Lattices of labelled ordered trees (II)

Nicolae Tândâreanu

Abstract

In this paper the following results are presented: 1) we give a necessary and sufficient condition for the existence of the greatest element in the lattice \(\text{Tree}_\omega(b_0) / \approx \) introduced in [2]; 2) we characterize the representatives of the greatest element. All these results will be used in a forthcoming paper to study the properties of the answer function for a knowledge representation and reasoning system based on inheritance property.

Keywords: labelled tree, lattice, greatest element

AMS Subject Classification: 06B05, 06A12

1 Basic notions and results

In this section we summarize the main concepts and results obtained in [2]. We consider a finite set \(L \) and a decomposition \(L = N_L \cup T_L \), where \(N_L \cap T_L = \emptyset \). The elements of \(N_L \) are called \textit{nonterminal labels} and those of \(T_L \) are called \textit{terminal labels}. The elements of \(L \) are called \textit{labels}. A \textit{pairwise mapping} \(\omega \) on \(L \) is a mapping \(\omega : N_L \rightarrow \bigcup_{k \geq 1} [k] \times L^k \). For each \(b \in N_L \) we shall denote \(\omega(b) = (\omega_1(b), \omega_2(b)) \).

An \(\omega \)-labelled tree is a tuple \(t = (A, R, h) \), where

- \((A, R) \) is an ordered tree
- \(h : A \rightarrow L \) is a mapping satisfying the following condition: if \([(i, i_1), \ldots, (i, i_n)] \in R \) then \(h(i) \in N_L, s = \omega_1(h(i)) \) and \(\omega_2(h(i)) = (h(i_1), \ldots, h(i_n)) \)

We denote by 1, 2, \ldots, \(n \) the elements of the set \(A \) and these elements are the nodes of \(t \). The root of \(t \) is denoted by \(\text{root}(t) \), therefore \(\text{root}(t) \in A \). In general we suppose \(\text{root}(t) = 1 \).

We consider an element \(b_0 \in N_L \) and denote by \(\text{Tree}_\omega(b_0) \) the set of all \(\omega \)-labelled trees \(t = (A, R, h) \) such that \(h(\text{root}(t)) = b_0 \). If \(u = [(i, i_1), \ldots, (i, i_s)] \in R \) then we denote \(pr_{r_1}, \ldots, r_m u = [(i, r_1), \ldots, (i, r_m)] \) where \(1 \leq r_1 < r_2 < \ldots < r_m \leq s \). We shall write \(v \subseteq u \) if there are \(r_1, \ldots, r_m \) such that \(v = pr_{r_1}, \ldots, r_m u \).

Let be \(t_1 = (A_1, R_1, h_1) \in \text{Tree}_\omega(b_0) \) and \(t_2 = (A_2, R_2, h_2) \in \text{Tree}_\omega(b_0) \). We define the following binary relation on \(\text{Tree}_\omega(b_0) \): \(t_1 \preceq t_2 \) if there is an injective mapping \(\alpha : A_1 \rightarrow A_2 \) such that:

1) \(\alpha(\text{root}(t_1)) = \text{root}(t_2) \)

2) if \(u = [(i, i_1), \ldots, (i, i_s)] \in R_1 \) then there is \(v \in R_2 \) such that \(\pi(u) \subseteq v \), where

\[
\pi(u) = [(\alpha(i), \alpha(i_1)), \ldots, (\alpha(i), \alpha(i_s))]
\]
3) \(h_1(i) = h_2(\alpha(i)) \) for every \(i \in A_1 \)

2 The distributive lattice \(\text{Tree}_\omega(b_0)/\approx \)

Let be \(t_1, t_2 \in \text{Tree}_\omega(b_0) \). We define \(t_1 \approx t_2 \) iff \(t_1 \preceq t_2 \) and \(t_2 \preceq t_1 \). Because \(\approx \) is an equivalence relation (see [2]), we can consider the factor set \(\text{Tree}_\omega(b_0)/\approx \) of the equivalence classes. For every tree \(t \in \text{Tree}_\omega(b_0) \) we denote by \([t] \) the equivalence class of \(t \).

