of the elements from A. We verify the property by induction on i, where
length(u1) = length(u2) = li.

• For i = 1 we have u1, u2 ∈ A0, w = h(x, u1, y) = h(x, u2, y), therefore
u1 = u2.

• Suppose the property is true for every u1, u2 ∈ A such that length(u1) =
length(u2) = li, i ∈ {1, . . . , k}. We verify the property for i = k + 1.
Thus we suppose that w ∈ GS(x, u1, z) ∩ GS(x, u2, z) and length(u1) =
length(u2) = lk+1. By a basic property of a Peano algebra we deduce that
there are p1, p2, q1, q2 ∈ A, uniquely determined, such that u1 = θ(p1, p2)
and u2 = θ(q1, q2). Let us consider the elements α ∈ H and β ∈ H, uniquely
determined, such that w = σ(α, β). We have

(x, u1, y) = (x, θ(p1, p2), y) =⇒∗ w = σ(α, β)
Applying Proposition 2.4.3 we deduce that there is z1, uniquely determined,
such that

(x, θ(p1, p2), y) ⇒ σ((x, p1, z1), (z1, p2, y)) ⇒∗ w
α ∈ GS(x, p1, z1) and β ∈ GS(z1, p2, y)

Similarly we have
(x, u2, y) = (x, θ(q1, q2), y) =⇒∗ w = σ(α, β) therefore

(x, θ(q1, q2), y) ⇒ σ((x, q1, z2), (z2, q2, y)) ⇒∗ w
α ∈ GS(x, q1, z2) and β ∈ GS(z2, q2, y)

for an element z2 ∈ X, uniquely determined. We observe that
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α ∈ GS(x, p1, z1) ∩ GS(x, q1, z2) β ∈ GS(z1, p2, y) ∩ GS(z2, q2, y)
Applying Corollary 2.4.2 we obtain z1 = z2, trace(p1) = trace(q1) and
trace(p2) = trace(q2). Denoting z = z1 = z2 we observe that

α ∈ GS(x, p1, z) ∩ GS(x, q1, z)
and length(p1) = length(q1) < lk+1. Applying the inductive assumption we
have p1 = q1. Similarly we obtain p2 = q2, therefore u1 = u2.

Now we can prove the basic property which allows us to introduce the
concept of sorted element.

Proposition 2.4.13. For every w ∈ Fcomp(S) just one element (x, u, y) ∈ R
satisfies the property (x, u, y) =⇒∗ w.

Proof. Based on Corollary 2.4.2 we deduce that if w ∈ GS(x1, u1, z1) ∩
GS(x2, u2, z2) then x1 = x2, z1 = z2 and trace(u1) = trace(u2). Now we
apply Proposition 2.4.12 and we deduce u1 = u2.

This result allows us to give the following definition.

Definition 2.4.6. If w ∈ Fcomp(S) then the element u ∈ A such that
(x, u, y) ∈ R and (x, u, y) =⇒∗ w is named the sort of w and we denote
sort(w) = u.

Proposition 2.4.14. Every element w ∈ Fcomp(S) has a sort, which is
uniquely determined.

Proof. By definition of Fcomp(S) every element has a sort. This is uniquely
determined by Proposition 2.4.13.

Proposition 2.4.15. Suppose σ(α, β) ∈ Fcomp(S), α ∈ Fcomp(S) and β ∈
Fcomp(S). If sort(σ(α, β)) = θ(u, v) then sort(α) = u and sort(β) = v.

Proof. Immediate from Proposition 2.4.3.
We introduce now the following binary relation on Fcomp(S):

Definition 2.4.7. Let us consider w1, w2 ∈ Fcomp(S). We write w1 ∼ w2 if
sort(w1) = sort(w2) and for every u ∈ A we denote

[u]F = {w ∈ Fcomp(S) | sort(w) = u}
An useful property in studying these sets is the following:

Proposition 2.4.16. For every (x, u, y) ∈ R we have GS(x, u, y) 6= ∅.
Proof. Taking into consideration the relation (2.1) we observe that A =⋃

n≥0 Bn, where Bn = A ∩ An. We verify by induction on n the following
property T(n):

For every (x, u, y) ∈ R such that u ∈ Bn we have GS(x, u, y) 6= ∅.
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From Definition 2.4.3 and Definition 2.4.1 we observe that T(0) is true. Sup-
pose T(0),. . ., T(m) are true and take an arbitrary element (x, θ(u, v), y) ∈ R
such that θ(u, v) ∈ Bm+1. There are i ≤ m and j ≤ m such that u ∈ Bi and
v ∈ Bj . By equation (2.2) there is an element z ∈ X such that (x, u, z) ∈ R
and (z, v, y) ∈ R. By the inductive assumption we have GS(x, u, z) 6= ∅ and
GS(z, u, y) 6= ∅. Take w1 ∈ GS(x, u, z) and w2 ∈ GS(z, u, y). By Corollary
2.4.1 we know that

GS(x, θ(u, v), y) =
⋃

z∈X

GS(x, u, z)⊗ GS(z, v, y)

Based on this property we obtain σ(w1, w2) ∈ GS(x, θ(u, v), y), therefore
GS(x, θ(u, v), y) 6= ∅. In other words, T(m+1) is true and the proposition is
proved.

Proposition 2.4.17. For every u ∈ A we have [u]F 6= ∅.
Proof. From (2.4) we deduce that for every u ∈ A there is x, y ∈ R such
that (x, u, y) ∈ R. By Proposition 2.4.16 we have GS(x, u, y) 6= ∅. But [u]F ⊇
GS(x, u, y), therefore [u]F 6= ∅.

Now we observe that the relation defined in Definition 2.4.7 is reflexive,
symmetric and transitive, therefore it is an equivalence relation. Thus, the set
Fcomp(S) is divided into equivalence classes and all elements of an equivalence
class have the same sort. In other words,

Fcomp(S) =
⋃

u∈A

[u]F

The set Fcomp(S) is the result of the formal computations defined by the
schema S.

In order to relieve the computations we consider the labeled graph rep-
resented in Figure 2.5 and A = A0 ∪ {θ(a, b), θ(b, a)}, where we observe that
A0 = {a, b}. It follows that

x1 x2 x3 x4 y2

y1

- - - -

-
6

a b a b

a b

Fig. 2.5. The graph used to exemplify the computations

R = R0 ∪ {(x1, θ(a, b), x3), (x3, θ(a, b), y2),
(x2, θ(b, a), x4), (y1, θ(b, a), x4)}

where
R0 = {(x1, a, x2), (x1, a, y1), (x3, a, x4), (x2, b, x3),
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(y1, b, x3), (x4, b, y2)}
We obtain

GS(x1, θ(a, b), x3) = {σ(h(x1, a, x2), h(x2, b, x3)),
σ(h(x1, a, y1), h(y1, b, x3))}

because
• (x1, θ(a, b), x3) =⇒ σ((x1, a, x2), (x2, b, x3)) =⇒

σ(h(x1, a, x2), h(x2, b, x3))
• (x1, θ(a, b), x3) =⇒ σ((x1, a, y1), (y1, b, x3)) =⇒

σ(h(x1, a, y1), h(y1, b, x3))
We have also

GS(x3, θ(a, b), y2) = {σ(h(x3, a, x4), h(x4, b, y2))}
therefore

[θ(a, b)]F = {α1, α2, β1}
where α1 = σ(h(x1, a, x2), h(x2, b, x3)), α2 =
σ(h(x1, a, y1), h(y1, b, x3)) and β1 = σ(h(x3, a, x4),
h(x4, b, y2)).

