
Image Synthesis from Natural Language
Description

Nicolae Ţăndăreanu1 and Mihaela Ghindeanu2

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania

1 ntand@oltenia.ro
2 mghindeanu@yahoo.com

Abstract. In this paper we present another application of the labelled
stratified graphs introduced in [2]. More exactly, we consider a text T
given in a natural language. T gives a description of some world of ob-
jects. Using a recursive transition network ([1]) the information contained
in T is extracted. As a consequence, a labelled graph G is obtained. The
structure of G is extended to a labelled stratified graph and applying the
appropriate methods we can realize the synthesis of the image specified
in T . The method is implemented and all the formal computations are
presented. In conclusion, taking into account a text describing an im-
age, we present an application of the labelled stratified graphs in image
synthesis.
Keywords: labelled stratified graph, knowledge representation, natural
language, recursive transition network
AMS Subject Classification: 68T30, 68T45, 68T50

1 General presentation

The concept of labelled stratified graph (LSG) was introduced in [2] in con-
nection with that of knowledge base with output (KBO). Various applications of
this concept in travel scheduling, attribute graphs and transport problems where
presented. In general, this concept is used in connection with knowledge repre-
sentation. As a general presentation of this method we can say that in the first
step a labelled graph G is obtained by extracting the information from a given
knowledge piece. In the second step a LSG is built over G. In the last step,
the algebraic mechanism offered by a LSG is used to formalize the reasoning
process.

In this paper the following aspects are treated:

1) We give an algorithm by means of which we are able to extract the
information from the text of a knowledge piece KP . The information is rep-
resented by objects and the binary relations between them. Automatically,
the drawing of the corresponding labelled graph G is realized. In order to
process the information from KP a recursive transition network is used. A

Image Synthesis from Natural Language Description 83

LSG over G is defined and based on this structure an appropriate reasoning
environment is obtained.
2) The above method is exemplified and the means offered by a LSG are
used to reconstruct the image of the world described in KP . We used here
the term ”reconstruct” for the following reason: the method can be applied
in a communication from the location A to the remote location B in order to
reconstruct in B the image observed in A. In this case a text description of
the scene is transmitted instead of an image. The text is transmitted from
A and based on this description an appropriate image is reconstructed in B.

The paper is organized as follows: in Section 2 a concise presentation of the
concept of labelled stratified graph is given; in Section 3 we give a general algo-
rithm to draw automatically the labelled graph associated to a text description
given in a natural language whose syntax is represented by means of a recursive
transition network; based on the concept of LSG we present in Section 4 the
manner in which we can synthetize the image described by a text description;
Section 5 includes an implementation of the method presented in this paper; in
the last section several future problems are presented.

2 Labelled Stratified Graphs

In this section we give a brief presentation of the concept of labelled stratified
graph (shortly, LSG), which is a basic one for the next sections.

Intuitively, a labelled graph is a directed graph such that each arc contains
an entity called label such that, finally, this entity carries a specific information.

Definition 1. A labelled graph is a tuple G = (S, L0, T0, f0), where

• S is a finite set of elements called nodes
• L0 is a finite set of elements named labels
• T0 is a set of binary relations on S
• f0 : L0 −→ T0 is a surjective function

Such a structure admits a graphical representation. Each element of S is repre-
sented by a rectangle specifying the corresponding node. We draw an arc from
x ∈ S to y ∈ S and this arc is labelled by a ∈ L0 if (x, y) ∈ f0(a). This
representation is shown in figure 1.

x y-a

Fig. 1. A labelled arc

84 N.Ţăndăreanu, M. Ghindeanu

We consider a labelled graph G = (S,L0, T0, f0) and a symbol σ of arity 2.
We define recursively

B0 = L0

Bn+1 = Bn ∪ {σ(x1, x2) | (x1, x2) ∈ Bn ×Bn}, n ≥ 0
(1)

The set B =
⋃

n≥0 Bn gives the support set of a Peano algebra generated by L0

([?]).
By Initial(L0) we denote some collection of subsets of B. Namely, we say

that M ∈ Initial(L0) if the following conditions are fulfilled:

• L0 ⊆ M ⊆ B

• if σ(u, v) ∈ M then u ∈ M and v ∈ M

We define the mapping prodS : dom(prodS) −→ 2S×S as follows:

dom(prodS) = {(ρ1, ρ2) ∈ 2S×S × 2S×S | ρ1 ◦ ρ2 6= ∅}
prodS(ρ1, ρ2) = ρ1 ◦ ρ2

where ρ1 ◦ ρ2 represents the product of the binary relation ρ1 and ρ2:

ρ1 ◦ ρ2 = {(x, y) | ∃z : (x, z) ∈ ρ1, (z, y) ∈ ρ2}

We denote by R(prodS) the set of all the restrictions of the mapping prodS :

R(prodS) = {u | u ≺ prodS}

Let u be an element of R(prodS). We denote by Clu(T0) the closure of T0 in
the partial algebra (2S×S , {u}). This is the smallest subset Q of 2S×S such that
T0 ⊆ Q and Q is closed under u. It is known that this is the union

⋃
n≥0 Xn,

where

X0 = T0

Xn+1 = Xn ∪ {u(ρ1, ρ2) | (ρ1, ρ2) ∈ dom(u) ∩ (Xn ×Xn)}, n ≥ 0
(2)

Because S is a finite set, there is n such that Xn = Xn+1 and thus Clu(T0) =⋃n
k=0 Xk ([3]).

Definition 2. A labelled stratified graph G over G is a tuple (G,L, T, u, f) where

• G = (S, L0, T0, f0) is a labelled graph
• L ∈ Initial(L0)
• u ∈ R(prodS) and T = Clu(T0)
• f : (L, {σL}) −→ (2S×S , {u}) is a morphism of partial algebras such that
f0 ≺ f , f(L) = T and if (f(x), f(y)) ∈ dom(u) then (x, y) ∈ dom(σL)

Image Synthesis from Natural Language Description 85

2S×S × 2S×S -
u

2S×S

L× L -
σL

L

? ?

f × f f

Fig. 2. The morphism condition

The last condition imposed in the definition of LSG can be interpreted as
follows. The mapping f is a morphism of partial algebras, therefore in the dia-
gram of figure 2 we have the following property: if we are able to go along the
path (L×L,L, 2S×S) then we are able also to go along the path (L×L, 2S×S ×
2S×S , 2S×S) and we obtain the same result.

We observe now that the definition of a LSG gives the converse condition: if
we can go along the path (L× L, 2S×S × 2S×S , 2S×S) then we can go along the
path (L×L,L, 2S×S) and we obtain the same final result. Indeed, if (f(x), f(y)) ∈
dom(u) then (x, y) ∈ dom(σL) therefore σL(x, y) ∈ L. Now by the morphism
property we have f(σL(x, y)) = u(f(x), f(y)).

Based on these two remarks we observe that

dom(σL) = {(x, y) ∈ L× L | (f(x), f(y)) ∈ dom(u)} (3)

3 A general algorithm for automated drawing of a
labelled graph associated to a text description

In this section we will present the manner in which a knowledge piece given
in a natural language (English) can be transposed in a labelled graph. To make
possible such a representation we shall suppose the knowledge piece describes
several objects and some binary relations between them.

In order to extract the relations contained in the input text we have to define
the syntax of the language, based on which we can also verify the correctness of
the text description. We choose a mechanism based on a Recursive Transition
Network(RTN) because the RTNs are modular and very easy to maintain.
They are based on Basic Transition Networks BTN . These networks give us a
graphical representation of the behaviour of some kind of finite state automaton.
So the BTNs can be thought of as directed labelled graphs. The nodes of the
graph are the states of the automaton. Unlike BTNs, the arcs of RTNs can be

86 N.Ţăndăreanu, M. Ghindeanu

labelled with a command JUMP node. The node appearing in such a command
must be a start node of a subnetwork. When an arc labelled with this command
is traversed, a jump will be made to the subnetwork that has as initial node
the node specified in the JUMP command. This network will be traversed and
finally, only when it is reached its final state, the transition will continue from
the point it was made the jump. This idea of breaking up a complex network
into some smaller networks, one for every syntactic category (such as sentence,
noun phrase, verb phrase, etc.) helps us to obtain a better structure for our
linguistic knowledge. Thus, all the information about a category are contained
in a corresponding subnetwork. This facilitates any syntactical modification in
the language we want to define.