We define the following relation on \(\text{Tree}_\omega(b_0)/\approx \):

\[
[t_1] \ll [t_2] \quad \text{if and only if} \quad t_1 \preceq t_2
\]

Let be \(t = (A, R, h) \in \text{Tree}_\omega(b_0) \). We denote by \(S(t) \) the following subset of \(\bigcup_{p \geq 1} N^p \times L^p \):

\[
((l_1, \ldots, l_s), (b_1, \ldots, b_s)) \in S(t) \quad \text{iff} \quad \text{there is} \quad (1, i_1, \ldots, i_s) \in \text{Path}(t) \quad \text{such that} \quad (1, i_1) \in R^{l_1}, \ldots, (i_{s-1}, i_s) \in R^{l_s} \quad \text{and} \quad h(i_1) = b_1, \ldots, h(i_s) = b_s.
\]

We have \(t_1 \preceq t_2 \) if and only if \(S(t_1) \subseteq S(t_2) \) and therefore \(t_1 \approx t_2 \) if and only if \(S(t_1) = S(t_2) \) (see [2]).

We define the algebraic operations

\[
\lor : \text{Tree}_\omega(b_0)/\approx \times \text{Tree}_\omega(b_0)/\approx \longrightarrow \text{Tree}_\omega(b_0)/\approx
\]

\[
\land : \text{Tree}_\omega(b_0)/\approx \times \text{Tree}_\omega(b_0)/\approx \longrightarrow \text{Tree}_\omega(b_0)/\approx
\]

as follows:

\[
[t_1] \lor [t_2] = [t], \quad \text{where} \quad S(t) = S(t_1) \cup S(t_2)
\]

\[
[t_1] \land [t_2] = [t], \quad \text{where} \quad S(t) = S(t_1) \cap S(t_2)
\]

In [2] is shown that \((\text{Tree}_\omega(b_0)/\approx, \lor, \land) \) is a lattice. Moreover, using the corresponding properties from the set theory we deduce now that the lattice \(\text{Tree}_\omega(b_0)/\approx \) is a distributive one, a property which is proved in the next proposition.

Proposition 2.1 The lattice \((\text{Tree}_\omega(b_0)/\approx, \lor, \land) \) is distributive.

Proof. Really, if we denote \(\alpha = [t_1] \land ([t_2] \lor [t_3]) \), \(\beta = ([t_1] \land [t_2]) \lor ([t_1] \land [t_3]) \) and we consider \(p \in \text{Tree}_\omega(b_0) \) then the following sentences are equivalent:

- \(p \in \alpha \)
- \(S(p) = S(t_1) \cap (S(t_2) \cup S(t_3)) = (S(t_1) \cap S(t_2)) \cup (S(t_1) \cap S(t_3)) \)
- \(p \in \beta \)

It follows that \(\alpha = \beta \). □
3 The greatest element of the lattice $\text{Tree}_\omega(b_0)/\approx$

In this section we give a necessary and sufficient condition for the existence of the greatest element in the lattice $\text{Tree}_\omega(b_0)/\approx$. Moreover, we give a characterization for the greatest element.

Let be $L = N_L \cup T_L$ a set of labels, $\omega : N_L \rightarrow \bigcup_{k \geq 1} [k] \times L^k$ a pairwise mapping and $b_0 \in N_L$. Let us consider $X \subseteq L$ and define:

$$U(X) = \{ y \in L \mid \exists a \in X \cap N_L, \exists i \in \{1, \ldots, \omega_1(a)\} : y = pr_i(\omega_2(a))\}$$

where $pr_i(\omega_2(a))$ denotes the i^{th} component of the element $\omega_2(a)$.