Similarly we obtain
[θ(b, a)]F = {γ1, γ2}

where
γ1 = σ(h(x2, a, x3), h(x3, a, x4))
γ2 = σ(h(y1, a, x3), h(x3, a, x4))

and obviously
[a]F = {h(x1, a, x2), h(x3, a, x4), h(x1, a, y1)}
[b]F = {h(x2, b, x3), h(y1, b, x3), h(x4, a, y2)}

It follows that
Fcomp(S) = [a]F ∪ [b]F ∪ [θ(a, b)]F ∪ [θ(b, a)]F

2.4.5 Classes of objects

We consider:
• A semantic schema S = (X, A0, A, R)
• A bijective mapping ob : X → Ob , where Ob is a set of objects (named

simple objects).
• For each u ∈ A we consider an algorithm Algu such that from two

objects o1 and o2 another object Algu(o1, o2) is obtained. In addition, we
suppose that for a ∈ A0, the output element Alga(o1, o2) is defined only
for o1, o2 ∈ Ob (simple objects). The elements Algu(o1, o2) are complex
objects.

Definition 2.4.8. We define recursively:

• The object o = Alga(ob(x), ob(y)) for a ∈ A0 and x, y ∈ X is a complex
object of class a and we denote this property by cls(o) = a.
• If cls(o1) = u, cls(o2) = v and θ(u, v) ∈ A then o = Algθ(u,v)(o1, o2) is
a complex object and cls(o) = θ(u, v).
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We observe that an object of class θ(u, v) is the output object of the algorithm
Algθ(u,v) for two input objects of class u, respectively v.

We remark that the elements of A are viewed as sorts for elements of
Fcomp(S) and classes for objects.

2.5 Semantical aspects

2.5.1 Overview

In this chapter we treat the concepts and results in conjunction with the
semantics of a semantic schema. The semantics or meaning is obtained by
means of the concept of interpretation. We introduce this concept and each
interpretation defines a valuation mapping, which gets values from some space
called semantic (or output) space.

2.5.2 Interpretation of a schema

At the beginning of this section we introduce the concept of interpretation. In
essence, an interpretation attaches objects to the nodes of a semantic schema
and is able to compute various objects of the semantic space. This structure
is endowed with a set of algorithms, which organize the output space as a set
of layers, each layer containing objects of the same class.

Definition 2.5.1. Let be S = (X, A0, A,R) a semantic schema. An inter-
pretation I of S is a system I = (Ob, ob, {Algu}u∈A) where

• Ob is a finite set of elements which are called the objects of the inter-
pretation
• ob : X → Ob is a bijective function.
• {Algu}u∈A is a set of algorithms such that each algorithm has two input
parameters and an output parameter.

Definition 2.5.2. Consider an interpretation I = (Ob, ob, {Algu}u∈A) for
S. The output space Y of I is defined as follows:

Y =
⋃

u∈A

Yu (2.28)

where
Ya = {Alga(ob(x), ob(y))|(x, a, y) ∈ R0}

if a ∈ A0 and

Yθ(u,v) = {Algθ(u,v)(o1, o2)|o1 ∈ Yu, o2 ∈ Yv}
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As we can view in (2.28) the output space Y is broken into layers. A layer is
a set Yu for some u ∈ A. We observe that each element of Yu has the class u.

The mapping defined by an interpretation in Figure 2.1 is given in the
next definition.

Definition 2.5.3. We define recursively the valuation mapping

V alI : Fcomp(S) −→ Y

as follows:

• V alI(h(x, a, y)) = Alga(ob(x), ob(y))
• V alI(σ(α, β)) = Algθ(u,v)(V alI(α), V alI(β)) if sort(σ(α, β)) = θ(u, v).

Remark 2.5.1.
sort(σ(α, β)) = cls(V alI(σ(α, β)))

Remark 2.5.2. V alI is a partial mapping. More precisely, V alI(σ(α, β)) is
defined if and only if the following conditions are fulfilled:

V alI(α) and V alI(β) are defined.
Algθ(u,v) returns a value if its input arguments are V alI(α) and V alI(β).

Now we can define the output mapping of a semantic schema generated
by an interpretation. This mapping computes for each pair of nodes all the
meanings assigned in the output space Y . To do this, all the paths connecting
the first node of the pair with the second node are considered. Each such
path is characterized by some element of Fcomp(S). We take the value of the
mapping V alI at this element and obtain the corresponding element from Y .

Definition 2.5.4. If I is an interpretation of the semantic schema S then
we can define the output mapping

OutI : X ×X → 2Y

as follows:
OutI(x, y) =

⋃

(x,u,y)∈R

⋃

w∈GS(x,u,y)

{V alI(w)}

Let us consider the following example of computations. We consider the
semantic schema

S = ({x1, x2, x3, x4}, {a, b, c}, {a, b, θ(a, b), θ(θ(a, b), c)}, {(x1, a, x2),

(x2, b, x3), (x3, c, x4), (x1, θ(a, b), x3), (x1, θ(θ(a, b), c), x4)})
which is represented in Figure 2.6.

If C is a geometric figure such as a circle, a square, a rectangle etc then
we denote by int(C) the inner side of C and its frontier.

We take as interpretation the system I = (Ob, ob, {Algu}u∈A) containing
the following components:
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• Ob = {1, (2, 2), (2, 1/2), 1.2}
• ob(x1) = 1; ob(x2) = (2, 2); ob(x3) = (2, 1/2); ob(x4) = 1.2
• Algorithm Alga(r : real, (x, y) : (real, real))

Take o = int(C), where C is the circle of radius r and center (x, y); return
o;
End of algorithm

• Algorithm Algb((x, y) : (real, real), (r1, r2) : (real, real))
Take o = int(E), where E is the ellipse with horizontal radius r1, vertical
radius r2 and center (x, y); return o;
End of algorithm

• Algorithm Algc((x, y) : (real, real), r : real)
Take o = int(E), where E is the hexagon with center (x, y +3/2), radius
r and two sides parallel with Ox ; return o;
End of algorithm

• Algorithm Algθ(a,b)(o1 : a, o2 : b)
If E = (int(o1) ∪ int(o2)) \ (int(o2) ∩ int(o1)) 6= ∅ then return E;
End of algorithm

• Algorithm Algθ(θ(a,b),c)(o1 : θ(a, b), o2 : c)
If E = (int(o1) ∪ int(o2)) \ (int(o2) ∩ int(o1)) 6= ∅ then return E;
End of algorithm

We obtain the following computation for Fcomp(S):

