
A Natural Language Generation Component for Dialog Systems

Susan W. McRoy1 Songsak Channarukul1 Syed S. Ali2

mcroy@uwm.edu, songsak@uwm.edu, syali@uwm.edu
1Electrical Engineering and Computer Science

2Mathematical Sciences
University of Wisconsin-Milwaukee

3200 N. Cramer Street, Milwaukee, WI 53211

Abstract

We present a natural language generation component,
called YAG, that is suitable for dialog systems. Di-
alog systems collaborate with their users in real-time
during the course of an interaction. A natural lan-
guage interaction (dialog) makes mixed-initiative sys-
tems more realistic since one of communication me-
dia that people are comfortable with is a natural lan-
guage. YAG allows a mixed-initiative system to pa-
rameterize templates di�erently to suit each utterance
it makes depending on its role or communicative inten-
tion in dialogs. YAG provides real-time generation of
text from the knowledge represented in an application.
Our approach to real-time generation in dialog systems
combines a template-based approach for the represen-
tation of text structure with knowledge-based methods
for representing semantic content. In this approach,
a dialog system speci�es a template and content from
its knowledge base to realize the text. The content
can be speci�ed in one of two ways: (1) as a sequence
of propositions (2) as a set of feature value pairs. To
accomplish the realization, YAG instantiates the spec-
i�ed template with the given content to produce the
text.

Introduction

Many dialog systems have tried to allow natural, 
ex-
ible communication between people and computers by
supporting natural language as a medium of commu-
nication. To support dialog that adapts to the user
in real-time, a natural language generation component
must be fast, robust, extensible, and maintainable. Al-
though a number of researchers have worked on build-
ing natural language generation systems, none of these
systems meet the needs of dialog systems. Some ap-
proaches provide a broad coverage of English grammar,
but are better suited to o�-line generation, because
speed is not a concern. Other approaches address speed
requirements, but do so by focusing on a speci�c do-
main. Grammar and other linguistic knowledge needed
by the generation system is not declarative; this makes
it diÆcult to modify, extend, or maintain them.
YAG (Yet Another Generator) provides an alterna-

tive way of generating natural language text by combin-

ing a template-based approach for the representation of
text structure with knowledge-based methods for repre-
senting semantic content. YAG's inputs are concepts or
propositions along with optional annotations to specify
syntactic constraints. A template is a pre-de�ned form
that is �lled by the information speci�ed by either the
user or the application at run-time. The template-based
approach avoids uni�cation of a grammar with an input
structure, which can be a time-consuming process (in
part because many alternatives must be considered).
YAG avoids this problem by requiring the application
that uses it to specify appropriate templates for the
given content. Further, templates are accessed using a
hash table, which facilitates fast access. Additionally,
input to YAG need only be partially speci�ed; YAG
will uses default values to �ll in any missing feature
values. YAG templates are declarative, comprehensi-
ble, easy to modify, extend, and maintain. Thus, YAG
is a real-time generation system that supports natural
and eÆcient interaction in dialog systems. Templates in
YAG are 
exible so that a mixed-initiative system can
parameterize them di�erently to suit each utterance it
makes depending on its role in dialogs. (Conditions in
template rules enable YAG to generate di�erent texts
based on the values given to a template.)

YAG can realize a text from two di�erent sources of
input: a sequence of propositions in a logical language
or a feature structure along with the name of a tem-
plate. These two realization processes will be explained
in the following sections.

A Template-based Approach

YAG combines a template-based approach for the rep-
resentation of text with knowledge-based methods for
representing content. Each form in the template (a
list) is a rule that expresses how to realize a sur-
face constituent. Figure 1 illustrates an example tem-
plate from YAG. This template would be used to
generate a sentence for expressing propositions of the
form has-property(agent, pname, pval), such as



has-property(John, age, 20).

((C ((O (E agent (subjective))

(equal pname nil))

(O ((E agent (possessive))

(F pname))

(not (equal pname nil)))))

(V "be" ((subject agent)

(tense present)))

(C ((O (F property)

(not (equal property nil)))

(O (F pval)

(not (equal pval nil)))))

(S ".")