For an arbitrary element $b \in L$ we define the sequence:

$$S^0_b = U(\{ b \})$$

$$S^{n+1}_b = S^n_b \cup U(S^n_b), \quad n \geq 0$$

We observe that for $b \in T_L$ we obtain $S^0_b = S^1_b = \ldots = \emptyset$. For $b \in N_L$, the sequence $\{S^n_b\}_n$ is an increasing one:

$$\emptyset \neq S^0_b \subseteq S^1_b \subseteq \ldots \subseteq S^n_b \subseteq \ldots \subseteq L$$

If $S^0_b \subseteq T_L$ then $S^0_b = S^1_b = \ldots$ and we take $m(b) = 0$. Otherwise, since L is a finite set there is $m(b) \geq 1$ such that $S^0_b \subseteq \ldots \subseteq S^{m(b)}_b = S^{m(b)+1}_b = \ldots$. In other words, $m(b) = 0$ for $b \in T_L$ and $m(b) \geq 1$ for $b \in N_L$. This notation permits us to define $T : L \rightarrow 2^L$ as follows:

$$T(b) = \begin{cases} \emptyset & \text{if } b \in T_L \\ S^{m(b)}_b & \text{if } b \in N_L \end{cases}$$

The mapping T is used to characterize the existence of the greatest element in $\text{Tree}_\omega(b_0)/\approx$. We shall obtain first several auxiliary properties.

We consider $b_0, b \in L$. Let be $t_1 = (A_1, R_1, h_1) \in \text{Tree}_\omega(b_0)$ and $t_2 = (A_2, R_2, h_2) \in \text{Tree}_\omega(b)$ such that for some leaf i of t_1 we have $h(i) = b$. We suppose $A_1 = \{1, \ldots, n_1\}$ and $A_2 = \{1, \ldots, n_2\}$. We denote by $t_1 \oplus_i t_2 = (A, R, h)$ the following tree:

- $A = A_1 \cup \{ n_1 + 1, \ldots, n_1 + n_2 - 1 \}$
- $R = R_1 \cup R'_2$ where R'_2 is defined as follows:
 - $[(i, m_1 + n_1 - 1), \ldots, (i, m_p + n_1 - 1)] \in R'_2$ iff $[(1, m_1), \ldots, (1, m_p)] \in R_2$
 - $[(n_1 + j - 1, n_1 + j_1 - 1), \ldots, (n_1 + j - 1, n_1 + j_k - 1)] \in R'_2$ if and only if $j \neq 1$ and $[(j, j_1), \ldots, (j, j_k)] \in R_2$
- $h(k) = \begin{cases} h_1(k) & \text{if } k \in \{1, \ldots, n_1\} \\ h_2(k - n_1 + 1) & \text{if } k \in \{n_1 + 1, \ldots, n_1 + n_2 - 1\} \end{cases}$
Figure 1: Two labelled trees

Figure 2: The tree $t_1 \oplus_5 t_2$
The following properties can be verified immediately:

- \(t_1 \oplus_i t_2 \in \text{Tree}_\omega(b_0) \) if \(t_1 \in \text{Tree}_\omega(b_0) \)
- \(t_1 \preceq t_1 \oplus_i t_2 \) for every \(t_2 \) and every \(i \)
- every \(j \in \{1, \ldots, n_1\} \setminus \{i\} \), which is a leaf in \(t_1 \), is also a leaf in \(t_1 \oplus_i t_2 \)
- if \(j \) is a leaf of \(t_2 \) then \(n_1 + j - 1 \) is a leaf of \(t_1 \oplus_i t_2 \)

The next proposition gives a characterization for the elements of the set \(T(b_0) \), where \(b_0 \in N_L \). The proof uses the above construction for \(t_1 \oplus_i t_2 \).

Proposition 3.1 Let be \(b_0 \in N_L \). We have \(b \in T(b_0) \) iff there is \(t = (A, R, h) \in \text{Tree}_\omega(b_0) \) such that \(h(i) = b \) for some leaf \(i \) of \(t \).