(x1, a, x2) ⇒ h(x1, a, x2)
(x2, b, x3) ⇒ h(x2, b, x3)
(x3, c, x4) ⇒ h(x3, c, x4)
(x1, θ(a, b), x3) ⇒∗ σ(h(x1, a, x2), h(x2, b, x3))
(x1, θ(θ(a, b), c), x4) ⇒∗ σ(σ(h(x1, a, x2), h(x2, b, x3)), h(x3, c, x4))

therefore

Fcomp(S) = {h(x1, a, x2), h(x2, b, x3), h(x3, c, x4), σ(h(x1, a, x2), h(x2, b, x3))

σ(σ(h(x1, a, x2), h(x2, b, x3)), h(x3, c, x4))}
and

sort(h(x1, a, x2)) = a, sort(h(x2, b, x3)) = b, sort(h(x3, c, x4)) = c
sort(σ(h(x1, a, x2), h(x2, b, x3))) = θ(a, b)
sort(σ(σ(h(x1, a, x2), h(x2, b, x3)), h(x3, c, x4))) = θ(θ(a, b), c)

We obtain the following computations:

• V alI(h(x1, a, x2)) = Alga(ob(x1), ob(x2)) = o1, Ya = {o1}, where o1 is
the circle represented in Figure 2.7(a);

• V alI(h(x2, b, x3)) = Algb(ob(x2), ob(x3)) = o2, Yb = {o2}, where o2 is
the ellipse represented in Figure 2.7(b);

• V alI(h(x3, c, x4)) = Algc(ob(x3), ob(x4)) = o1, Yc = {o3}, where o3 is
represented in Figure 2.8(b);
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Fig. 2.6. An interpretation
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V alI(σ(h(x1, a, x2), h(x2, b, x3))) =

Algθ(a,b)(V alI(h(x1, a, x2)), V alI(h(x2, b, x3))) =

Algθ(a,b)(o1, o2) = o12

Yθ(a,b) = {o12}, where o12 is the object represented in Figure 2.8(a);
V alI(σ(σ(h(x1, a, x2), h(x2, b, x3)), h(x3, c, x4))) =

Algθ(θ(a,b),c)(V alI(σ(h(x1, a, x2), h(x2, b, x3)), V alI(h(x3, c, x4)))) =

Algθ(θ(a,b),c)(o12, o3) = o123

Yθ(θ(a,b),c) = {o123}, where o123 is represented in Figure 2.9.

(a) (b)

Fig. 2.7. (a)The object o1; (b) The object o2

(a) (b)

Fig. 2.8. (a)The object o12; (b)The object o3

In conclusion we obtain

Out(x1, x2) = {o1}, Out(x2, x3) = {o2}, Out(x3, x4) = {o3}
Out(x1, x3) = {o12}, Out(x1, x4) = {o123}, Out(x2, x4) = ∅
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Fig. 2.9. The final object o123

2.5.3 Compatible interpretations

In this section we give some details concerning the union of two algorithms
and then we introduce the concept of compatible interpretations.

Definition 2.5.5. The algorithms Alg1 and Alg2 are called compatible al-
gorithms if

Alg1(v1, v2) = Alg2(v1, v2)
for every (v1, v2) ∈ dom(Alg1)∩ dom(Alg2). We denote by Alg1 ∼C Alg2 the
property ”Alg1 and Alg2 are compatible”.

The relation ∼C is reflexive and symmetric, but is not transitive as we can
view in the following example.

Algorithm Alg1
1(r : real, (x, y) : (real, real))

If r > 10 then return s = x + y;
End of algorithm

It is not difficult to observe that for this case

dom(Alg1
1) = {r ∈ R|r > 10} × (R×R)

where R is the set of the real numbers.
Algorithm Alg1

2(r : real, (x, y) : (real, real))
If r ≤ 10 then return s = x− y; if r > 11 then return s = x + y;
End of algorithm

For Alg1
2 we have

dom(Alg1
2) = {r ∈ R|r ≤ 10} × (R×R)

Now we consider the following algorithm Alg1
3 :

Algorithm Alg1
3(r : real, (x, y) : (real, real))

If r ≤ 10 then return s = x− y; if r > 10 and r < 11 then return s = 5;
End of algorithm

We observe that Alg1
1 ∼C Alg1

2 and Alg1
2 ∼C Alg1

3 . But Alg1
1 6∼C Alg1

3

because for 10 < r < 11, x = 4 and y = 3 we have Alg1
1(r, (x, y)) = 7 and

Alg1
3(r, (x, y)) = 5.
We can introduce a partial binary relation between two algorithms as we

show in the following definition:
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Definition 2.5.6. We write Alga ≺ Algb if dom(Alga) ⊆ dom(Algb) and
Alga(v1, v2) = Algb(v1, v2) for every (v1, v2) ∈ dom(Alga).

Obviously the relation ≺ is reflexive and transitive. But this is not a par-
tial order because it is not antisymmetric. This property can be relieved
as follows. We give an example of two algorithms Alg4 and Alg5 such that
dom(Alg4) = dom(Alg5), Alg4(v1, v2) = Alg5(v1, v2) for all (v1, v2) and each
algorithm is based on a distinct method. Such an example can be given to
compute the value z = a + b

√
kc, where a and k are natural numbers and

b
√

kc is the largest integer p such that p ≤
√

k. A non trivial algorithm to
compute z is based on the identity 1+3+5+. . .+2n+1 = (n+1)2 and can be
described as follows (Manna (1974), where the correctness of this algorithm
is studied):

Algorithm Alg4(a : integer, k : integer)
if k > 0 then { j := 1; sum := 1; i := 0;
while sum ≤ k do

i := i + 1; j := j + 2; sum := sum + j;
endwhile }
endif
return a+i;

End of algorithm
For example, Alg4(−2, 3) = −1, Alg4(1, 6) = 3 and so on.

The same problem can be solved by using the well known approximate
method xn+1 = 1/2(xn + k/xn). Using this method we obtain the algorithm
Alg5:

Algorithm Alg5(a : integer, k : integer)
if k > 0 then { x := k;
while |x2 − k| > 0.001 do

x := 1/2(x + k/x);
endwhile }
endif
find the natural number n such that n ≤ x < n + 1;
return a+n;

End of algorithm

Definition 2.5.7. We consider two compatible algorithms Algn and Algm.
We denote by Algn tAlgm the following algorithm Alg:

Algorithm Alg(v1, v2)
If (v1, v2) ∈ dom(Algn) then apply Algn;
o := Alg(v1, v2); endif
If (v1, v2) ∈ dom(Algm) \ dom(Algn) then apply
Algm; o := Algm(v1, v2); endif
return o;

End of algorithm
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We have the following properties of the operation t:

Proposition 2.5.1. If Algn ∼C Algm then
• Algn tAlgm ≺ Algm tAlgn ≺ Algn tAlgm

• Algn ≺ Algn tAlgm

• If Algn ≺ Alg and Algm ≺ Alg then Algn tAlgm ≺ Alg

Proof. Immediate by the fact that dom(Algn t Algm) = dom(Algn) ∪
dom(Algn) and Definition 2.5.7.