)

Figure 1: An Example Template

Templates are realized as strings by replacing each
variable in a rule with an instantiated value and then
evaluating the rule. In the template in Figure 1, if
agent = "John", pname = "age", and pval = "20",
the surface text will be "John's age is 20.". The
template has four parts, for generating the subject,
verb, property, and punctuation, in order. The �rst
rule, which is a condition rule, has two alternatives.
(Such alternatives are called options; in each option,
the condition is given last.) In the �rst rule, the second
option is chosen because pname has been speci�ed.
Within this option, the agent is generated as a pos-
sessive, "John's", followed by the value of the feature
pname (which is the string "age"). Next, the verb rule
is executed. The verb "be" together with its features,
subject = agent and tense = present generates the
verb "is". The third rule is another condition rule. In
this rule, the �rst option fails, because no property is
speci�ed. The second option applies because pval has
been speci�ed (pval = "20"). Thus, this third rule gen-
erates the value of the feature pval (i.e. "20"). The �-
nal rule always returns the period punctuation. Finally,
all outputs are concatenated in order and returned as
a string "John's age is 20.".

A complete description of how to de�ne templates is
given in the YAG User's Manual (Channarukul 1999).

Natural Language Generation from

Knowledge Representation

YAG provides facilities for generation from any knowl-
edge representation language. This is accomplished by
the use of a knowledge representation speci�c compo-
nent which must be de�ned for that particular knowl-
edge representation language. (In the architecture of
YAG, shown in Figure 5, this component corresponds to

surface-2.) This component maps the speci�c knowl-
edge representation into a feature structure that can be
processed by the domain and knowledge representation
independent component of YAG (shown as surface-1
in Figure 5).
The knowledge representation that is currently being

used is SNePS, which uses propositional semantic net-
works (Shapiro & Group 1998). A propositional seman-
tic network is a framework for representing the concepts
of a cognitive agent who is capable of using language.
The information is represented as a labeled, directed
graph that represents relations (de�ned by its arcs) to
entities (de�ned by its nodes).
Figure 2 shows an example of a propositional seman-

tic network. In the network, the node M2 represents the
proposition that the discourse entity B2 is a member
of class \dog". The node M5 represents the proposition
that the name of the discourse entity B2 is \Pluto". We
can read the whole proposition as \Pluto is a member
of class dog." or simply \Pluto is a dog.".

((M2 (CLASS "dog")

(MEMBER B2))

(M5 (OBJECT B2)

(PROPERNAME "Pluto")))

Figure 2: An Example of a Semantic Network.

Case frames, which are conventionally agreed upon
sets of arcs emanating from a node, are used to repre-
sent propositions in a semantic network. For example,
to express that A isa B we use the MEMBER-CLASS case
frame which is a node with a MEMBER arc and a CLASS

arc. YAG realizes text from a proposition. More com-
plex text can be realized by providing multiple propo-
sitions. Example 1 illustrates an input to YAG.

Example 1 Pluto is a dog.

'(((M2 (CLASS "dog")

(MEMBER B2))

(M5 (OBJECT B2)

(PROPERNAME "Pluto")))

((form decl)

(attitude be) )

)

In Example 1, the input includes two propositions
and a list of control features. The �rst proposition
is the primary proposition to be realized (that is the
surface sentence will be about something being a dog
rather than something being named \Pluto"). M2 says
that the discourse entity B2 is a member of class \dog".



The second proposition (M5) says that \Pluto" is the
name of the entity B2. Together, these propositions say
that the entity B2, whose name is \Pluto", is a mem-
ber of class \dog". YAG will map the MEMBER-CLASS

proposition to the template shown in Figure 3. The
control features, form = decl and attitude = be, are
also used in selecting the exact template to be used.
(For example, if the form had been interrogative, a
di�erent template would have been used.)

Prior to realization, the knowledge engineer must
provide a mapping from each case frame to the name
of the corresponding template in a case frame mapping
table. (This is the primary task in constructing a new
surface-2 component for the knowledge representa-
tion.) A mapping table is an index table in which a
case frame and selected control features serve as an in-
dex to a speci�c template. In this example, YAG selects
the member-class template to realize the information
extracted from the given semantic network.

