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Abstract

The concept of labelled strati�ed graph was used in [2] in order to obtain the concept of

knowledge base with output. In what concerns the existence of such structure nothing is

proved there. Using some concepts of universal algebra we prove in this paper that for each

labelled graph G there is a labelled strati�ed graph G over G. We give a method to obtain

such structures. The environment of G is covered by some set L of labels, which is divided

into several layers. These layers are used by the inference process which can be realized by

means of G. Although the environment is a �nite set, L may be an in�nite one and in this

case an in�nite hierarchy of layers is obtained. Such a case is given in an example.

The research was supported by National Council for Scienti�c Research of Higher Edu-

cation.

1 Introduction

The concept of labelled strati�ed graph was suggested by the graph-based methods for knowledge

representation, especially by semantic networks. Various forms of semantic networks use labels

as inst, subc to suggest the corresponding semantics: x is an instance of y, every x is y ([3]).

We generalize this process by considering abstract labels on arcs and using several concepts and

results of universal algebra we obtain the concept of labelled strati�ed graph.

The concept of labelled strati�ed graph was applied to introduce the concept of knowledge

base with output ([2]). As is stated in [2], a knowledge base with output is a collection of

components, one of them being a labelled strati�ed graph. Afterwards I found that a labelled

strati�ed graph can be used independently, that is, without using the other components of a

knowledge base with output. On the other hand nothing is proved in [2] concerning the existence

of such structure. In this paper we deal with this problem.

Generally speaking a labelled strati�ed graph can be used in automated reasoning. The

inference is realized by means of an environment. If we denote by G a labelled graph then an

environment for G is a �nite set of binary relations which is closed under the product operation.

We show that for each environment there is a labelled strati�ed graph G over G. We give also a

method to obtain such structures. The environment is a component of G and it is covered by a

set L of labels. The set L is divided into several layers. An inference process can be realized in

G and in order to realize this process the layers of L are used. An example of such inference is

81



82 N.T��and�areanu

given in [2]. Although the environment of G is a �nite set, the set L may be an in�nite one and

this property is relieved by means of an example given in this paper.

The structure of this paper is the following: in Section 2 we present several concepts and

notations, which are useful in the remainder of the paper; in Section 3 we develop the concept

of labelled strati�ed graph and we prove that for every labelled graph G and each environment

there is a labelled strati�ed graph; we give a method by means of which we obtain such a

structure.

2 General concepts of universal algebra

We consider a non empty set A; B � A means that B is a subset of A; the empty set ; is a

subset of every set; by 2A we denote the power set of A, that is the set of all subsets of A.

By a binary partial operation on A we understand a partial mapping f from A � A to A.

This means that f is de�ned for the elements of some set dom(f), where dom(f) � A�A. We

shall use the notation f : dom(f) �! A. In the case when dom(f) = A� A we say that f is a

binary operation on A.

We shall write f � g if f : dom(f) �! A and g : dom(g) �! A are two functions such that

dom(f) � dom(g) and f(x) = g(x) for all x 2 dom(f).

By a partial �-algebra we understand a pair A=(A; �A), where A is the support set of A and

�A is a partial binary operation on A. If dom(�A) = A�A then we say that A is a �-algebra.

Let A=(A; �A) be a partial �-algebra. A subset B � A is a closed set in A if the following

condition is ful�lled: if (x1; x2) 2 dom(�A) \ (B � B) then �A(x1; x2) 2 B. If B � A then the

closure of B in A is the smallest closed set containing B. The closure of B is denoted by B and

obviously if B is a closed set then B = B. It can be shown that if B is not a closed set then

B =
S
n�0Bn where(
B0 = B

Bn+1 = B [ f�A(x1; x2) j (x1; x2) 2 dom(�A) \ (Bn �Bn)g; n � 0

We consider now the partial �-algebras A=(A; �A) and B=(B; �B). The mapping h : A �! B

is a morphism of partial algebras from A to B if for every (x1; x2) 2 dom(�A) the following

conditions are ful�lled:

� (h(x1); h(x2)) 2 dom(�B)

� �B(h(x1); h(x2)) = h(�A(x1; x2))

We shall use the notation h : A �! B to specify that h is a morphism from A to B. A bijective

morphism is an isomorphism. Two partial �- algebras A and B are isomorphic algebras if there

is an isomorphism from A to B.