Proof. By induction on \(n \) we shall prove that if \(b \in S_{b_0}^n \) then there is \(t \in \text{Tree}_\omega(b_0) \) such that \(h(i) = b \) for some leaf \(i \) of \(t \). Obviously this assertion is true for \(n = 0 \). Suppose the assertion is true for \(n = m \). Let us consider \(b \in S_{b_0}^{m+1} \setminus S_{b_0}^m = U(S_{b_0}^m) \). There is \(a \in S_{b_0}^m \cap N_L \) such that \(\omega_1(a) = (b_1, \ldots, b_{\omega_1(a)}) \) and \(b = b_i \) for some \(i \in \{1, \ldots, \omega_1(a)\} \). By inductive assumption there is \(t_a = (A, R, h) \in \text{Tree}_\omega(b_0) \) such that \(h(j) = a \) for some leaf \(j \) of \(t_a \). We consider the tree \(t_1 = (A_1, R_1, h_1) \), where \(A_1 = \{1, \ldots, \omega_1(a) + 1\}, R_1 = \{\{(1,2), \ldots, (1, \omega_1(a) + 1)\}\} \) and \(h_1(1) = a, h_1(2) = b_1, \ldots, h_1(\omega_1(a) + 1) = b_{\omega_1(a)} \). The tree \(t_a \oplus_j t_1 \) satisfies the conditions: \(t_a \oplus_j t_1 \in \text{Tree}_\omega(b_0) \) and there is a leaf which is labelled by \(b \).

In order to prove the converse property, we consider \(t = (A, R, h) \in \text{Tree}_\omega(b_0) \) and we prove by induction on \(k \) that if \(i \in \text{level}_k(t) \) then \(h(i) \in T(b_0) \). Obviously if \(i \in \text{level}_1(t) \) then \(h(i) \in S_{b_0}^0 \). Suppose the property is true for \(k \) and let be \(i \in \text{level}_{k+1}(t) \). There is a path \((1, i_1, \ldots, i_k, i)\) in \(t \). By inductive assumption \(h(i_k) \in T(b_0) \). There is \(m \geq 0 \) such that \(h(i_k) \in S_{b_0}^m \). Let \([(i_k, j_1), \ldots, (i_k, j_s)] \in R \) such that \(i = j_r \) for some \(r \in \{1, \ldots, s\} \). We have \(s = \omega_1(h(i_k)) \) and \(\omega_2(h(i_k)) = (h(j_1), \ldots, h(j_s)) \). Thus \(h(j_r) \in S_{b_0}^{m+1} \subseteq T(b_0) \), that is \(h(i) \in T(b_0) \).

Proposition 3.2 If \(b \in T(c) \) and \(c \in T(a) \) then \(b \in T(a) \).

Proof. By Proposition 3.1 it follows that there are \(t_1 \in \text{Tree}_\omega(c) \) and \(t_2 \in \text{Tree}_\omega(a) \) such that some leaf \(i_1 \) of \(t_1 \) is labelled by \(b \) and some leaf \(i_2 \) of \(t_2 \) is labelled by \(c \). We take the tree \(t_2 \oplus_{i_2} t_1 \in \text{Tree}_\omega(a) \) and by Proposition 3.1 it follows that \(b \in T(a) \).

Proposition 3.3 If the lattice \(\text{Tree}_\omega(b_0)/\sim, \lor, \land \) has a greatest element then \(b \not\in T(b) \) for every \(b \in \{b_0\} \cup T(b_0) \).

Proof. Suppose the lattice has a greatest element. By contrary we assume that \(b \in T(b) \) for some \(b \in \{b_0\} \cup T(b_0) \). Two cases will be analyzed:
1) Suppose $b \in T(b_0)$
If $b \in T_L$ then $T(b) = \emptyset$ and thus we have $b \not\in T(b)$. We suppose now $b \in N_L$. From $b \in T(b_0) \cap T(b)$ and by Proposition 3.1 it follows that there are $t_0 = (A_0, R_0, h_0) \in Tree_{\omega}(b_0)$ and $t_1 = (A_1, R_1, h_1) \in Tree_{\omega}(b)$ such that $h_0(i_0) = h_1(i) = b$ for some leaves i_0 and i in t_0, respectively t_1. We consider the tree $t_0 \oplus i_0 \oplus t_1 \in Tree_{\omega}(b_0)$. There is a leaf i_1 in this tree having the label b. We take the tree $(t_0 \oplus i_0 \oplus t_1) \oplus i_1 \oplus t_1$ and we repeat this step. Thus we obtain a sequence of trees:

$$
\begin{align*}
\alpha_0 &= t_0 \oplus i_0 \oplus t_1 \\
\alpha_{j+1} &= \alpha_j \oplus i_{j+1} \oplus t_1, \quad j \geq 0
\end{align*}
$$

such that each α_j contains a leaf labelled by b. If B_0, B_1, \ldots are the corresponding sets of the nodes for these trees then $\text{Card}(B_0) < \text{Card}(B_1) < \ldots$. Let be $[t_g]$ the greatest element of $Tree_{\omega}(b_0)/_\approx$. If A_g is the node set of t_g then we have $\text{Card}(B_0) < \text{Card}(B_1) < \ldots < \text{Card}(A_g)$, which is not true since A_g is a finite set.

2) $b = b_0$
We take $t_1 = t_0$ and we proceed as above. Thus, the assumption $b \in T(b)$ for some $b \in \{b_0\} \cup T(b_0)$ is not true.

Proposition 3.4 Let be $b_0 \in N_L$. Suppose $b \not\in T(b)$ for every $b \in \{b_0\} \cup T(b_0)$. We define recursively the following sets Q_1, Q_2, \ldots as follows:

- $((l), (b)) \in Q_1$ iff $l \in \{1, \ldots, \omega_1(b_0)\}$ and $b = pr_1\omega_2(b_0)$
- $((l_1, \ldots, l_k, l), (b_1, \ldots, b_k, b)) \in Q_{k+1}$ if and only if $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Q_k$, $l \in \{1, \ldots, \omega_1(b_k)\}$, $b = pr_1\omega_2(b_k)$

Then the following properties are satisfied:

1) $Q_{n(l)+1} = Q_{n(l)+2} = \ldots = \emptyset$, where $n_l = \text{Card}(N_L)$
2) $X = \bigcup_{k=1}^{n(l)} Q_k$ satisfies the $\omega - b_0$-conditions
3) For every Y satisfying the $\omega - b_0$-conditions we have $Y \subseteq X$

Proof. For every $k \geq 1$, if $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Q_k$ then $b_j \in T(b_i)$ for every i, j such that $0 \leq i < j \leq k$. We prove this assertion by induction on k. For $k = 1$, if $((l), (b)) \in Q_1$ then $b = pr_1\omega_2(b_0)$ and $l \in \{1, \ldots, \omega_1(b_0)\}$. Then $b \in U(\{b_0\}) \subseteq T(b_0)$. Assuming the assertion is true for k, if $((l_1, \ldots, l_k, l), (b_1, \ldots, b_k, b)) \in Q_{k+1}$ then $b_j \in T(b_i)$ for $0 \leq i < j \leq k$ and $b = pr_1\omega_2(b_k)$, where $l \in \{1, \ldots, \omega_1(b_k)\}$. Then $b \in U(\{b_k\}) \subseteq T(b_k)$. By inductive assumption $b_k \in T(b_i)$ for every $i \in \{0, \ldots, k-1\}$. By Proposition 3.2 it follows that $b \in T(b_i)$ for each $i \in \{0, \ldots, k-1\}$. Thus, if $((l_1, \ldots, l_k, l), (b_1, \ldots, b_k, b_{k+1})) \in Q_{k+1}$ then $T(b_i) \neq \emptyset$ for every $i \in \{1, \ldots, k\}$, therefore $b_1, \ldots, b_k \in N_L$. The sequence b_0, b_1, \ldots, b_k satisfies the condition $b_i \neq b_j$ for $i \neq j$. Really, if $b_i = b_j = b$ for some $i < j$ then we have $b \in T(b)$, where $b \in \{b_0\} \cup T(b_0)$, which is not true. Therefore, if $Q_{k+1} \neq \emptyset$ then $k + 1 \leq n_l$. If we...
suppose that $Q_{n(t)+1} \neq \emptyset$ then there is $((k_1, \ldots , k_{n(t)+1}), (b_1, \ldots , b_{n(t)+1})) \in Q_{n(t)+1}$. This implies that $b_0, b_1, \ldots , b_{n(t)}$ are distinct elements of N_L, which is not true. Thus the first property is proved.