In order to relieve some useful aspects of the computations in a semantic
schema we consider the following example. We consider the labeled graph
from Figure 2.10, which defines the schema S = (X,A0, A, R) if we take X =
{x1, x2, x3}, A0 = {a, b}, A = A0 ∪ {θ(a, b)}, R0 = {(x1, a, x2), (x2, b, x3)}
and R = R0 ∪ {(x1, θ(a, b), x3)}.

x1 x2 x3- -

6
θ(a, b)

a b

Fig. 2.10. A graph representing a semantic schema

We consider the interpretation I = (Ob, ob, {Alg1
u}u∈A), where Ob =

{1, 8, 2}, ob(x1) = 1, ob(x2) = 8, ob(x3) = 2 and the following algorithms:
Algorithm Alg1

a(r1 : integer, r2 : integer)
if r1 + r2 ≥ 10 then return o = (r1, r2);

End of algorithm

Algorithm Alg1
b (r1 : integer, r2 : integer)

if r1 − r2 > 5 then return o = (−r1,−r2);
End of algorithm

Algorithm Alg1
θ(a,b)(o1, o2)

if o1 = (x, y) and o2 = (p, q) then return
the integer value x× p + y × q;

End of algorithm
We consider also the interpretation J = (Ob, ob, {Alg2

u}u∈A), where
Algorithm Alg2

a(r1 : integer, r2 : integer)
if r1 + r2 ≥ 10 then return o = (r1, r2); otherwise

return o = (2r1, 3r2);
End of algorithm

and take Alg2
b = Alg1

b , Alg2
θ(a,b) = Alg1

θ(a,b).
We observe that V alI(h(x1, a, x2)) is not defined because (ob(x1), ob(x2)) =
(1, 8) 6∈ dom(Alg1

a). We have also the following derivation in S:
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(x1, θ(a, b), x3) ⇒∗ σ(h(x1, a, x2), h(x2, b, x3))

In other words we have σ(h(x1, a, x2), h(x2, b, x3)) ∈ Fcomp(S). But we ob-
serve that V alI(σ(h(x1, a, x2), h(x2, b, x3))) is not defined because the ele-
ment V alI(h(x, a, y)) is not defined.

If we perform the same computations for J then we obtain:
V alJ (h(x1, a, x2)) = Alg2

a(1, 8) = (2, 24)
V alJ (h(x2, b, x3)) = Alg2

b (8, 2) = (−8,−2)
V alJ (σ(h(x1, a, x2), h(x2, b, x3))) =

Alg2
θ(a,b)((2, 24), (−8,−2)) = −64

For the example presented before we observe that Alg1
a ∼C Alg2

a, Alg1
b ∼C

Alg2
b and Alg1

θ(a,b) ∼C Alg2
θ(a,b). In conclusion we relieved the following as-

pect: we defined two distinct interpretations I ∈ Int(S) and J ∈ Int(S)
for the same semantic schema S such that the corresponding algorithms are
compatible and there is w ∈ Fcomp(S) such that V alI(w) is not defined, but
V alJ (w) has some value.

Definition 2.5.8. The interpretations I = (Ob1, ob1, {Alg1
u}u∈A) ∈ Int(S)

and J = (Ob2, ob2, {Alg2
v}v∈B) ∈ Int(P) are compatible if

• If x ∈ X1 ∩X2 then ob1(x) = ob2(x)
• Alg1

u ∼C Alg2
u for every u ∈ A ∩B

We denote this property by I ≈C J .

Particularly this definition can be used for the same semantic schema,
that is S = P. This is the case of the example presented before. Thus for
our example we have I ≈C J , but we observe that we have also Alg1

a ≺
Alg2

a, Alg1
b ≺ Alg2

b and Alg1
θ(a,b) ≺ Alg2

θ(a,b). Thus the following definition is
consistent.

Definition 2.5.9. Let us consider the interpretations

I = (Ob1, ob1, {Alg1
u}u∈A) ∈ Int(S)

J = (Ob2, ob2, {Alg2
v}v∈B) ∈ Int(P)

We write I ≺ J if the the following conditions are satisfied:

• S v P
• ob2 is an extension of ob1

• Alg1
u ≺ Alg2

u for u ∈ A

Particularly we can consider two interpretations for the same semantic
schema. This is the case encountered in our example, where I ≺ J and
I ≈C J . The connection between these two concepts is stated in the follow-
ing proposition:

Proposition 2.5.2. If I ≺ J then Ob1 ⊆ Ob2 and I ≈C J .
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Proof. The first part is obtained from the fact that X1 ⊆ X2, ob2 is an
extension of ob1 therefore ob2(x) = ob1(x) for x ∈ X1. For the second part
we observe that if Alg1

u ≺C Alg2
u then Alg1

u ∼C Alg2
u. Now the proof is

immediate by the fact that X1 ∩ X2 = X1, ob2 is an extension of ob1 and
A ∩B = A.

Proposition 2.5.3. If I ∈ Int(S), J ∈ Int(P) and I ≺ J then for every
w ∈ Fcomp(S) we have the following property: if V alI(w) is defined then
V alJ (w) is defined and V alI(w) = V alJ (w).

Proof. We prove this property by induction on the length of sort(w).
• If length(sort(w)) = 1 then w = h(x, a, y) for some (x, a, y) ∈ R0. But

S v P therefore R0 ⊆ Q0. By definition of the mapping V al we have
V alI(h(x, a, y)) = Alg1

a(ob1(x), ob1(y)) if (ob1(x), ob1(y)) ∈ dom(Alg1
a)

V alJ (h(x, a, y)) = Alg2
a(ob2(x), ob2(y)) if (ob2(x), ob2(y)) ∈ dom(Alg2

a)
But x ∈ X1, y ∈ X1, X1 ⊆ X2 and ob2 extends ob1. This means that
ob1(x) = ob2(x), ob1(y) = ob2(y). We have also Alg1

a ≺ Alg2
a because a ∈

A0 = A0∩B0. If V alI(w) is defined then (ob1(x), ob1(y)) ∈ dom(Alg1
a) there-

fore (ob2(x), ob2(y)) ∈ dom(Alg2
a) because (ob1(x), ob1(y)) = (ob2(x), ob2(y)).

It follows that in this case V alJ (w) is defined. Moreover, from Alg1
a ≺

Alg2
a we obtain Alg1

a(ob1(x), ob1(y) = Alg2
a(ob2(x), ob2(y))). In other words,

V alI(w) = V alJ (w) in this case.
• Suppose the property is true for every w such that length(sort(w)) < n

and take w ∈ Fcomp(S) such that length(sort(w)) = n. Because Fcomp(S) ∈
Initial(HS) and HS is a Peano algebra, we have w = σ(α, β) for some
α, β ∈ Fcomp(S), uniquely determined. If sort(w) = θ(u, v) then sort(α) = u,
sort(β) = v and

V alI(w) = Alg1
θ(u,v)(V alI(α), V alI(β))

if (V alI(α), V alI(β)) ∈ dom(Alg1
θ(u,v))

V alJ (w) = Alg2
θ(u,v)(V alJ (α), V alJ (β))

if (V alJ (α), V alJ (β)) ∈ dom(Alg2
θ(u,v)).