Let A=(A; �A) be a �-algebra and M � A. By de�nition, A is a Peano �- algebra over M

if the following conditions are ful�lled ([1]):

� M = A

� �A(x1; x2) =2M for every x1; x2 2 A

� for every x1; x2; y1; y2 2 A, from �A(x1; x2) = �A(y1; y2) we deduce x1 = y1 and x2 = y2
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By de�nition, the �-algebra A=(A; �A) is free-generated by M � A if for every �-algebra

B=(B; �B) and every function f :M �! B there exists a morphism and only one, h : A �! B,

such that f � h.

For every set M there is a Peano �-algebra over M . In order to obtain such an algebra we

proceed as follows. We may assume � =2 M . We take the �-algebra H=(H;�H), where H is

the set of all the nonempty words over f�g [M and �H(x1; x2) = �x1x2. The pair A=(A; �A),

where A is the closure of M in H and �A is the restriction of �H on A, is a Peano �-algebra over

M . Two Peano �-algebras over the same set M are isomorphic algebras (particularly they are

isomorphic with A) because a Peano �- algebra over M is a �-algebra free generated by M and

two �-algebras free generated by M are isomorphic algebras ([1]). Thus, if M = fa; bg then the

set H = fa; b; �(a; a); �(b; b); �(a; b); : : :g gives the Peano �-algebra over M . The elements of H

are called terms by some authors. We observe that the elements of H are nonempty strings over

M .

Let A=(A; �A) be a partial �-algebra. We denote by Initial(A) the set of all the subsets

B � A satisfying the following condition: for every (x1; x2) 2 dom(�A), from �A(x1; x2) 2 B

we deduce x1; x2 2 B. We observe now that if A=(A; �A) is a Peano �-algebra over M and

B 2 Initial(A) is such that M � B then denoting by �B the restriction of �A to B, we obtain

a partial �-algebra B=(B; �B). In this case the closure of M in B is B.

Let us consider a �nite set S. A binary relation over S is a subset � � S � S. If �1 2 2S�S

and �2 2 2S�S then we de�ne: �1 Æ �2 = f(x; y) 2 S � S j 9z 2 S : (x; z) 2 �1; (z; y) 2 �2g. We

de�ne the mapping prod : dom(prod) �! 2S�S as follows:

dom(prod) = f(�1; �2) 2 2S�S � 2S�S j �1 Æ �2 6= ;g

prod(�1; �2) = �1 Æ �2

The mapping prod is called the product operation. The pair (2S�S ; �S), where �S = prod

becomes a partial �- algebra.

By Card(X) we denote the cardinal number of the set X.

3 Labelled strati�ed graphs

Let S be a �nite set. We denote by RS(prod) the following set of partial mappings:

RS(prod) = fh j h � prod; dom(h) 6= ;g

By �S we denote an arbitrary element of RS(prod). In particular we may have �S = prod. For

a given �S 2 RS(prod) we consider the partial �-algebra S = (2S�S ; �S). If T0 is a nonempty

subset of 2S�S then we denote by Cl�S (T0) the closure of T0 in the partial �-algebra S =

(2S�S ; �S).

Proposition 3.1 For every �S 2 RS(prod) we have T0 � Cl�S(T0) � Clprod(T0).

Proof. We have T0 � Cl�S(T0) by de�nition of the closure Cl�S(T0). Because �S � prod it

follows that every closed set under prod is a closed set under �S . Therefore Clprod(T0) is closed

under �S . But T0 � Clprod(T0) and Cl�S (T0) is the smallest closed set under �S containing T0.

Thus Cl�S (T0) � Clprod(T0).
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Proposition 3.2 Let be T0 � 2S�S such that ; =2 T0. Let S = (2S�S ; �S) be a partial �-algebra

such that �S 2 RS(prod). The sequence fXngn de�ned by:(
X0 = T0

Xn+1 = T0 [ fd j 9(d1; d2) 2 (Xn �Xn) \ dom(�S) : d = �S(d1; d2)g; n � 0

satis�es the following properties:

i) Xn � Xn+1 for any n � 0

ii) If Xn = Xn+1 then Xn = Xn+p for any p � 1

iii) Let be k = Card(S) and t = 2k
2

. There is n � t such that Xn = Xn+1

iv) Cl�S(T0) = Xn(T0) where n(T0) is the smallest n satisfying the previous condition

Proof. We observe �rst that for every n we have:

Xn+1 = Xn [ fd j 9(d1; d2) 2 (Xn �Xn) \ dom(�S) : d = �S(d1; d2)g; n � 0

There is 2k
2

binary relations over S, therefore we have iii). The last property is obtained using

the previous properties and taking into account the relation Cl�S(T0) =
S
n�0Xn.