Obviously $X = \bigcup_{k=1}^{n(t)} Q_k$ satisfies the $\omega - b_0$-conditions. Let Y be a set satisfying the $\omega - b_0$-conditions. We verify by induction that for every $k \geq 1$, if $((l_1, \ldots , l_k), (b_1, \ldots , b_k)) \in Y$ then $((l_1, \ldots , l_k), (b_1, \ldots , b_k)) \in Q_k$. For $k = 1$ the assertion is true. We assume the assertion is true for k and let be $((l_1, \ldots , l_k, t), (b_1, \ldots , b_k, b)) \in Y$. Since Y satisfies the $\omega - b_0$-conditions we have $((l_1, \ldots , l_k), (b_1, \ldots , b_k)) \in Y$, $t \in \{1, \ldots , \omega_1(b_k)\}$, $b = pr_{\omega_2}(b)$ and $((l_1, \ldots , l_k, m), (b_1, \ldots , b_k, pr_{m}(\omega_2(b))) \in Y$ for $m \in \{1, \ldots , \omega_1(b_k)\}$. By inductive assumption we have $((l_1, \ldots , l_k), (b_1, \ldots , b_k)) \in Q_k$ and by the definition of Q_{k+1} we have $((l_1, \ldots , l_k, m), (b_1, \ldots , b_k, pr_{m}(\omega_2(b))) \in Q_{k+1}$ for every $m \in \{1, \ldots , \omega_1(b_k)\}$. Particularly we have $((l_1, \ldots , l_k, t), (b_1, \ldots , b_k, b)) \in Q_{k+1}$. Thus $Y \subseteq \bigcup_{k=1}^{n(t)} Q_k = X$.

Proposition 3.5 Suppose that $b_0 \in N_L$ and $b \notin T(b)$ for every $b \in \{b_0\} \cup T(b_0)$. Then the lattice $(\text{Tree}_\omega(b_0)/\approx, \lor, \land)$ contains a greatest element.

Proof. Let us consider $X = \bigcup_{k=1}^{n(t)} Q_k$ from Proposition 3.4. Since X satisfies the $\omega - b_0$-conditions it follows that there is $t_0 \in \text{Tree}_\omega(b_0)$ such that $S(t_0) = X$. Let be now $[t] \in \text{Tree}_\omega(b_0)/\approx$. $S(t)$ satisfies the $\omega - b_0$-conditions, therefore $S(t) \subseteq S(t_0)$. This implies $t \leq t_0$, therefore $[t] \leq [t_0]$.

Proposition 3.6 Suppose $(\text{Tree}_\omega(b_0)/\approx, \lor, \land)$ contains a greatest element. If $t_0 = (A_0, R_0, b_0) \in \text{Tree}_\omega(b_0)$ such that for every leaf i of t_0 we have $h_0(i) \in T_L$ then for every $t \in \text{Tree}_\omega(b_0)$ we have $t \leq t_0$.

