
Building Intelligent Dialog Systems ∗

Susan W. McRoy† Syed S. Ali Angelo Restificar Songsak Channarukul

Natural Language and Knowledge Representation Research Group

University of Wisconsin-Milwaukee

Abstract

We overview our recent work in specifying and building intelligent dialog systems that
collaborate with users for a task. As part of this work we have specified and built systems
for: giving medical students an opportunity to practice their decision making skills in En-
glish (B2); performing template-based natural language generation (YAG); detecting and
rebutting arguments (ARGUER); recognizing and repairing misunderstandings (RRM);
and assessing and augmenting patients’ health knowledge (PEAS). All of these systems
make use of rich models of dialog for human-computer communication.
Keywords: intelligent dialog systems, argumentation, natural language generation, mis-
understanding, and repair

1 Introduction

Computers have empowered people, making it possible to process vast quantities of information
in an effective and timely manner. However, the interpretation of the information presented
to people by computers is often “all or nothing,” i.e., the presentation of large quantities of
information (such as a stock buy recommendation accompanied by tables of historical data and
glitzy graphics) or virtually no information (such as a stock buy recommendation, with little
or no justification). People, in dealing with each other, avoid these extremes of information
processing by engaging in dialog, where information is presented and processed incrementally,
assessment (did you understand what I meant?) is ongoing, and participants can direct the
course of the dialog.

Computers have made possible this problem of “information overload.” Through computers,
people everywhere have access to an immense amount of information; however, most of that
information is not useful to them and much of what is useful is lost within by the majority that
is not. The interaction can resemble that of Figure 1, where the user can be overwhelmed (or
underwhelmed).

Part of the difficulty is that the flow of information between people and computers is usually
very different from the flow of information between two people. Computers often present large

∗This work was supported by the National Science Foundation, under grants IRI-9701617 and IRI-9523666
and by a gift from Intel Corporation.
†Contact author’s address and email: Department of EECS, University of Wisconsin-Milwaukee, 3200 N.

Cramer Street, Milwaukee, WI 53211, mcroy@uwm.edu

1

Figure 1: The Worst-Case Example of Human-Computer Communication

quantities of information and expect relatively little feedback. People tend to communicate
information to each other incrementally. After each unit of communication, a speaker will
pause briefly to allow listeners to provide feedback on what has just been said or to add his
or her own contribution to the dialog. When given feedback, a speaker will interpret the
feedback with respect to his beliefs and goals. For example, he or she will consider whether
the listener understands, whether the communication is having the desired effect, and how
subsequent communication might be made more effective. Ideally we want the communication
to be balanced as shown in Figure 2.

Figure 2: The Better-Case Example of Human-Computer Communication

Computers tend to provide a lot of information all at once, providing few, if any, opportu-
nities for feedback from the user. Also, a computer system will rarely attempt to “understand”
what feedback it does allow, so that only feedback anticipated by the software designer im-
pacts system performance. Indirect feedback, such as asking the same question twice, is not
interpreted; thus, the typical computer system will simply repeat its pre-programmed response,
rather than attempting to address the underlying difficulty. People would rarely make this

2

mistake (unless they had reason to believe that their initial utterance was not heard).

1.1 Dialog vs. Presentation

A dialog is two-way interaction between two agents that communicate. People communicate
efficiently and effectively using dialog. Computers do not, typically, engage in dialog with
people. Intelligent dialog systems (IDS) are concerned with the effective management of an
incremental dialog between a computer system and its user. An IDS must deal with both
input and output and must monitor the effectiveness of its actions. During the course of an
interaction, content to be presented, as well as the system’s model of the user (for example
the user’s apparent level of expertise), changes dynamically. This requires the representation
of goals, intentions, and beliefs including beliefs about the effectiveness of the interaction. The
“intelligence” of a dialog system lies in the traditional utility of a dialog model, which includes
the ability to a variety of communicative forms whose meaning depends on the context, including
fragments, anaphora, and follow-up questions. In our view, dialog systems must also recognize
situations that require dynamic adaptation, including misunderstanding, non-understanding,
and argumentation.