After we establish the desired RTN , we have to determine the binary rela-
tions that are contained in a given knowledge piece KP . When all the relations
are obtained we can draw the directed labelled graph G = (S,L0, T0, f0). The set
S of nodes is composed from the objects of the knowledge piece and the elements
of L0 are labels of binary relations. The elements of T0 are the initial binary re-
lations, specified in KP . The surjective mapping f0 : L0 −→ T0 establishes the
connection between labels and binary relations.

We will start the drawing of nodes with a node that has a maximum number
of children and a minimum number of parents. The line of this first node will be
considered the first line of the graph. The same for the column of the first node.
The rest of the nodes will be drawn using the following algorithm:

1. current−node ← first−node
2. current−line ← first−line
3. current−column ← first−column
4. WHILE (we still have not drawn all the nodes)

4.1 IF (current−node has child)
4.1.1 we will prefer that node, named newNode, that accomplishes
the most conditions from below:

4.1.1.1 it is child of current−node
4.1.1.2 {parents of newNode } ∩{ children of current−node} = ∅
4.1.1.3 the current−node is a child of newNode

4.1.2 current−column ← current−column + 1
4.1.3 draw newNode on the cell (current−line, current−column)
4.1.4 the current−node will be connected with the newNode by a
straight arc.
4.1.5 delete newNode from the set of children of current−node
4.1.6 current−node ← newNode

4.2 ENDIF
4.3 IF (current−node does not have any child)

4.3.1 current−line ← current−line + 1;
current−column ← current−column− 1

4.3.2 IF (current−node has a drawn parent)
4.3.2.1 current−node ← the last drawn parent of current−node

4.3.3 ELSE

Image Synthesis from Natural Language Description 87

4.3.3.1 that means we have now to draw the nodes that have as
children the already drawn nodes
4.3.3.2 we will choose as current−node, a node with most of the
children already drawn

4.3.4 ENDIF
4.4 ENDIF

5. ENDWHILE

After all the nodes are drawn, we have to do the same with the arcs. We divide
the arcs into two categories:

• straight arcs: these arcs are oriented from left to right and connect a node
with a child found in the IF sentence at line 4.1 (for example, in Figure 8
the arc from p2 to p4 labelled by B + L)

• broken arcs: these arcs connect two nodes going around the nodes of the
graph (for example, in Figure 8 the arc from one−line to p4 labelled by A)

4 From text description to image synthesis

In this section we shall present an application to reconstruct an image from
a text description. We consider the following problem:

We suppose we have a remote communication line from S to R. S is the
sender and R is the receiver. Let’s suppose at the node S we have a chess-board
of only 5× 5 squares and five pawns of the same colour. We say that a pawn P1

captures the pawn P2 if P1 and P2 are aligned on the same diagonal of the board
at one square distance. We suppose that in S we see an arrangement of these
pieces such that no pawn captures any other pawn. The problem is to transmit
to R a text description of the scene such that R is able to reconstruct the image
from S.

In order to solve this problem we try to use in R a text analyzer, which is
able to understand the text received from S and to reconstruct the image on R.
This program is a text to image converter. We suppose the following:

• We dispose of a free-error transmission.
• The description does not specify exactly the position of a pawn, that is,

the use of a sentence of the form a pawn is on the line i and column j is
forbidden.

• Each sentence describes the position of some pawn with respect to some
other pawn or the position of some empty line (column).

The description that program gets as input can be seen as a knowledge piece
KP of some world of objects. Obviously, the knowledge piece will contain at
least five objects, the pawns denoted by P1, ... , P5. Thus, the set S of objects
will include the set of pawns, S ⊇ {P1, ..., P5}.