'((E member)

(V "be" ((subject member)))

(E class))

Figure 3: A member-class Template.

Example 2 shows how syntactic constraints can be
added to override defaults made by YAG. Here, to pro-
duce a de�nite noun phrase (\the book"), we override
the de�niteness default, which is NO, for the noun \book"
which is in the third proposition (M11) in the example.
(This is done by adding the control feature: (definite
YES B6)).

Example 2 \George reads the book."

'(((M2 (ACT (M1 (ACTION "read")

(DOBJECT B6)))

(AGENT B4))

(M5 (OBJECT B4)

(PROPERNAME "George"))

(M11 (CLASS "book")

(MEMBER B6))

((form decl)

(attitude action)

(definite YES B6)))

)

Default feature values can be overridden for any en-
tity by adding to the content speci�cation a list that
contains the name of feature, its new value, and the
node corresponding to the entity (in Example 2, this is

B6). Pronominalization can also be done this way, as
shown in Example 3.

Example 3 \He understands it."

'(((M2 (AGENT B4)

(ACT (M1 (ACTION "understand")

(DOBJECT B6))))

(M5 (OBJECT B4)

(PROPERNAME "George"))

(M11 (CLASS "book")

(MEMBER B6))

((form decl)

(attitude action)

(pronominal YES (B6 B4))

(gender MASCULINE B4)))

)

In Example 3, AGENT-ACT is the primary proposition
in the semantic network. In this example, the proposi-
tion says that there is the agent (B4) who is doing the
action \understand" on the object (B6). This proposi-
tion along with the selected control features (form =

decl and attitude = action), allows YAG to select
the clause template.
To override the gender default (neutral) of B4 and

generate \He" instead of \It", Example 3 speci�es B4's
gender as MASCULINE. To override the default expres-
sion type (full noun phrase) for both B4 and B6, Ex-
ample 3 speci�es (pronominal YES (B6 B4)) which
forces pronominalization.
The next section describes the realization from a fea-

ture structure representation.

Natural Language Generation from

Feature Structures

As previously mentioned, YAG is independent of the
underlying knowledge representation (here, SNePS) be-
cause it also accepts feature structures as input. A fea-
ture structure is composed of one or more features and
their values. Each pair in a feature structure is a list
containing the feature's name as the �rst item and its
value as the second. The value can be a string, a sym-
bol, or another feature structure. Example 4 shows a
complete feature structure that would be used to realize
the text \John walks.".
Within a feature structure, the name of the template

that YAG should use is given by the template feature.
YAG then selects the template from one of its template
libraries and realizes the template as discussed earlier
in Section . Template rules are realized in sequence.
When a template rule contains a variable, the value is
obtained from the feature structure.



Example 4 \John walks."

'((template clause)

(agent "John")

(process "walk"))

In Example 4, YAG retrieves the clause template1

which is shown in Figure 4.

'(rules ((E agent)

(V (process) ((subject agent)))

(S "."))

)

Figure 4: A simpli�ed template rule of clause tem-
plate.

The rule (E agent) is realized �rst, yielding \John"
as its output. Then, the rule (V (process) ((subject

agent))) is processed. In this template rule, the value
bound to agent is a subject of the verb stored in the fea-
ture process. In this example, the value of agent fea-
ture is a string \John". The verb is \walk". To correctly
process the verb, the default values of number, person
and tense are applied. (The default values of these fea-
tures in the verb template result in the in
ected form,
\walks".) The partial result is \John walks". Finally,
the partial result is concatenated with another string,
a period \.", yielding the �nal output \John walks.".
The next example shows the feature structure repre-

sentation that would be used to generate the string \He
understands it.".

Example 5 \He understands it."

((template clause)

(agent ((template noun-phrase)

(case proper)

(head "George")

(gender masculine)

(pronominal yes)))

(process "understand")

(object ((template noun-phrase)

(case common)

(head "book")

(pronominal yes))) )

In this example, the feature structure illustrates that
the value of a feature may be another feature structure,

1This template has been simpli�ed to facilitate
explanation.

as is the case for the features agent and object. Al-
lowing a feature structure to be embedded in another
feature structure increases the 
exibility of YAG.