Proof. Suppose that for every leaf i of t_0 we have $h_0(i) \in T_L$. Let be $t = (A, R, h) \in \text{Tree}_\omega(b_0)$. We shall verify that $S(t) \subseteq S(t_0)$, which will show that $t \leq t_0$. Let be $((l_1, \ldots , l_s), (b_1, \ldots , b_s)) \in S(t)$. There is $((1, i_1), (1, i_2)) \in \text{Path}(t)$ such that $(1, i_1) \in R^{(i_1)}$, $(1, i_2) \in R^{(i_2)}$, ..., $(i_{s-1}, i_s) \in R^{(i_s)}$, $h(i_1) = b_1$, ..., $h(i_s) = b_s$. Only the nodes labelled by nonterminal labels may have direct descendants, therefore $b_1, \ldots , b_s - 1 \in N_L$. In order to simplify the notation we denote $\omega_1(b_i) = n_j$ for $j \in \{0, \ldots , s-1\}$. For every $j \in \{1, \ldots , s\}$ there is $u_j = [(i_{j-1}, k_{j}^{(i)}) \ldots (i_{j-1}, k_{n_{j-1}}^{(i)})] \in R$ such that $i_j = \frac{k_{j}^{(i)}}{i_{j-1}}$, where $i_0 = 1$. Since t_0 is an ω-labelled tree it follows that there is $v_i = [(1, r_{1}^{(i)}), \ldots , (1, r_{n_{i}}^{(i)})] \in R_0$ such that $h_0(r_{n_{i}}^{(i)}) = b_i$. We denote $j_1 = r_{1}^{(i)}$. By induction on p we prove that for every $p \in \{1, \ldots , s\}$ there is $v_p = ([j_{p-1}, r_{1}^{(p)}], \ldots , (j_{p-1}, r_{n_{p-1}}^{(p)})) \in R_0$ such that $h_0(r_{n_{p-1}}^{(p)}) = b_p$, where $j_p = r_{p}^{(i)}$ and $j_0 = 1$. For $p = 1$ the property is verified. We assume the property is verified for some $p \in \{1, \ldots , s-1\}$. Since $b_p \in N_L$ and $h_0(j_p) = b_p$ it follows that j_p has n_p direct descendants in t_0. Thus there is $v_{p+1} = ([j_p, (r_{1}^{(p+1)}), \ldots , (j_p, r_{n_{p+1}}^{(p+1)}))] \in R_0$ such that $h_0(r_{n_{p+1}}^{(p+1)}) = b_{p+1}$. We take $j_{p+1} = r_{p+1}^{(i)}$. In this way we obtain $(1, j_1, \ldots , j_s) \in \text{Path}(t_0)$ such that $(1, j_1) \in R_0^{(i_1)}, (j_1, j_s) \in R_0^{(i_s)}, \ldots , (j_{s-1}, j_s) \in R_0^{(i_s)}$, $h_0(j_1) = b_1$, ..., $h_0(j_s) = b_s$. Therefore $((l_1, \ldots , l_s), (b_1, \ldots , b_s)) \in S(t_0)$.

Corollary 3.1 Suppose $(\text{Tree}_\omega(b_0)/\approx, \lor, \land)$ contains a greatest element. If $t_1 = (A_1, R_1, h_1) \in \text{Tree}_\omega(b_0)$ and $t_2 = (A_2, R_2, h_2) \in \text{Tree}_\omega(b_0)$ are such that $h_1(i) \in T_L$ and $h_2(j) \in T_L$ for each leaves i and j then $t_1 \approx t_2$, therefore $[t_1] = [t_2]$.

LATTICES OF LABELLED ORDERED TREES -II
Proof. Really, by Proposition 3.6 we have $t_1 \preceq t_2$ and $t_2 \preceq t_1$, therefore $t_1 \approx t_2$.

Remark 3.1 Suppose $(\text{Tree}_\omega(b_0)/\approx, \lor, \land)$ contains a greatest element. The tree $t_0 = (A_0, R_0, h_0) \in \text{Tree}_\omega(b_0)$ is a representative of the greatest element if and only if for every leaf i of t_0 we have $h_0(i) \in T_L$.

References

Author’s address:

Nicolae Tăndăreaanu
Faculty of Mathematics and Computer Science
University of Craiova
13, Al.I. Cuza st., 1100, Craiova, România
Tel/Fax: 40-251413728
e-mail: ntand@oltenia.ro