If V alI(w) is defined then (V alI(α), V alI(β)) ∈ dom(Alg1
θ(u,v)), there-

fore V alI(α) and V alI(β)) are defined. But length(sort(α)) < n and
length(sort(β)) < n. Applying the inductive assumption we obtain that
V alJ (α) and V alJ (β)) are defined and

V alI(α) = V alJ (α), V alI(β) = V alJ (β)
Moreover, Alg1

θ(u,v) ≺ Alg2
θ(u,v) therefore V alI(w) = V alJ (w) and the propo-

sition is proved.

2.5.4 An interpretation for S ∨ P

In this section we treat the following problem:
Suppose that I is an interpretation for S and J is an interpretation for

P such that they are compatible interpretations; we define and give a method
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to obtain an interpretation I ∨ J of sup{S,P}, which is an upper bound for
{I,J } and for every interpretation K of S ∨ P such that I ≺ K and J ≺ K
we have I ∨ J ≺ K.

Proposition 2.5.4. We consider I = (Ob1, ob1{Alg1
u}u∈A) ∈ Int(S) and

J = (Ob2, ob2{Alg2
v}v∈B) ∈ Int(P) such that I ≈C J .

The system I ∨ J = (Ob, ob, {Algu}u∈A∪B), where
• Ob = Ob1 ∪Ob2

• ob(x) =
{

ob1(x) if x ∈ X1

ob2(x) if x ∈ X2

• Algu =





Alg1
u tAlg2

u if u ∈ A ∩B
Alg1

u if u ∈ A \B
Alg2

u if u ∈ B \A
has the following properties:

• I ∨ J ∈ Int(S ∨ P)
• I ≺ I ∨ J ; J ≺ I ∨ J

Proof.
The mapping ob : X1∪X2 −→ Ob is well defined because ob1(x) = ob2(x)

for x ∈ X1 ∩X2. Obviously ob is a bijective mapping. We have dom(Alg1
u t

Alg2
u) = dom(Alg1

u) ∪ dom(Alg2
u), therefore

• If u = a ∈ A0∩B0 then dom(Algu) = dom(Alg1
u)∪dom(Alg2

u) ⊆ Ob×Ob.
If u ∈ A0 \B0 then dom(Algu) = dom(Alg1

u) ⊆ Ob1×Ob1 ⊆ Ob×Ob. Similar
for u ∈ B0 \A0 then dom(Algu) = dom(Alg2

u) ⊆ Ob2 ×Ob2 ⊆ Ob×Ob.
• If u = θ(u1, v1) ∈ A ∩ B then dom(Algθ(u1,v1)) = dom(Alg1

θ(u1,v1)
) ∪

dom(Alg2
θ(u1,v1)

) ⊆ (Yu1(I) × Yv1(I)) ∪ (Yu1(J ) × Yv1(J )) ⊆ Yu1(I ∨ J) ×
Yv1(I ∨ J)

• If u = θ(u1, v1) ∈ A \ B then dom(Algθ(u1,v1)) = dom(Alg1
θ(u1,v1)

) ⊆
Yu1(I)× Yv1(I) ⊆ Yu1(I ∨ J)× Yv1(I ∨ J)
Let us verify the condition I ≺ I ∨ J . Because ob is an extension of ob1,
it remains to verify that Alg1

u ≺ Algu for every u ∈ A. If u ∈ A \ B then
Algu = Alg1

u therefore the relation is true. If u ∈ A ∩B then Alg1
u ≺ Alg1

u t
Alg2

u = Algu.

Proposition 2.5.5. I ≈C I ∨ J and J ≈C I ∨ J .

Proof. Immediate by Proposition 2.5.4 and Proposition 2.5.2.

Proposition 2.5.6. Suppose I ∈ Int(S), J ∈ Int(P) and I ≈C J . For
every K ∈ Int(S ∨ P) such that I ≺ K and J ≺ K we have I ∨ J ≺ K.

Proof. We denote K = (Ob3, ob3, {Alg3
u}u∈A∪B). If we preserve the nota-

tions from Proposition 2.5.4 then we have Algu ≺ Alg3
u for every u ∈ A ∪B.

Really, we have:
• If u ∈ A∩B then Algu = Alg1

u tAlg2
u. But I ≺ K and J ≺ K therefore

Alg1
u ≺ Alg3

u and Alg2
u ≺ Alg3

u. By Proposition 2.5.1 we have Alg1
u tAlg2

u ≺
Alg3

u.
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• If u ∈ A \B then Algu = Alg1
u. But Alg1

u ≺ Alg3
u because I ≺ K.

• If u ∈ B \A then Algu = Alg2
u ≺ Alg3

u because J ≺ K.
The mapping ob3 is an extension of ob. Take an arbitrary element x ∈ X1 ∪
X2.If x ∈ X1 then ob(x) = ob1(x). But I ≺ K therefore ob3 extends ob1.
Thus if x ∈ X1 then ob(x) = ob3(x). Similar for the case x ∈ X2 we have
ob(x) = ob3 because ob3(x) = ob2(x) = ob(x).

2.6 Applications

2.6.1 Application in logic programming with constraints

In this section we apply the concept of semantic schema to model a possible
implementation in a client-server technology of the logic programming with
constraints. Suppose we dispose of a computer network such that each work
station WSi, (i = 1, . . . , n), contains some logic program Pi. The network
server NS is endowed with a knowledge manager KM which is able to com-
bine the information of the programs Pi. Suppose some query from a client is
received by NS. The component KM analyses the query, consults the pro-
grams Pi and gives an answer. Several combinations of semantics can be used
by NS to prepare this answer. In our application we shall consider the least
fixed point semantics for Horn programs and the semantics of the distributed
knowledge in the sense of Halpern et al. (1995).

In order to exemplify this case we consider the following problem:
• Consider the logic program P1 of below:





p(a) ←
p(f2(x)) ← p(x)
q(g(x)) ← p(x)

where p, q are unary predicate symbols, f, g are unary function symbols, a
is a constant and fk(x) denotes the term f(f(. . . (f(x)) . . .) that contains k
symbols f . Denoting by LFS(P1) the least fixed point semantics of P1, we
have obviously

LFS(P1) = {p(f2n(a)), q(g(f2n(a)))}n≥0

• Extract from LFS(P1) the infinite set

C = {p(f4k(a))}k≥0 ∪ {q(g(f4k(a))), q(g(f3k(a)))}k≥0

by introducing a cascade of filters such that each filter is a logic program.
• Specify the network architecture and the corresponding collaborations

between the nodes of the network such that KM benefits of the semantics
LFS(P1) \ C.