In this example, the embedded feature structure

((template noun-phrase)

(case proper)

(head "George")

(gender masculine)

(pronominal yes))

would be realized �rst, returning the word \He", be-
cause of the pronominal and gender constraints.
Then, the agent feature would be bound to \He" in
the clause template. The value of the process fea-
ture is given as a string. (The template speci�es that
the default number, person, and tense are singular,
third-person, and present respectively.) Thus, the
process feature is realized as \understands". The value
of the object feature is then realized as the word \it".
Finally, the clause template is realized as the string
\He understands it.".

System Architecture

Our implementation of YAG has a layered architecture
as shown in Figure 5. It allows an application to realize
texts from two kinds of input, a knowledge representa-
tion or a feature structure. These realization processes
have been described in the previous sections. This sec-
tion will brie
y describe the architecture of YAG as a
whole system.
The outer layer (surface-2) of YAG realizes a

given semantic network. The input contains two parts:
a semantic network that represents content, and a set
of control features that provide supporting information
and optional syntactic constraints. Some of these con-
trol features are used by YAG to select the appropri-
ate template, the remainder are used to select options
within a template. The output of this layer is a feature
structure that is passed to the inner layer for further
realization into a string of words.
The inner layer (surface-1) accepts a feature

structure as input. This feature structure speci�es the
template to be used along with other features and their
values. In addition, this layer will use defaults to spec-
ify any missing values in a feature structure input. The
inner layer processes its input by applying templates in
a depth-�rst manner.
The Lexicon contains word level information. Tem-

plates can access the lexicon directly with a template
rule. YAG includes lexical functions to in
ect a given
verb according to verb features (e.g., tense, person, as-
pect, etc.), and to generate the singular or plural forms
of nouns. Additional lexicon functions can be coded if
required.



Figure 5: Architecture of YAG

The Syntactic Template Library contains tem-
plates that are used as a grammar of English. Other
templates can embed these templates to form more
complex structures. They may also be combined with
templates from the domain template library. (The cur-
rent implementation of YAG includes a number of pre-
de�ned syntactic templates.)
The Domain Template Library contains tem-

plates that are speci�c to a particular application. De-
velopers can author their own templates when neces-
sary. These templates can serve applications that have
special2 information presentation needs.
The Case Frame Mapping Table is used to link

the semantic case frames with their associated tem-
plates. The outer layer will access the mapping table
with the selected control features to pick to the appro-
priate template when realizing text from the knowledge
representation.

2By special, we mean that a sublanguage is appropriate,
for example e.g., scienti�c information, weather reports, etc.

Related Work

Although a number of researchers have worked on build-
ing natural language generation systems, none of this
work meets the needs of dialog systems. TEXT (McK-
eown 1982; 1985) uses a template as a plan. Templates
are realized by a separate module that uses a functional
uni�cation grammar. Speed is an issue in uni�cation-
based generation approaches; this is a problem in real-
time dialog. Moreover, templates in TEXT primarily
address the generation of a complete discourse (multiple
sentences or a paragraph). However, in dialog, agents
communicate information to each other incrementally.
YAG meets the needs of incremental dialog because it
can generate text at any length, including a single word
or a sentence, or multiple sentences.
FUF/SURGE (Elhadad 1992; 1993) is a feature-

based system that uses a functional uni�cation gram-
mar to realize text. FUF is a surface realization com-
ponent. SURGE is a declarative grammar written in
FUF's formalism. SURGE's coverage of grammar is



very broad, thus the quality of generated text is high.
However, the uni�cation process employed by FUF dra-
matically decreases its speed when the grammar be-
comes large. YAG provides an alternative that is appro-
priate when generation speed is crucial and �ne-grained
control of text is not necessary.

Penman/Nigel (Mann 1983) covers broader tasks
of generation (content determination, discourse plan-
ning, surface realization, and text revision). Penman
is a feature-based generator with a systemic grammar
(called Nigel). Although it does not use grammar uni-
�cation, it is similar to FUF/SURGE in that it must
traverse a grammar to generate texts. The speed of
generation thus decreases as the size and complexity of
the grammar increases.