By contrast, intelligent presentation systems are concerned with the effective presentation of
a fixed content subject to constraints (for example, the user’s apparent expertise and preferred
presentation style). Their “intelligence” lies in sophisticated domain and presentation models
used to adapt presentations. However, such presentations are planned and displayed in their
entirety (without intermediate feedback from the user) and thus do not allow the system to
monitor the effectiveness of the presentation to deal with ambiguity, misunderstanding or non-
understanding.

1.2 An Architecture for Intelligent Dialog Systems

The general goal of our work is to investigate computational models of dialog that can sup-
port effective interaction between people and computer systems. Our research also aims to
provide computational methods for integrating and using this information to produce relevant
utterances and to identify and resolve communication problems as they arise.

Our work thus addresses two important issues for the design of intelligent dialog systems.
The first concern is to specify what tasks an IDS must support. The second concern is to
specify what knowledge or content an IDS needs to represent. Our answers to these questions are
related. In our view, the reasoning tasks that an IDS must support includes reasoning about the
coherence of the dialog—in particular it must respond in a way that will be perceived as coherent
and must recognize potential sources of communication breakdown, such as misunderstanding
or argumentation. An IDS must also maintain a model of the user’s beliefs and interests as well
as a history of the communication between the user and the system. To support these tasks,
an IDS must include representations of the linguistic, intentional, and social knowledge that
people use to understand dialog. Moreover, because interactive, incremental dialog is a time-
constrained process, an IDS must be able represent and reason about knowledge at multiple
levels of abstraction, allowing it to allocate its reasoning efforts opportunistically.

Our architecture for Intelligent Dialog Systems is shown in Figure 3. The Input Manager

and Display Manager deal with input and output, respectively. The input modalities would

3

D
I
S
P
L
A
Y

M
N
G
R

I
N
P
U
T

M
N
G
R

DOMAIN
MANAGER CONTENT

AUTHORING
TOOLS

DYNAMIC
USER MODEL

DIALOG
MANAGER

LANGUAGE
MANAGER

EVALUATION
MANAGER

Figure 3: Architecture of an Intelligent Dialog System

include typed text, spoken text, and mouse clicks. The output modalities would include text,
graphics, speech and video. The Dialog Manager is the component through which all input
and output passes. This is important because the system must have a record of everything
that occurred (both user and system-initiated). If the user chooses to input language, the
Language Manager is handed the text to parse and build the appropriate representation
which is then interpreted by the dialog manager. The Domain Manager component will be
comprised of general rules of the task as well as specific information associated with how the
Content is to be presented. The content will be generated, prior to system use, by the use
of Authoring Tools that allow the rapid development of the content. Based on the ongoing
interaction, as well as information explicitly provided by the user, User Background &

Preferences are tracked. Incremental evaluation of the status of the interaction is done by
the Evaluation Manager which affects the ongoing dialog and user model.

This architecture builds on our prior work, where the user is on a “thin” client personal
computer interacting with a server that contains all the components described.

2 Specific Projects and Their Significance

The Natural Language and Knowledge Representation Research Group (http://tigger.cs.uwm.edu/~mcr
at the University of Wisconsin-Milwaukee has been working on a number of projects that ad-
dress issues needed for Intelligent Dialog Systems.

• B2 gives medical students an opportunity to practice their decision making skills by

4

communicating in English;

• YAG allows a system to generate English language utterances;

• ARGUER recognizes and rebuts arguments;

• RRM recognizes and repairs misunderstandings;

• PEAS provides an architecture for assessing and augmenting patients’ health knowledge.

Through these projects, we have considered issues for communication in natural language,
dialog management, and the use of user models to tailor the interaction between the user and
the computer. In particular, B2 and YAG support flexible, yet time-constrained interaction,
by incorporating representations of knowledge at multiple levels of abstraction, for natural
language input and output, respectively. ARGUER and RRM reason about the coherence of
dialog and include representations of the type of knowledge needed to recognize and address
arguments and misunderstanding, respectively. PEAS is an architecture for using knowledge
about the user to tailor the interaction between the user and the computer system; LEAF
(Layman Education and Activation Form) is a component within this architecture.