In order to solve this problem we consider the following components of a
semantic schema S, which is represented in Figure 2.11:
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• X = {x1, x2, x3, x4}
• A0 = {m, c}
• R = {(x1,m, x2), (x2, c, x3), (x3, c, x4),

(x1, θ(m, c), x3), (x1, θ(θ(m, c), c), x4)}

x1 x2 x3 x4- - -

6
θ(m, c)

m c c

6

θ(θ(m, c), c)

Fig. 2.11. A semantic schema

We introduce three programs which are used as filters. In the first step
the set F1 = {p(f4k(a))}k≥0 is eliminated from LSF (P1) and in the next
steps the following sets are eliminated consecutively :

F2 = {q(g(f4k(a)))}k≥0

F3 = {q(g(f3k))}k≥0

The filters are defined as follows:
a) Consider the logic program P2:

{
p(a) ←
p(f4(x)) ← p(x)

The fixed point semantics is LFS(P2) = F1.
b) Consider the logic program P3:

{
q(g(x)) ← p(x)
q(a) ←

If P and Q are two Horn programs we define a simplified form of the
distributed knowledge for P and Q, denoted by D(P, Q). More precisely,
p(c) ∈ D(P, Q) iff p(c) is a ground atom that can be deduced from Q by
using at least one element of LFS(P ). For example, if P is the program

{
p(f(x)) ← p(x)
p(a) ←

and Q is the following program
{

q(g(y)) ← p(y)
q(b) ←
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then LFS(P ) = {p(fk(a))}k≥0 and D(P, Q) = {q(g(fk(a)))}k≥0.
We observe that if w ∈ D(P,Q) then neither P nor Q can prove w, but w
can be proved by P ∪Q. For our application we have D(P2, P3) = F2.

c) Consider the following logic program P4:
{

q(g(f3(a)) ← q(a)
q(g(f3(x)) ← q(g(x))

Because LFS(P3) = {q(a)}, we shall have D(P3, P4) = F3.
We consider the following interpretation:

• Ob = {P1, P2, P3, P4}
• ob(xi) = Pi; i = 1, 2, 3, 4
• Y ⊆ 2HB , where HB is the Herbrand base (the set of all ground atoms

over SC = {a},SF = {f, g} and SP = {p, q})
• Jσ(A,B) = A \B, the difference operation from the set theory
• The mapping Jh is defined by
Algorithm Algm(o1, o2)

compute X = LFS(o1) and Y = LFS(o2); return X \ Y ;
End of algorithm
Algorithm Algc(o1, o2)

compute X = D(o1, o2); return X;
End of algorithm
Algorithm Algθ(m,c)(o1, o2)

compute X = o1 \ o2; return X;
End of algorithm
Algorithm Algθ(θ(m,c),c)(o1, o2)

compute X = o1 \ o2; return X;
End of algorithm
We obtain:

• V alI(h(x1,m, x2)) = Algm(ob(x1), ob(x2)) = Algm(P1, P2) =
LFS(P1) \ LFS(P2) = LFS(P1) \ F1;

• V alI(h(x2, c, x3)) = Algc(ob(x2), ob(x3)) = Algc(P2, P3) =
D(P2, P3) = F2

• V alI(h(x3, c, x4)) = Algc(ob(x3), ob(x4)) = Algc(P3, P4) =
D(P3, P4) = F3

Obviously we have:

(x1, θ(θ(m, c), c), x4) ⇒∗ σ(σ(h(x1, m, x2), h(x2, c, x3)), h(x3, c, x4))

and therefore

sort(σ(σ(h(x1, m, x2), h(x2, c, x3)), h(x3, c, x4))) = θ(θ(m, c), c), x4)

Similarly we have

(x1, θ(m, c), x3) ⇒∗ σ(h(x1,m, x2), h(x2, c, x3))
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therefore
sort(σ(h(x1,m, x2), h(x2, c, x3))) = θ(m, c)

In order to use a shorter notation we denote α = h(x1,m, x2), β = h(x2, c, x3)
and γ = h(x3, c, x4).

We obtain the following sequence of computations:

• sort(σ(σ(α, β), γ)) = θ(θ(m, c), c) therefore
V alI(σ(σ(α, β), γ)) = Algθ(θ(m,c),c)(V alI(σ(α, β)), V alI(γ))

• sort(σ(α, β)) = θ(m, c), therefore
V alI(σ(α, β)) = Algθ(m,c)(V alI(α), V alI(β))

• V alI(α) = Algm(ob(x1, ob(x2))) = D(P1, P2) = LFS(P1) \ F1,
V alI(β)) = Algc(ob(x2), ob(x3))) = D(P2, P3) = F2 therefore

V alI(σ(α, β)) = Algθ(m,c)(LFS(P1) \ F1, F2) = (LFS(P1) \ F1) \ F2

• V alI(σ(σ(α, β), γ)) = Algθ(θ(m,c),c)((LFS(P1) \ F1) \ F2, F3) =
((LFS(P1) \ F1) \ F2) \ F3

Applying Definition 2.5.4 we have

OutI(x1, x4) = V alI(x1, θ(θ(m, c), c), x4)

therefore based on the relation (A \B) \C = A \ (B ∪C) from the set theory
we have OutI(x1, x4) = LFS(P1) \ (F1 ∪ F2 ∪ F3).

2.6.2 Distributed knowledge representation and processing

In this section we apply the existence of sup{S1,S2} to model the represen-
tation of distributed knowledge in semantics of communication.

Consider the θ-schemas S1 = (X1, A0, A,R), S2 = (X2, B0, B,Q) such
that R0 and Q0 are represented in Figure 2.12 and Figure 1.2 respectively.

x1 x2 x3 x4

x5x6

- - -

6

?

a1 a2 a3

a4a5

Fig. 2.12. The set R0

We take the following sets R and Q:

R = R0 ∪ {(x2, θ(a2, a3), x4), (x1, θ(a1, θ(a2, a3)), x4)}
Q = Q0 ∪ {(x7, θ(a1, a6), x8), (x7, θ(θ(a1, a6), a3), x9)}
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x7 x2 x8 x9- - -a1 a6 a3

Fig. 2.13. The set Q0

It follows that

A0 = {a1, a2, a3, a4, a5}
B0 = {a1, a6, a3}
A = A0 ∪ {θ(a2, a3), θ(a1, θ(a2, a3))}
B = B0 ∪ {θ(a1, a6), θ(θ(a1, a6), a3)}

Applying Proposition 2.3.4 we obtain:

Z0 = R0 ∪Q0

Z1 = Z0 ∪ {(x2, θ(a2, a3), x4), ((x7, θ(a1, a6), x8))}
Z2 = Z1 ∪ {(x1, θ(a1, θ(a2, a3)), x4), (x7, θ(θ(a1, a6), a3), x9),

(x7, θ(a1, θ(a2, a3)), x4)}
Z3 = Z2

x1 x2 x3 x4

x5x6

- - -

6

?