MUMBLE (Meteer et al. 1987) is a phrase-based,
surface realization component. Its input is a feature
structure that speci�es a phrase to be used. A real-
ization component realizes the �nal surface string by
instantiating a phrase structure with conceptual infor-
mation from the input. YAG's syntactic templates are
similar to the phrase-based grammar of MUMBLE. An
additional advantage of YAG is that YAG's templates
can be de�ned at di�erent levels of abstraction, not only
at the syntactic, but also at the semantic level.

RealPro (Lavoie & Rambow 1997) has been designed
with speed in mind. It is a surface realization compo-
nent that has a declarative grammar and lexicon. Its
drawbacks are similar to those generation systems that
limit the generation process to syntactic level informa-
tion, thus generating natural language from a knowl-
edge representation may be diÆcult.

Conclusion

We have presented the natural language generation
component, called YAG (Yet Another Generator),
that has been designed to meet the needs of real-time
dialog systems. YAG has been integrated into B2, a
general-purpose tutoring system that allows students
to practice their decision-making skills in a number
of domain (McRoy 1998; McRoy, Haller, & Ali 1997;
1998). B2 supports mixed-initiative interaction using
a combination of typed English utterances and point-
and-click-based communication using a mouse.

YAG combines a fast template-based approach for
the representation of text structures with knowledge-
based methods for representing content. Its inputs are
concepts or propositions along with optional annota-
tions to specify syntactic constraints, thus allowing the
generation of natural language from knowledge repre-
sentation. YAG improves practical system abilities in
natural language generation by supporting fast and in-
cremental interaction for real-time dialog systems.

References

Channarukul, S. 1999. The YAG's User Man-
ual. Department of Computer Science, University of
Wisconsin-Milwaukee.

Elhadad, M. 1992. Using argumentation to control lex-
ical choice: A functional uni�cation-based approach.
Ph.D. Dissertation, Computer Science Department,
Columbia University.

Elhadad, M. 1993. FUF: The universal uni�er - user
manual, version 5.2. Technical Report CUCS-038-91,
Columbia University.

Grosz, B. J.; Sparck-Jones, K.; and Webber, B. L.
1986. Readings in Natural Language Processing. Los
Altos, CA: Morgan Kaufmann Publishers.

Lavoie, B., and Rambow, O. 1997. A fast and portable
realizer for text generation systems. In Proceedings
of the Fifth Conference on Applied Natural Language
Processing, 265{268.

Mann, W. C. 1983. An overview of the Penman
text generation system. In Proceedings of the Third
National Conference on Arti�cial Intelligence (AAAI-
83), 261{265. Also appears as USC/Information Sci-
ences Institute Tech Report RR-83-114.

McKeown, K. R. 1982. The TEXT system for natural
language generation : An overview. In Proceedings of
the 20th Annual Meeting of the ACL, 113{120.

McKeown, K. R. 1985. Discourse strategies for gen-
erating natural-language text. Arti�cial Intelligence
27(1):1{42. Also appears in (Grosz, Sparck-Jones, &
Webber 1986), pages 479-499.

McRoy, S.; Haller, S.; and Ali, S. S. 1997. Uniform
Knowledge Representation for NLP in the B2 System.
Natural Language Engineering 3(2):123{145.

McRoy, S. W.; Haller, S. M.; and Ali, S. S. 1998.
Mixed-Depth Representations for Dialog Processing.
In Proceedings of Cognitive Science '98, 687{692.
Lawrence Erlbaum Associates.

McRoy, S. 1998. Achieving Robust Human-Computer
Communication. International Journal of Human-
Computer Studies 48(5):681{704.

Meteer, M. W.; McDonald, D. D.; Anderson, S. D.;
Forster, D.; Gay, L. S.; Huettner, A. K.; and Sibun, P.
1987. Mumble-86: Design and implementation. Tech-
nical Report COINS 87-87, Computer and Information
Science, University of Massachusetts at Amherst.

Shapiro, S. C., and Group, T. S. I. 1998. SNePS
2.4 User's Manual. Department of Computer Science,
SUNY at Bu�alo.