2.1 B2 (http://tigger.cs.uwm.edu/~b2)

B2 is a general purpose tutoring system that allows students to practice their decision-making
skills in a number of domains (McRoy, 1998; McRoy et al., 1997; McRoy et al., 1998a). B2 sup-
ports mixed-initiative interaction using a combination of typed English utterances and point-
and-click based communication using a mouse. To address the ambiguity that occurs these
utterances, without sacrificing generality, B2 analyzes user inputs incrementally and oppor-
tunistically. In particular, it uses a parser with a linguistically based grammar to process the
student’s typed inputs and produce a structure that captures syntactic marking and bracketing,
along with some conceptual information. We call this a mixed-depth representation. Encoding
decisions that require reasoning about the domain or about the discourse context are left to
subsequent processing.

Subsequent processing incorporates the mixed-depth representations into a five-level model
of discourse, shown in Figure 4. These levels capture everything that the student and the

exchanges (pairs of interpretations)

system’s interpretation of each utterance

sequence of utterances

utterance level

interpretation of exchanges

Figure 4: Five Levels of Representation

system have said, as well as how their utterances extend the ongoing discourse. They are

5

needed to allow the system to interpret context-dependent utterances such as Why? or to deal
with unexpected utterances, such as misunderstandings or arguments.

The utterance level is a representation of what the user typed or selected with a mouse,
as produced by the parser. The second level corresponds to the sequence of utterances, which
enables the system to reason about temporal ordering constraints. (This level is comparable
to the linguistic structure in the tripartite model of (Grosz and Sidner, 1986)). The third level
comprises the system’s interpretation of each utterance. Each utterance event (from level 1)
will have an associated system interpretation, which corresponds to a communicative act (such
as question or command) which may reference entities from the underlying task (such as a
specific medical case). The fourth and fifth levels of the discourse model are exchanges and
interpretations of exchanges, respectively. A conversational exchange is a pair of interpreted
events that fit one of the conventional structures for dialog (e.g., QUESTION–ANSWER).
The interpretation of an exchange indicates how the exchange fits with previous ones, such as
whether it manifests understanding, misunderstanding, agreement, or disagreement.

M141 Ma51 M161 M171

The user requests that
the system explain the

probability relation
between HIDA and

Gallstones

The system tells the
user the probability

relations.

The user requests a
repair (an alternative
interpretation of an
earlier utterance.

The system tells the
user the causality
relations between

HIDA and Gallstones.

INTERP INTERP _OF INTERP _OF INTERP _OFINTERP INTERP INTERPINTERP _OF

M173M153

M153

M172M152

exchange

LEX

MEMBER MEMBERCLASS CLASS

EVENT1
EVENT1

EVENT2 EVENT2

M150 M170M160

"Why does a positive
HIDA suggest
Gallstones?"

"In the case of Mr. Jones, the
pretest probability of gallstones is
0.135. A positive HIDA results in
a posttest probability of 0.307"

"I mean for what reason?" "Oh. HIDA detects
Cholecystitis, which is
caused by Gallstones."

BEFORE BEFORE BEFOREAFTER AFTER AFTER

Ma62

The user requests that the system
explain the causality relation

between HIDA and Gallstones.
INTERP _OF

INTERP

Figure 5: Level Representations in a B2 Dialog

Figure 5 shows a glossed (for space reasons) portion of the representations built during a
short dialog (the underlying knowledge representation used is the SNePS semantic network
formalism (Shapiro et al., 1994; Shapiro and Rapaport, 1992; Shapiro and Rapaport, 1987)).
The yellow circles (called nodes) represent the sequence level, the blue nodes the utterance level
(glossed as text here), the pink nodes are B2’s interpretation of the utterances, and the green

6

Figure 6: Architecture of YAG

nodes are the exchange structure (the interpretation of exchanges level is not shown). This
particular dialog illustrates a system misunderstanding, a user request for a repair, followed by
a system re-interpretation of a previous utterance to satisfy the user’s request. (B2 uses RRM
to accomplish this; see Section 2.4).