In order to help the program to find the positions of the pawns, the knowledge
piece must contain five sentences that include binary relations between pawns.
Let’s denote by Sen1, ..., Sen5 five sentences of the KP , where Seni appears in

88 N.Ţăndăreanu, M. Ghindeanu

the input description before Seni+1, 1 ≤ i ≤ 4. A good description must allow
us to obtain information about the position of any pawn on the board.

Before to give a formalism of this problem we introduce the following no-
tation: if Senk gives a description of the relation between Pi and Pj then
we note: Senk = (Pi, Pj). We suppose Sen1 = (Pk1 , Pk2), Sen2 = (Pk2 , Pk3),
Sen3 = (Pk3 , Pk4), Sen4 = (Pk4 , Pk5) and Sen5 = (Pk5 , Pk1) where 1 ≤ ki ≤ 5
and ki are distinct values. In this way, the sentences Sen1, ..., Sen5 offer a max-
imum number of information about the objects P1, ..., P5. Thus, if we transpose
the relations of these five sentences in a directed labelled graph, we obtain a cy-
cle that permits us to get new information about any two nodes using deduction
process (see Figure 3).

Pk
1

Pk
2

Pk
3

Pk
4

Pk
5

a
1

a
2

a
3

a
4

a
5

Fig. 3. A cycle of pawns

Each relation of these five sentences indicates the position of a pawn regarding
some other pawn. Before enumerate the possible positions we make the following
observation: a square is uniquely defined by its coordinates on the board, the
pair (line, column) where 1 ≤ line, column ≤ 5. Thus, instead of saying that the
pawn P is on the line l and column c, we will say that the square of the pawn
P is (l, c).

Finally, the possible positions of a pawn are:

• above: a pawn Pm is above another pawn Pn if the square of Pm is (i,j) and
the square of Pn is (k,j) with k < i.

• below: a pawn Pm is below another pawn Pn if the square of Pm is (i,j) and
the square of Pn is (k,j) with k > i.

• left side: a pawn Pm is at left side of another pawn Pn if the square of Pm

is (i,j) and the square of Pn is (i,k) with j < k.
• right side: a pawn Pm is at right side of another pawn Pn if the square of

Pm is (i,j) and the square of Pn is (i,k) with j > k.

Image Synthesis from Natural Language Description 89

• above at left/right side: a pawn Pm is above at left (right) side of another
pawn Pn if the square of Pm is (i,j) and the square of Pn is (p,k) with i > p
and j < k, respectively k < j.

• below at left/right side: a pawn Pm is below at left (right) side of another
pawn Pn if the square of Pm is (i,j) and the square of Pn is (p,k) with i < p
and j < k, respectively k < j.

These positions are exemplified in Figure 4.

Fig. 4. Example of pawn position

We may introduce in the knowledge piece some relations that indicate how
many empty lines or columns are next to some pawn. These relations are not
compulsory. They make the description of the positions of the pawns more accu-
rate. If the knowledge piece contains such relations then the set S of the objects
will include a reference to such line(s) or column(s).

The description can be made in a natural language. To define the syntax of
the language we have constructed the following RTN . As can be seen in Figure
5, the RTN is composed by eight subnetworks: the subnetwork S defines the
syntax of a sentence in our language, the Np−sg and Np−pl are subnetworks for
noun phrase, V p−sg and V p−pl are subnetworks for verb phrase, Place realizes
a connection between some subnetworks, Ap is subnetwork for adverb phrase
and the Side subnetwork defines the structure of the side entities.

In what follows we will give an example of an arrangement and a possible
knowledge piece that describe it:

The pawn P3 is at right side of P1. P1 is below P2 at left side. P2 is below P4

at left side. P4 is at right side of P5. P5 is above P3 at left side. An empty line
is below P2. An empty line is above P4.