a1 a2 a3

a4a5

x7

6

x8 x9-a3

a6

-

a1

Fig. 2.14. The set Z0

In what follows we shall consider several sentential forms. Such a structure
is a sentence containing two variables. If we substitute each variable by an
object then a sentential form becomes a sentence in a natural language. We
shall consider the following sentential forms:

p1(x, y)=”x is the mother of y”
p2(x, y)=”x is a y”
p3(x, y)=”x is the mother of a z”
q1(x, y)=”x is the brother of y”
q2(x, y)=”x is the uncle of a y”
q3(x, y)=”every x is a good y”
q4(x, y)=”x is a friend of y”
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For S1 we consider the interpretation I1 = (Ob1, ob1, {Alg1
u}u∈A) where

• Ob1 = {Peter,Mary,Helen, teacher, driver, John}
• ob1(x1) = Peter, ob1(x2) = Mary, ob1(x3) = Helen, ob1(x4) = teacher, ob1(x5) =

driver, ob1(x6) = John
• The set of algorithms are the following:

Algorithm Alg1
a1

(o1, o2)
return q1(o1, o2);

End of algorithm
Algorithm Alg1

a2
(o1, o2)

return p1(o1, o2);
End of algorithm
Algorithm Alg1

a3
(o1, o2)

if o1 ∈ Ob1 then return p2(o1, o2);
End of algorithm
Algorithm Alg1

a4
(o1, o2)

return q3(o1, o2);
End of algorithm
Algorithm Alg1

a5
(o1, o2)

return q4(o1, o2);
End of algorithm
Algorithm Alg1

θ(a2,a3)
(o1, o2)

take t1, t2, t3, t4 such that o1 = p1(t1, t2), o2 = p2(t3, t4); if t2 = t3
then return p3(t1, t4);
End of algorithm
Algorithm Alg1

θ(a1,θ(a2,a3))
(o1, o2)

take t1, t2, t3, t4 such that o1 = q1(t1, t2), o2 = p3(t3, t4); if t2 = t3
then return q2(t1, t4);
End of algorithm

In order to obtain some interpretation for S2 we take the following sen-
tential forms:

r2(x, y)=”x learns y”
r3(x, y)=” A sister of x learns y”
s2(x, y)=”x is a kind of y”

Now we can define the components of the following interpretation

I2 = (Ob2, ob2, {Alg2
u}u∈B)

for S2:

• OB2 = {George, Mary, Java−Programming,
Object−Oriented−Programming}

• ob2(x7) = George, ob2(x2) = Mary, ob2(x8) = Java−Programming,
ob2(x9) = Object−Oriented−Programming
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• The following algorithm are used:
Alg2

a1
= Alg1

a1

Algorithm Alg2
a6

(o1, o2)
return r2(o1, o2);

End of algorithm
Algorithm Alg2

a3
(o1, o2)

if o1 ∈ Ob2 \ {Mary} then return s2(o1, o2);
End of algorithm
Algorithm Alg2

θ(a1,a6)
(o1, o2)

take t1, t2, t3, t4 such that o1 = q1(t1, t2), o2 = r2(t3, t4); if t2 = t3
then return r3(t1, t4);
End of algorithm
Algorithm Alg2

θ(θ(a1,a6),a3)
(o1, o2)

take t1, t2, t3, t4 such that o1 = r3(t1, t2), o2 = s2(t3, t4); if t2 = t3
then return r3(t1, t4);
End of algorithm

We observe that I1 ≈C I2 and therefore we can use the interpretation I =
I1 ∨ I2 = (Ob, ob, {Algu}u∈A∪B).

A simple computation shows that

(x7, θ(a1, θ(a2, a3)), x4) =⇒∗ σ(h(x7, a1, x2), σ(h(x2, a2, x3), h(x3, a3, x4)))

If we denote α = h(x7, a1, x2) and β = σ(h(x2, a2, x3), h(x3, a3, x4)) then we
obtain:

• V alI(α) = Alga1(ob(x7), ob(x2)) = q1(George, Mary)
•We have (x2, θ(a2, a3), x4) ⇒∗ β therefore sort(β) = θ(a2, a3). It follows
that

V alI(β) = Algθ(a2,a3)(V alI(h(x2, a2, x3)), V alI(h(x3, a3, x4)))

But we observe that

V alI(h(x2, a2, x3)) = Alga2(ob(x2), ob(x3)) = Alga2(Mary, Helen) =

p1(Mary, Helen)

and

V alI(h(x3, a3, x4)) = Alga3(ob(x3), ob(x4)) = Alga3(Helen, teacher) =

p2(Helen, teacher)

It follows that

V alI(β) = Algθ(a2,a3)(p1(Mary,Helen), p2(Helen, teacher)) =

p3(Mary, teacher)
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• In S1 ∨ S2 we have

(x7, θ(a1, θ(a2, a3)), x4) ⇒∗ σ(α, β)

therefore sort(σ(α, β)) = θ(a1, θ(a2, a3)). Let us compute the value
V alI(σ(α, β)). We obtain

V alI(σ(α, β)) = Algθ(a1,θ(a2,a3))(V alI(α), V alI(β)) =

Algθ(a1,θ(a2,a3))(q1(George,Mary), p3(Mary, teacher)) =

q2(George, teacher)

Finally we obtained

V alI(σ(α, β)) = ”George is the uncle of a teacher”

We observe that neither S1 nor S2 can deduce this element, but this knowl-
edge is deduced by S1 ∨ S2. Thus V alI(σ(α, β)) is a distributed knowledge.

2.6.3 Reasoning by analogy

In this section we deal with the case of the reasoning by analogy. In order
to give an example we consider the schemas S1 = (X, A0, A,R) and S2 =
(Y, A0, B, Q), where

• R0 and Q0 are defined in Figure 2.15 and Figure 2.16 respectively
• A0 = {a1, a2, a3}, A = A0 ∪ {θ(a2, a3), θ(a1, θ(a2, a3))}
• R = R0 ∪ {(x2, θ(a2, a3), x4), (x1, θ(a2, θ(a2, a3)), x4)}
• B = A0 and Q = Q0

Obviously the schema S2 can be used only to retrieve the initial informa-
tion of a knowledge piece. This is due to the fact that Q \Q0 = ∅.

The components of S1 ∨ S2 are represented in Figure 2.17. From Propo-
sition 2.3.4 for our case we have

S1 ∨ S2 = (X, A0, R0 ∪Q0, Z)

where

Z = R ∪Q ∪ {(y2, θ(a2, a3), y4), (y1, θ(a2, θ(a2, a3)), y4)}
We observe a transfer of meta-knowledge from S1 to S2 and the reasoning
given by the element (y1, θ(a2, θ(a2, a3)), y4) is obtained by analogy from that
of (x1, θ(a2, θ(a2, a3)), x4).
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x1 x2 x3 x4- - -a1 a2 a3 ?

θ(a2, a3)

?

θ(a1, θ(a2, a3))

Fig. 2.15. Schema S1

y1 y2 y3 y4- - -a1 a2 a3

Fig. 2.16. Schema S2

x1 x2 x3 x4- - -a1 a2 a3 ?

θ(a2, a3)

?

θ(a1, θ(a2, a3))

y1 y2 y3 y4- - -a1 a2 a3 ?

θ(a2, a3)

?