De�nition 3.1 Let T0 � 2S�S such that T0 6= Clprod(T0). We denote

Env(T0) = f(T; �S) j T � 2S�S ; �S 2 RS(prod); T = Cl�S(T0)g

An element of Env(T0) is called an environment for T0.

An environment may be considered as a partial �-algebra. Thus, if (T; �S) 2 Env(T0) and de�ne(
dom(�T ) = (T � T ) \ dom(�S)

�T (x; y) = �S(x; y) for (x; y) 2 dom(�T )

then A = (T; �T ) is a partial �-algebra. For this reason we use also the notation (T; �T ) 2

Env(T0).

In order to emphasize this aspect we consider the following example:

S = fx1; x2; x3; x4g

�1 = f(x1; x2); (x2; x1)g, �2 = f(x1; x3); (x2; x3)g, �3 = f(x3; x4)g,

�4 = f(x1; x1); (x2; x2)g, �5 = f(x1; x4); (x2; x4)g

�S : 2S�S � 2S�S �! 2S�S ; dom(�S) = f(�1; �1); (�1; �2); (�2; �3); (�1; �4); (�4; �2)g

�S(�1; �1) = �4, �S(�1; �2) = �2, �S(�2; �3) = �5, �S(�1; �4) = �1, �S(�4; �2) = �2

Taking T0 = f�1; �2g and T = f�1; �2; �4g we have Cl�S(T0) = T . Really, T1 = T0 [ f�4g, T2 =

T1 = T . Thus, dom(�T ) = (T � T ) \ dom(�S) = f(�1; �1); (�1; �2); (�1; �4); (�4; �2)g � dom(�S)

and �T � �S . We obtain the partial �-algebra AT = (f�1; �2; �4g; �T ). This aspect is stated in

the next de�nition.
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Figure 1: A labelled arc

De�nition 3.2 Let be (T; �S) 2 Env(T0). The pair AT = (T; �T ) is called the partial �-

algebra associated with (T; �S) if dom(�T ) = (T � T )\ dom(�S) and �T (x; y) = �S(x; y) for

(x; y) 2 dom(�T ).

In a labelled graph both the nodes and the arcs are labelled entities. Moreover, some set of

binary relations is relieved by such structure. The correspondence between these entities is

speci�ed in the following de�nition:

De�nition 3.3 We consider two �nite sets S and L0 such that S \ L0 = ;. An element of

S is called a node label; the elements of L0 are called arc labels. Let T0 be a set of binary

relations on S, such that ; =2 T0. Let f0 : L0 �! T0 be a surjective function. The system

G = (S;L0; T0; f0) is called a labelled graph.

A labelled graph G = (S;L0; T0; f0) is represented as follows. Every node is represented by

a rectangle containing its label. We draw a labelled arc a 2 L0 from the node x 2 S to the node

y 2 S if and only if (x; y) 2 f0(a) (Figure 1). Every element of S will designate a node of the

graph and only one; thus some bijection between S and the set of the nodes can be established.

We say that a 2 L0 is a label of the binary relation f0(a) 2 T0. Because f0 is a surjective

function, it follows that every element of T0 has at least one label.

De�nition 3.4 Let L0 be a nonempty set. Let H = (H;�H) be the Peano �-algebra over L0.

For every L 2 Initial(H) such that L � L0 we de�ne the partial �-algebra AH(L) = (L; �L),

where:

� dom(�L) = f(x; y) 2 L� L j �H(x; y) 2 Lg

� �L(x; y) = �H(x; y) for every (x; y) 2 dom(�L)

The pair AH(L) = (L; �L) is named the partial �-algebra associated to L 2 Initial(H).

For instance, ifH = fa; b; �H(a; a); �H (a; b); �H (b; a); : : :g is the Peano �-algebra over fa; bg then

L = fa; b; �H (a; a); �H(a; b); �H (b; a); �H (a; �H(a; b))g 2 Initial(H)

and

dom(�L) = f(a; a); (a; b); (b; a); (a; �H (a; b))g

Using the string notation we may write also �L(a; a) = �Haa, �L(a; b) = �Hab, �L(b; a) = �Hba,

�L(a; �L(a; a)) = �Ha�Haa.