The labelled graph illustrating this piece of knowledge is G = (S,L0, T0, f0),
where:

90 N.Ţăndăreanu, M. Ghindeanu

S

S1

S3

Np_sg N1 N2 N3

N4 N5 N6

Vp_sg V1 V2

Ap P1 P2

JUMP Np_sg JUMP Vp_sg

WRD one WRD empty

WRD line

WRD column

CAT Det WRD pawn CAT name_pawn

JUMP

WRD is JUMP Place

JUMP Side

WRD above

WRD below

WRD of

WRD at

WRD left

WRD right

WRD side
Side S1 S2 S3

S2
JUMP Np_pl JUMP Vp_pl

Np_pl N1 N2
WRD three WRD empty

WRD four

N3

WRD lines

WRD columns

WRD two

Vp_pl V1 V2
WRD are JUMP Place

Place

JUMP Np_sg

JUMP Np_pl

JUMP Side
P2 P3

JUMP Ap
P1

Fig. 5. The syntax defined by a RTN

Image Synthesis from Natural Language Description 91

• the set of objects is S = {P1, P2, P3, P4, P5, one−line}
• the set of the binary relations is T0 = {ρ1, ρ2, ρ3, ρ4, ρ5} and:

ρ1 = {(P3, P1), (P4, P5)}, ρ2 = {(P1, P2), (P2, P4)}, ρ3 = {(P5, P3)},
ρ4 = {(one−line, P2)}, ρ5 = {(one−line, P4)}

• the set of labels L0 = {R, B, A,B + L,A + L}, where:
• the symbol R describes the semantics is at right side of
• the symbol B is for the meaning is below
• the symbol A is for the meaning is above
• the symbol B + L is associated to is below at left side
• the symbol A + L is associated to is above at left side

• the function f0 : L0 −→ T0 is a bijective mapping because for each label e
of L0 there is an unique binary relation r ∈ T0 such that f0(e) = r:

f0(R) = ρ1, f0(B) = ρ4, f0(A) = ρ5, f0(B + L) = ρ2, f0(A + L) = ρ3

The labelled graph obtained is represented in Figure 6.

P
3

P
5

P
4

P
2

P
1

one_line

R

B+L

B+L

A

A+L

R

B

Fig. 6. Labelled graph of KP

In order to obtain a labelled stratified graph ([3]) the following computations
are realized:

• T0 = {ρ1, ρ2, ρ3, ρ4, ρ5}, where
ρ1 = {(P3, P1), (P4, P5)}, ρ2 = {(P1, P2), (P2, P4)}, ρ3 = {(P5, P3)},
ρ4 = {(one−line, P2)}, ρ5 = {(one−line, P4)}

• T1 = T0 ∪ {ρ6, ρ7, ρ8, ρ9, ρ10, ρ11}, where
ρ6 = u(ρ2, ρ2) = {(P1, P4)}, ρ7 = u(ρ2, ρ1) = {(P2, P5)},
ρ8 = u(ρ1, ρ3) = {(P4, P3)}, ρ9 = u(ρ3, ρ1) = {(P5, P1)},
ρ10 = u(ρ1, ρ2) = {(P3, P2)}, ρ11 = u(ρ5, ρ1) = {(one−line, P5)}
ρ5 = u(ρ4, ρ2)

92 N.Ţăndăreanu, M. Ghindeanu

• T2 = T1 ∪ {ρ12, ρ13, ρ14, ρ15, ρ16, ρ17}, where
ρ11 = u(ρ4, ρ7)}, ρ12 = u(ρ5, ρ8) = u(ρ11, ρ3) = {(one−line, P3)},
ρ13 = u(ρ11, ρ9) = {(one−line, P1)}, ρ14 = u(ρ6, ρ1) = {(P1, P5)},
ρ15 = u(ρ8, ρ1) = {(P4, P1)}, ρ16 = u(ρ10, ρ2) = {(P3, P4)},
ρ17 = u(ρ10, ρ7) = {(P3, P5)}

• We append now
ρ13 = u(ρ12, ρ1) = u(ρ5, ρ14)

Now we can compute the set L and the values of the mapping f : L −→ T ,
where T = T2:

• f(R) = f0(R) = ρ1; f(B) = f0(B) = ρ4; f(A) = f0(A) = ρ5;
f(B + L) = f0(B + L) = ρ2; f(A + L) = f0(A + L) = ρ3;
L1 = L0 ∪ {B + L,A + L}