2.2 YAG (http://tigger.cs.uwm.edu/~yag)

YAG (Yet Another Generator) generates natural language in real-time, as required by Intelligent
Dialog Systems. YAG combines template-based approaches for the representation of text with
knowledge-based methods for representing content (i.e., inputs are concepts or propositions
along with optional annotations to specify syntactic constraints).

YAG’s architecture is layered and is shown in Figure 6. The inner layer (surface-1) takes
an input that contains parameters used to instantiate a template, as well as the name of the
template to be instantiated. This information is used to generate a text. This layer is domain
independent. The outer layer (surface-2) accepts knowledge representation structures (here,
semantic networks) used by an application. The knowledge representation is mapped into a
structure suitable for the inner layer and is passed to surface-1 for further processing. The
outer layer can be customized to a domain.

Templates are declarative representations of text structure. They can contain realization
information, including syntactic information and conceptual information, at different levels of

7

abstraction. A template is a pre-defined form that is filled by the information specified by
either the user or the application. Figure 7 is an example template from YAG. Each form
in the template (a list) is a rule that expresses how to realize a surface constituent. This
particular template would be used to generate a sentence for expressing propositions of the
form has-property(agent, pname, pval), such as has-property(John, age, 20).

((C ((O (E agent (SUBJECTIVE))

(equal pname NIL))

(O ((E agent (POSSESSIVE))

(F pname))

(not (equal pname NIL)))))

(V "be" ((SUBJECT . agent) (TENSE . present)))

(C ((O (F property)

(not (equal property NIL)))

(O (F pval)

(not (equal pval NIL)))))

(S ".")

)

Figure 7: An Example Template

In the above template, if agent = ”John”, pname = ”age”, and pval = ”20”, the surfaced
text will be ”John’s age is 20.”. The first rule, which is a condition rule, has two alternatives.
Here, there is no property specified (property = NIL) so the second alternative matches. The
agent rule generates in possessive form, ”John’s ”, and is followed by a string value of pname
(which is ”age”). Next, the verb rule is executed. The verb ”be” together with its features,
SUBJECT = agent and TENSE = present generates the verb ”is”. In the last rule, the second
alternative is chosen because pval is specified. The generated text is ”20” because the feature
rule returns the value of specified slot as its output. Finally, all outputs are concatenated in
order and returned as a string ”John’s age is 20.”.

The advantages of template-based approaches include:

• Speed: Templates do not require full grammar unification and are stored in a template
library indexed using a hash table.

• Comprehensibility: Templates are intrinsically declarative.

• Flexibility: Templates are very general. They can be parameterized to realize different
text.

• Extensibility: Templates can reuse other templates to realize complex text.

• Reusability: General purpose templates (comprising a general-purpose, template-based
generation grammar) can be defined to realize domain-independent text.

8

Figure 8: Architecture of ARGUER

To speed the process of template development, YAG includes a graphical tool for developing
new templates called TATTOO. TATTOO (Template Authoring and Testing TOOl) allows
users to graphically construct templates that can be tested immediately with just a mouse click.
TATTOO includes facilities for template re-use and syntax-checking.

2.3 ARGUER: (http://tigger.cs.uwm.edu/~arguer)

Intelligent dialog systems must be prepared to deal with argument. ARGUER (Argument
Detection and Rebuttal) is an argumentation system that allows an Intelligent Dialog System
to recognize when another agent disagrees with it and to attempt to convince the other agent
to adopt the system’s view. The approach involves the use of agent models and user-adapted
interaction techniques to process utterances and generate appropriate responses.

Figure 8 depicts the architecture of ARGUER. The system has access to the Domain Knowl-
edge Base (domain knowledge), Argumentation Knowledge Base (argumentation knowledge, i.e.
knowledge about the structure of arguments), and the Commonsense Knowledge Base. The
system is presumed to be the domain expert. It has access to the user’s belief models (because
it is the system’s models of the users). Depending on whose turn it is, the system attempts to
interpret whether the current utterance attacks or supports previous claims.