86 N.T��and�areanu

De�nition 3.5 Let G = (S;L0; T0; f0) be a labelled graph. A labelled strati�ed graph over

G is a system G = (G;L; T; �T ; f) such that:

� (T; �T ) 2 Env(T0)

� L 2 Initial(H) and L0 � L, where H is the Peano �-algebra over L0

� f : AH(L) �! AT is a surjective morphism such that f0 � f and if (f(u); f(v)) 2

dom(�T ) then �H(u; v) 2 L

Let us analyse this de�nition. We want to relieve some property of f , which is used later.

Because � is a symbol of arity 2, we have dom(�L) � L � L and dom(�T ) � T � T . The

mapping f : L �! T is a morphism, that is, in the diagram

T � T -

�T
T

L� L -

�L

L

? ?

f � f f

for every (u; v) 2 dom(�L) the following two properties are satis�ed:

(f(u); f(v)) 2 dom(�T )

�T (f(u); f(v)) = f(�L(u; v))

Thus we have

dom(�L) � f(u; v) 2 L� L j (f(u); f(v)) 2 dom(�T )g (1)

If f satis�es de�nition 3.5 then from (f(u); f(v)) 2 dom(�T ) we have �H(u; v) 2 L. By de�nition

3.4 we have (u; v) 2 dom(�L). Thus we have

f(u; v) 2 L� L j (f(u); f(v)) 2 dom(�T )g � dom(�L) (2)

From (1) and (2) it follows that if f satis�es de�nition 3.5 then f satis�es also the following

condition:

dom(�L) = f(u; v) 2 L� L j (f(u); f(v)) 2 dom(�T )g

Trying to explain why this concept is named labelled strati�ed graph we remark the following

two facts:

(1) the environment (T; �T ) gives two of the components of G; by the surjective morphism

f , the set T is covered by L; in other words every binary relation of T has at least one

label and the labels are assigned by f ; thus, the elements of T are labelled binary relations
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(2) based on the next de�nition we observe that the set L of all the labels is divided into

several layers; the �rst layer is given by L0; each element of the layer i is obtained by

means of two elements, one of them belonging to the layer i� 1 and the other being in the

set union of the layers 0; 1; : : : ; i� 1.

De�nition 3.6 Let G = (G;L; T; �T ; f) be a labelled strati�ed graph. We de�ne

(
Layer(L; 0) = L0

Layer(L; n+ 1) = L \ (Hn+1 nHn); n � 0
(3)

where (
H0 = L0

Hn+1 = Hn [ f�H(u; v) j u; v 2 Hng

and H =
S
n�0Hn is the Peano �-algebra over L0. The set Layer(L; n) is called the nth layer

of L.

In what follows we shall prove that for every labelled graph G = (S;L0; T0; f0) and for every

(T; �T ) 2 Env(T0) there is a labelled strati�ed graph over G, we shall give a method to obtain

such a structure and we shall characterize its layers.

Let G = (S;L0; T0; f0) be a labelled graph such that T0 6= Clprod(T0). We observe that

dom(f0) = H0 and we can de�ne recursively for every natural number n � 0:

� Dn+1 = f�H(u; v) 2 Hn+1 nHn j u; v 2 dom(fn); (fn(u); fn(v)) 2 dom(�T )g

� dom(fn+1) = dom(fn) [Dn+1

� fn+1(x) =

8><
>:

fn(x) if x 2 dom(fn)

�T (fn(u); fn(v)) if x = �H(u; v) 2 Dn+1

As a consequence of these de�nitions the following properties are obtained:

(a) Di \Dj = ; for i 6= j; L0 \Di = ; for every i � 1

(b) dom(fn) = H0 [
Sn
k=1Dk � Hn, for every n � 0

(c) dom(fn) \Dn+1 = ; for every n � 0

Taking into account these properties we obtain the following proposition:

Proposition 3.3 For every n � 0 the following properties are true:

1) the function fn is well de�ned

2) fn � fn+1

3) fn : dom(fn) �! T
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Proof. Because H is a Peano �-algebra it follows that if x 2 Hn+1 n Hn then we can write

x = �H(u; v) for some u; v 2 Hn only in one manner. Taking into account the de�nition of fn+1
and the fact that dom(fn) \ Dn+1 = ;, we deduce that the mapping fn+1 is well de�ned for

every n � 0. Obviously the other two sentences are true.

De�nition 3.7 We de�ne the mapping f� : dom(f�) �! T as follows:

dom(f�) =
S
n2N dom(fn) = L0 [

S
k�1Dk

f
�(x) =

8><
>:

f0(x) if x 2 L0

fk(x) if x 2 Dk

Proposition 3.4 For every n � 0 we have dom(f�) \Hn = dom(fn).