θ(a1, θ(a2, a3))

Fig. 2.17. Schema S1 ∨ S2
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2.6.4 A distributed system with a three-level structure

Another application of semantic schemas is given in this section, where we de-
fine a distributed knowledge system organized on three levels. The structure
is the following:

• On the first level we find the observers or the agents of the system which
send phrases in a natural language to the second level of the system.

• The second level includes several primary knowledge managers (PKM)
of the system. Every PKM receives the phrases from some observers, has an
own semantic schema and identifies a useful part of it.

• On the third level we find the general knowledge manager (GKM) of the
system. It processes the structures of the second level of the system using the
supremum of these structures and obtains its corresponding interpretation.
Based on the theoretical results presented in the previous sections, the GKM
is able to perform a distributed computing.

Definition 2.6.1. A distributed system based on semantic schemas
is a tuple DS = (L1, L2, L3, SDB, G) where:

• L1 = {Obs1, . . . , Obsk}, where Obsi = {Oi
1, . . . , O

i
si
} and Oi

1, . . . , O
i
si

are named agents; L1 defines the first level of DS and we suppose that
Obsi ∩Obsj = ∅ for i 6= j.

• L2 = {PKM1, . . . , PKMk} and its elements are named primary
knowledge managers; the components of L2 define the second level of DS;

• L3 = {GKM}, GKM is named the general knowledge manager of
DS; this manager defines the third level of DS.

• The component SDB is a data base, which contains a correspondence
between the name of a binary relation and its element from

⋃k
i=1 Ai

0 (speci-
fied in the next definition). This is shared by the knowledge managers of the
system.

• G is a grammar for natural languages.

The structure is represented in Figure 2.18.
In what follows we consider that the universe of an observer consists of

some objects and the relations between them. We suppose these relations are
binary ones. The communications between agents and PKMs are guided by
some grammar G for natural language. We consider that all PKMs share the
same grammar.

Definition 2.6.2. A primary knowledge manager is a system PKMi =
(Si,KBi) where:

• Si = (Xi, Ai
0, A

i, Ri) is the general semantic schema of PKMi

• KBi = ({Algu}u∈Ai ,USSi, Ii), where USSi v Si is a subschema of Si

and Ii is an interpretation for USSi, which uses {Algu}u∈Ai .

The tasks of PKMi are the following:
• Receives the phrases from its observers, analyses them and obtains the

useful semantic schema USSi.
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Fig. 2.18. The structure of DS on three levels

• Obtains an interpretation Ii for USSi.

Definition 2.6.3. The general knowledge manager (GKM) is a tu-
ple GKM = (SupSi, I, Displ), where SupSi = sup{USS1, . . . ,USSk} =
(X, A0, A,R) is the supremum of the useful semantic schemas from the sec-
ond level, I is an interpretation of SupSi and for every pair (x, y) ∈ X ×X
such that there is a path in SupSi from x to y, Displ(x, y) is the action
performed to display the elements of OutI(x, y).

In order to exemplify this situation we consider the case k = 2, s1 = s2 =
1, S1 and S2 represented in Figure 2.19. We have:

S1:

x1 -a x2 -b x3 x4-b

θ(a, b) 6

S2:

y1 -c y2 -a y3 -b x3

?c
y4

?c
y5

?d
y6

θ(a, b) ?

6
θ(θ(a, b), d)

Fig. 2.19. The schemas S1 and S2
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• S1 = (X1, A1
0, A

1, R1), where:
X1 = {x1, x2, x3, x4}, A1

0 = {a, b}, A1 = A1
0 ∪ {θ(a, b)},

R1 = {(x1, a, x2), (x2, b, x3), (x3, b, x4), (x1, θ(a, b), x3)}
• S2 = (X2, A2

0, A
2, R2), where:

X2 = {x3, y1, . . . , y6}, A2
0 = {a, b, c, d}, A2 = A2

0∪
{θ(a, b), θ(θ(a, b), d)}, R2 = {(y1, c, y2), (y2, a, y3),
(y3, b, x3), (y2, c, y4), (y3, c, y5), (x3, d, y6),
(y2, θ(a, b), x3), (y2, θ(θ(a, b), d), y6)}

We suppose that PKM1 receives from O1
1 some phrases from which it

deduces that Ob1 and ob1 are the following:

• Ob1 = {1, (2, 2), (2, 1/2)}
• ob1(x1) = 1, ob1(x2) = (2, 2), ob1(x3) = (2, 1/2)

For PKM2 we suppose that

• Ob2 = {(2, 1/2), (2, 1), (2, 2), 4, (5, 3)}
• ob2(x3) = (2, 1/2), ob2(y6) = (2, 2), ob2(y2) = 4, ob2(y3) = (5, 3)

We suppose that Alg1
a, Alg2

a, Alg1
b , Alg2

b are the algorithms defined as follows:
Algorithm Alg1

a(r : real, (x, y) : (real, real))
o = in(C), where C is the circle of radius r and center
(x, y); return o;
End of algorithm
Algorithm Alg1

b ((r1, r2) : (real, real), (x, y) :
(real, real))
o = in(E), where E is the ellipse with horizontal radius
r1, vertical radius r2 and center (x, y); return o;
End of algorithm
Alg2

a = Alg1
a

Alg2
a = Alg1

a

We take also the following algorithms:
Algorithm Alg2

d((r1, r2) : (real, real),
(x, y) : (real, real))
o = in(E), where E is the ellipse with horizontal radius
r1, vertical radius r2 + 1/2 and center (x,y); return o;
End of algorithm
Algorithm Alg2

θ(θ(a,b),d)(o1, o2)
F = int(o2) \ int(o1); return F ;
End of algorithm

We suppose that PKM1 and PKM2 obtain the useful semantic schemas
USS1 and respectively USS2, drawn in Figure 2.20. The schema SupSi =
sup{USS1, USS2} is represented in Figure 2.21.

For our purpose we suppose that Displ(x, y) draws the objects from
OutI(x, y). Applying Definition 2.4.1 and the relation (2.5.4) we obtain for
example:

OutI(x1, y6) = {V alI(w)}
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USS1:

x1 -a x2 -b x3

θ(a, b)

6

USS2:

y2 -a y3 -b x3

?d

y6

θ(a, b)

?

-
θ(θ(a, b), d)

Fig. 2.20. The schemas USS1 and USS2

x1 -a x2 -b x3 y6-d

θ(a, b)

6 6

θ(θ(a, b), d)

y2 y3

?

-a

?

b

θ(a, b)

?

θ(θ(a, b), d)

Fig. 2.21. SupSi = sup{USS1, USS2}

Fig. 2.22. The effect of Displ(x1, y6)



2.6 Applications 57

where w = σ(σ(h(x1, a, x2), h(x2, b, x3)), h(x3, d, y6)). As a consequence,
Displ(x1, y6) will draw the object represented in Figure 2.22.
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Ţăndăreanu, N. (2002): Using Java-Prolog Connection to implement automated
reasoning, Research Notes in Artificial Intelligence and Digital Communications,
Vol.102, 2nd National Conference on Artificial Intelligence and Digital Commu-
nications, Craiova, June, p.9-18
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