When the user inputs an utterance, the system will attempt to interpret the user’s utterance
as an attack or support on a prior utterance of the system. It does so by asking, What
does the user’s utterance attack? and second, What does the user’s utterance support? All
reasoning to answer these questions occurs in the user’s belief model and makes use of all
the knowledge sources therein. The system’s utterances will attempt to attack or support the
previous utterances of the user (and failing that provide supporting arguments to prior system
utterances). In addition to the knowledge sources it has access to, the reasoning also takes into
consideration the system’s model of the user (user model).

9

The underlying principle for detecting arguments in ARGUER is to find a general case of
an argument schema into which the meaning representation of an utterance can be matched.
Argument detection and rebuttal are established via argument schema rules. An argument
schema rule characterizes the structure of an argument. If a matching schema is found, the
corresponding variables in the argument schema rule is instantiated, thereby establishing attack
or support relations.

S1 Have your blood pressure checked.

U1 There is no need.

S2 Uncontrolled high blood pressure can lead to heart attack, heart failure,
stroke or kidney failure.

Figure 9: An Example Argument

The example shown in Figure 9 illustrates an argument. In the figure, S1 and S2 are
utterances of the system. U1 and U2 are those of the user. The argument schema can be
used to detect the argument apparent from the first pair, S1 and U1. In the argumentation
knowledge-base, we have an argument schema rule: If X is an utterance implying Y, then NOT
Y is an attack to X. Rules in the common-sense and domain knowledge allow us to derive that
requiring w of A (which follows from the imperative form of S1) implies the need of A for w.
S1 is the utterance implying Y = ”there is a need for a blood pressure check.” Thus, using the
above argument schema rule, (NOT Y) = ”there is no need” (for a blood pressure check) is an
attack to X = S1.

The argument schema can also be used to generate the rebuttal. Suppose a participant in
the dialog says S1. Using the argument schema rule describe above, Y is instantiated. This in
turn allows us to use NOT Y as an attack to X = S1 and hence the other agent, to rebut S1,
can say, ”There is no need”.

The use of argument schemata for argument detection and rebuttal allows argument rela-
tions between propositions to be established dynamically. Moreover, the method is incremental
in that it allows processing of each piece of the utterance and uses only a part of the argument
to continue.

2.4 RRM

RRM (The Recognition and Repair of Speech Act Misunderstandings) provides a unified ac-
count of speech-act production, interpretation, and repair (McRoy and Hirst, 1995). These
tasks are essential to the management of intelligent dialogs, because opportunities for errors in
communication are unavoidable:

• The user’s attention might not be focused on the aspect of the presentation that the
system expects.

• The user might not have the same understanding of what a verbal description or a graph-
ical image is meant to convey.

10

• The user might lack some of the requisite knowledge of the domain necessary to interpret
a proposed explanation.

Thus, any computer system that communicates must be able to cope with the possibility
of miscommunication–including misunderstanding, non-understanding, and misinterpretation.
In misunderstanding, one participant obtains an interpretation that she believes is complete
and correct, but which is, however, not the one that the other speaker intended her to obtain.
In non-understanding, a participant either fails to obtain any interpretation at all, or obtains
more than one interpretation, with no way to choose among them. In misinterpretation, the
most likely interpretation of a participant’s utterance suggests that their beliefs about the world
are unexpectedly out of alignment with the other’s. All three forms of miscommunication can
eventually lead to repair in a dialog; however, misinterpretations and non-understandings are
typically recognized immediately, whereas a participant is not aware, at least initially, when a
misunderstanding occurs. Additionally, misinterpretation can be a source of misunderstanding.