Proof. Really, dom(f�) = dom(fn) [
S
k�n+1Dk. It follows that dom(f�) \ Hn= (dom(fn) \

Hn)[
S
k�n+1(Dk\Hn)=dom(fn) because dom(fn) � Hn and for k � n+1 we have Dk\Hn = ;.

Proposition 3.5 Let be L� = dom(f�). The set L� satis�es the following properties:

(i1) L� � L0

(i2) �H(u; v) 2 L
� i� fu; v 2 L

� and (f�(u); f�(v)) 2 dom(�T )g

(i3) L� 2 Initial(H)

Proof. Because (i1) is obtained directly from the de�nition of L�, we shall prove (i2).

We suppose �H(u; v) 2 L
� = dom(f�). Let n be the smallest natural number such that

�H(u; v) 2 dom(fn). We have n � 1 since �H(u; v) =2 L0 = dom(f0). It follows that �H(u; v) 2

dom(fn) n dom(fn�1)= Dn. By the de�nition of Dn it follows that u; v 2 dom(fn�1) � L
� and

(f�(u); f�(v)) = (fn�1(u); fn�1(v)) 2 dom(�T ).

Conversely, let u; v 2 L
� such that (f�(u); f�(v)) 2 dom(�T ). Because L

� = L0 [
S
n�1Dn

we deduce that there are p; q 2 N such that u 2 Dp and v 2 Dq. Taking k = maxfp; qg we

obtain u 2 dom(fk), v 2 dom(fk) and �H(u; v) 2 Hk+1 n Hk. It follows that (f�(u); f�(v)) =

(fp(u); fq(v))= (fk(u); fk(v)) 2 dom(�T ), therefore �H(u; v) 2 Dk+1 � L
�. Thus (i2) is true. In

order to prove (i3) we observe that if �H(u; v) 2 L
� then u; v 2 L

�.

Based on proposition 3.5 we can consider the partial �-algebra AL� = (L�; �L�). On the

other hand the same proposition permits to obtain the following property for �L� , which is used

later:

Corollary 3.1 dom(�L�) = f(x; y) 2 L
� � L

� j (f�(x); f�(y)) 2 dom(�T )g

Proof. If (x; y) 2 L
� � L

� and (f�(x); f�(y)) 2 dom(�T )g then by proposition 3.5 we have

�H(x; y) 2 L
�. By de�nition 3.4 it follows that (x; y) 2 dom(�L�). Conversely, if (x; y) 2

dom(�L�) then (x; y) 2 L
��L

� and �H(x; y) 2 L
�. By proposition 3.5 we have (f�(x); f�(y)) 2

dom(�T ).
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Because (T; �T ) 2 Env(T0), applying proposition 3.2 we obtain a natural number n(T0) and

the hierarchy T0 � T1 � : : : � Tn(T0) = Tn(T0)+1 = : : : = T . We consider the following sets:

(
B0 = T0

Bi = Ti n Ti�1; i 2 f1; : : : ; n(T0)g

We have Bi \Bj = ; for i 6= j and Ti =
Si
j=0Bj for i 2 f0; : : : ; n(T0)g.

Proposition 3.6 For every i 2 f1; : : : ; n(T0)g, d 2 Bi if and only if

i) there exist u 2 Bi�1, v 2 Ti�1 such that d = �T (u; v) or d = �T (v; u)

ii) d 6= �T (d1; d2) for every d1; d2 2 Ti�2

Proof We suppose that d 2 Bi = Ti n Ti�1 for some i 2 f1; : : : ; n(T0)g. There exist u; v 2 Ti�1

such that (u; v) 2 dom(�T ) and d = �T (u; v). Two cases are possible:

a) u; v 2 Ti�2; in this case we have d 2 Ti�1, which is not true

b) u 2 Bi�1 or v 2 Bi�1, therefore i) is true

In order to prove ii) we suppose by contrary that d = �T (d1; d2) for some d1; d2 2 Ti�2. Thus

we have d 2 Ti�1, which is not true.

Conversely, if u 2 Bi�1 and v 2 Ti�1 then d = �T (u; v) 2 Ti. If d 6= �T (d1; d2) for every

d1; d2 2 Ti�2 then d =2 Ti�1. Therefore d 2 Ti n Ti�1 = Bi.

Proposition 3.7 For every i 2 f1; : : : ; n(T0)g we have Bi � fi(Di) � Ti

Proof. We denote D0 = L0. Obviously the proposition is true also for i = 0.