• f(σ(B + L,B + L)) = ρ6; f(σ(B + L,R)) = ρ7;
f(σ(R, A + L)) = ρ8; f(σ(A + L,R)) = ρ9;
f(σ(R, B + L)) = ρ10; f(σ(A,R)) = ρ11;
f(σ(B, B + L)) = ρ5 L2 = L1 ∪ {σ(B + L,B + L), σ(B + L,R),
σ(R, A + L), σ(A + L,R), σ(R, B + L), σ(A,R), σ(B,B + L)};

• f(σ(B, σ(B + L,R))) = ρ11;
f(σ(A, σ(R, A + L))) = f(σ(σ(A,R), A + L)) = ρ12;
f(σ(σ(A, R), σ(A + L, R))) = ρ13; f(σ(σ(B + L,B + L), R)) = ρ14;
f(σ(σ(R,A + L), R)) = ρ15; f(σ(σ(R, B + L), B + L)) = ρ16;
f(σ(σ(R,B + L), σ(B + L,R))) = ρ17;
L3 = L2 ∪ {σ(B, σ(B + L,R)), σ(A, σ(R, A + L)), σ(σ(A,R), A + L),
σ(σ(A,R), σ(A + L, R)), σ(σ(B + L,B + L), R), σ(σ(R,A + L), R),
σ(σ(R,B + L), B + L), σ(σ(R,B + L), σ(B + L, R))}

• f(σ(σ(σ(A, σ(R,A + L))), R)) = f(σ(σ(σ(σ(A,R), A + L)), R)) =
f(σ(A, σ(σ(B + L,B + L), R))) = ρ13;
L = L3 ∪ {σ(σ(σ(A, σ(R,A + L))), R)), σ(σ(σ(σ(A,R), A + L)), R)),

σ(A, σ(σ(B + L,B + L), R))}

Now we obtained the labelled stratified graph K = (G,L, T, u, f) over G =
(S,L0, T0, f0).

In what follows we will give a short presentation of the algorithm we used
in order to obtain the right positions of the pawns. It is based on the binary
relations of the set T (the set T is also named the environment for reasoning).
Before to present the algorithm we have to specify the notations we used in:

• for every pawn Pi with 1 ≤ i ≤ 5 we note by li and ci the line, respectively
the column, of the pawn Pi.

• ρp is a below relation if there exists l ∈ L such that ρp = f(l) and l is a below
label. We define the below labels as follows:
• B,B + L,B + R are below labels
• σ(X,Y) is a below label for every below labels X and Y
• σ(X,Y) is a below label for every below label X and Y ∈ {L,R}

Image Synthesis from Natural Language Description 93

• ρp is a left relation if there exists l ∈ L such that ρp = f(l) and l is a left
label. We define the left labels as follows:

• L,A + L,B + L are left labels
• σ(X,Y) is a left label for every left labels X and Y

• σ(X,Y) is a left label for left label X and Y ∈ {A, B}
• we have li < lj if there exists a below relation ρp ∈ T such that (Pi, Pj) ∈ ρp.
• we have ci < cj if there exists a left relation ρp ∈ T such that (Pi, Pj) ∈ ρp.

First of all we determine the lines of the pawns. Then we determine the
columns of these pieces taking care that for every pawn Pi there must not exist
a pawn Pj such that |li − lj | = 1 and |ci − cj | = 1. Otherwise the pawns could
capture between them.

The algorithm to obtain the lines of the pawns is the following:

1. current−line ← 1 and Det−pawns ← ∅
2. WHILE card(Det−pawns) < 5

2.1 for all pawns Pi, li ← current−line if for every Pj ∈ Det−pawns we
have lj < li
2.2 Det−pawns ← Det−pawns ∪{Pi} and

current−line ← current−line + 1

3. ENDWHILE
4. If the KP contains empty line(s)-pawn relations, some lines obtained
above will be shifted up, if is necessary, in order to accomplish these relations.

where card(X) denotes the cardinal number of the set X.
The algorithm to obtain the columns of the pawns is:

1. current−col ← 1 and Det−pawns ← ∅
2. WHILE card(Det−pawns) < 5

2.1. for all pawns Pi, ci ← current−col if for every Pj ∈ Det−pawns we
have cj < ci.
Let P the set of all these pawns Pi. If for some pawn Pi ∈ P there is a
pawn Pj ∈ Det−pawns such that |lj − li| = 1 and |cj − ci| = 1 then we
delete Pi from P .
2.2. Det−pawns ← Det−pawns∪ P

2.3. current−col ← current−col + 1.