RRM addresses possible misunderstandings (as well as expected interpretations), while re-
specting the time-constraints of Intelligent Dialog Systems, by combining intentional and social
accounts of interaction to capture the expectations that help constrain interpretation. Inten-
tions help focus the system on interpretations that support tasks that the user or system is
pursuing; social conventions help focus the system on interpretations that fit into known types
of conversational exchanges (see Section 2.1). The approach to interpretation is abductive—
the system must try to explain how communicative acts performed by the user relate to prior
discourse. These explanations require the system to make (possibly unsound, but reasonable)
assumptions about the user’s goals, expectations, or misunderstanding. An action is considered
a manifestation of misunderstanding if there is no coherent link apparent and there is a reason
for supposing that misunderstanding has occurred.

2.5 PEAS (http://tigger.cs.uwm.edu/~peas)

The Patient Education and Activation System (PEAS) is a design for a collection of tools that
help prepare people for discussions with a doctor and the choices that they will be asked to
make (McRoy et al., 1998b). These tools support the following tasks: Assessing the user’s health
background, concerns, and preferences (knowledge acquisition); providing customized/filtered
information about health-related topics (knowledge delivery/information retrieval); and evalu-
ating users’ knowledge of health topics (testing).

The most-developed of these tools is LEAF (Layman Education and Activation Form,
http://tigger.cs.uwm.edu/ alp/LEAFV1.1/leaf.html), which aims to create a more in-
formed and “activated patient” by extending the normal activity of filling in a medical history
form to include educational activities that help patients understand the terminology of the form
and suggest topics that they might want to discuss with their doctor. For example, if the patient
has indicated that they have a preventable medical condition, the system will offer information
about prevention and treatment strategies. It will also suggest questions that she might ask her
doctor. Unlike a brochure, the presentation of this information is incremental, and interactive,
allowing the system to monitor the patient’s attention and level of understanding and adapt the
interaction appropriately. LEAF will also filter out irrelevant parts of the form, which, because

11

they are irrelevant, are most likely to contain terminology that is unfamiliar or confusing. A
prototype version of LEAF is available over the Internet, for demonstration purposes.

3 Summary

We have presented the recent work of the Natural Language and Knowledge Representation
Research Group (NLKRRG) at the University of Wisconsin-Milwaukee. This work is specifying
and building intelligent dialog systems that collaborate with users. We have specified and built
systems for: giving medical students an opportunity to practice their decision making skills
in English (B2); performing template-based natural language generation (YAG); detecting and
rebutting arguments (ARGUER); recognizing and repairing misunderstandings (RRM); and
assessing and augmenting patients’ health knowledge (PEAS). All of these systems make use
of rich models of dialog for human-computer communication.

Additional information about these projects is available on the web at the URLs provided.

References

Grosz, B. J. and Sidner, C. L. (1986). Attention, intentions, and the structure of discourse.
Computational Linquistics, 12.

McRoy, S. (1998). Achieving Robust Human-Computer Communication. International Journal
of Human-Computer Studies, 48:681–704.

McRoy, S., Haller, S., and Ali, S. S. (1997). Uniform Knowledge Representation for NLP in the
B2 System. Natural Language Engineering, 3(2):123–145.

McRoy, S. W., Haller, S. M., and Ali, S. S. (1998a). Mixed Depth Representations for Dialog
Processing. In Proceedings of Cognitive Science ’98, pages 687–692. Lawrence Erlbaum
Associates.

McRoy, S. W. and Hirst, G. (1995). The repair of speech act misunderstandings by abductive
inference. Computational Linguistics.

McRoy, S. W., Liu-Perez, A., and Ali, S. S. (1998b). Interactive Computerized Health Care
Education. Journal of the American Medical Informatics Association, 5(4):76–104.

Shapiro, S., Rapaport, W., Cho, S.-H., Choi, J., Feit, E., Haller, S., Kankiewicz, J., and Kumar,
D. (1994). A dictionary of SNePS case frames.

Shapiro, S. C. and Rapaport, W. J. (1987). SNePS considered as a fully intensional propositional
semantic network. In Cercone, N. and McCalla, G., editors, The Knowledge Frontier, pages
263–315. Springer–Verlag, New York.

Shapiro, S. C. and Rapaport, W. J. (1992). The SNePS family. Computers & Mathematics
with Applications, 23(2–5).

12