3. ENDWHILE
4. If the KP contains empty column(s)-pawn relations, some columns ob-
tained above will be shifted to the right, if is necessary, in order to accomplish
these relations.

94 N.Ţăndăreanu, M. Ghindeanu

Fig. 7. The first window of the applet

5 Implementation

We have implemented the presented theory in an application that consists
of a Java applet and a Prolog file. In this application we used the JIProlog
(JavaInternetProlog) product written by Ugo Chirico ([5]) in order to establish
a connection between the Java applet and the Prolog file.

The Prolog file uses the RTN presented above in Figure 5 in order to divide
each input sentence in the main syntactic categories. Thus, it is easy to obtain the
objects and the binary relation between them. These information are the output
of the Prolog file for every input sentence that respects the syntax defined in the
implemented RTN .

The Java applet consists of two windows:

• the first window appears when the applet is loaded. Using the controls of
this window the user can:
− enter the Knowledge Piece
− ”load” the Knowledge Piece introduced by pressing the Load KP button.

As a result, using the JIProlog connection, the Java applet will send all
the sentences of the KP to the Prolog file in order to obtain back the
relations included.

− see the positions of the pawns determined by the application according
with the KP introduced and loaded successfully.
In the figure 7 the solution of the program for the KP presented in
the section 4 can be seen. This solution approach very much to the
initial image illustrated in Figure 4 with one difference: the column of

Image Synthesis from Natural Language Description 95

the pawn P3 is not the right one. This can be explained by the fact that
the reasoning environment T does not give very much information about
the column of this pawn.

• the second window appears when the DrawGraph button of the first window
is pressed. This window contains a group of Color buttons, a canvas in center
and another group of buttons: Movement buttons.
The canvas is used for drawing the labelled graph of the relations obtained
by the Prolog file. The Color buttons were introduced in the application in
order to point out one node and together with it all the arcs that have it
as start node. This is done by drawing the chosen node an the arcs with a
different color. The other group of buttons can be used for moving the graph
inside the canvas.
Because the solution we have implemented for drawing the graph does not
guarantee that there is not any crossing arcs, we also gave the possibility of
rearranging the graph by dragging the nodes (and together with them all
the arcs that start from them are redrawn) and the corners of the broken
arcs in the desired position.

Fig. 8. The second window of the applet

6 Conclusions and future work

An application of the labelled stratified graphs in image synthesis is pre-
sented. Based on a recursive transition network, a given text is analyzed and its

96 N.Ţăndăreanu, M. Ghindeanu

information is extracted. Some labelled stratified graph is constructed and this
structure permits us to obtain the image described in the text. If the text does
not contain a complete description then a near exact image is obtained. This is
illustrated in the example presented in the previous sections. In a future work
we shall study the ambiguity of the text and its implications in image synthesis.

References

[1] Leonard Bolc (Ed.), The Design of Interpreters, Compilers and Editors for Aug-
mented Transition Network, Springer-Verlag, 1983

[2] Ţăndăreanu N. (2000), Knowledge Bases with Output, Knowledge and Information
Systems, 2, 438-460.

[3] Ţăndăreanu N. (2000), Proving the existence of labelled stratified graphs, Annals
of the University of Craiova, Mathematics and Computer Science Series, XXVII,
81-92; on line version at http://inf.ucv.ro/~ntand/en/publications.html

[4] Ţăndăreanu N. (2001), Expert Systems, Knowledge representation and inference,
Universitaria Publishing House

[5] Ugo Chirico: http://www.ugosweb.com