Firstly we prove by induction on i that Bi � fi(Di) for every i 2 f1; : : : ; n(T0)g. We verify

this property for i = 1. We have D1 = f�H(u; v) 2 H1 n H0 j u; v 2 dom(f0); (f0(u); f0(v)) 2

dom(�T )g. Let be z 2 B1. By proposition 3.6 it follows that z = �T (d1; d2) for some d1; d2 2 T0.

Because f0 : L0 �! T0 is a surjective function, we deduce that there exist a; b 2 L0 such that

d1 = f0(a), d2 = f0(b). Therefore we have z = �T (f0(a); f0(b)) for some a; b 2 H0. But

�H(a; b) 2 H1 nH0, a; b 2 dom(f0), (f0(a); f0(b)) 2 dom(�T )

therefore �H(a; b) 2 D1. We obtain f1(�H(a; b)) = �T (f0(a); f0(b)) = z, therefore B1 � f1(D1).

We suppose now that Bj � fj(Dj) for j 2 f1; : : : ; ig and we shall prove that Bi+1 � fi+1(Di+1).

We consider an arbitrary element z 2 Bi+1. By proposition 3.6 it follows that there exist d1 2 Bi

and d2 2 Bj for some j 2 f0; : : : ; ig such that z = �T (d1; d2) or z = �T (d2; d1). Obviously it

is enough to consider the situation when z = �T (d1; d2). By the inductive assumption we

have Bi � fi(Di) and Bj � fj(Dj), therefore there exist a 2 Di, b 2 Dj such that d1 =

fi(a), d2 = fj(b). It follows that �H(a; b) 2 Hi+1 n Hi, a 2 dom(fi), b 2 dom(fj) � dom(fi)

and (fi(a); fi(b)) = (fi(a); fj(b)) 2 dom(�T ). Thus �H(a; b) 2 Di+1 and fi+1(�H(a; b)) =

�T (fi(a); fi(b)) = �T (fi(a); fj(b)) = �T (d1; d2) = z.

We prove now that fi(Di) � Ti. If z 2 f1(D1) then z = f1(�H(u; v))= �T (f0(u); f0(v)) for some

u; v 2 L0. Because (f0(u); f0(v)) 2 (B0 � B0) \ dom(�T ), it follows that z 2 T1. We suppose

that fj(Dj) � Tj for every j < i and let be z 2 fi(Di). It follows that z = fi(�H(u; v)) =
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�T (fi�1(u); fi�1(v)) for some u; v 2 dom(fi�1) such that (fi�1(u); fi�1(v)) 2 dom(�T ). There

exist p; q 2 f0; : : : ; i � 1g such that u 2 Dp and v 2 Dq. We have fi�1(u) = fp(u) and

fi�1(v) = fq(v). By the inductive assumption we have fp(u) 2 Tp � Ti�1 and fq(u) 2 Tq � Ti�1,

Thus z 2 Ti.

Corollary 3.2 For every i 2 f1; : : : ; n(T0)g we have Di 6= ;.

Proof. We apply proposition 3.7. If by contrary, we suppose that for some i 2 f1; : : : ; n(T0)g

we have Di = ; then fi(Di) = ; � Bi. Thus Bi = ;, which is not true.

Proposition 3.8 Let AH(L
�) = (L�; �L�) be the partial �-algebra associated with L

�, where

L
� = dom(f�). The mapping f

� : AH(L
�) �! AT given in de�nition 3.7 is a surjective

morphism of �-algebras.

Proof. By Corollary 3.1 we have dom(�L�) = f(x; y) 2 L
� � L

� j (f�(x); f�(y)) 2 dom(�T )g.

We consider an arbitrary pair (x1; x2) 2 dom(�L�), therefore (x1; x2) 2 L
� � L

� = dom(f�) �

dom(f�) and (f�(x1); f
�(x2)) 2 dom(�T ). Obviously f

�(�L�(x1; x2)) = f
�(�H(x1; x2)) =

�T (f
�(x1); f

�(x2)), therefore f
� is a morphism. Taking into account the facts dom(f�) =

L0 [
S
k�1Dk, T =

Sn(T0)
k=0 Bk and using proposition 3.7, we deduce that f

� is a surjective

function.

We can obtain now the following theorem:

Theorem 3.1 If G = (S;L0; T0; f0) be a labelled graph and (T; �T ) 2 Env(T0) then G� =

(G;L�; T; �T ; f
�) is a labelled strati�ed graph over G

Proof. Use proposition 3.5 and proposition 3.8.

The next proposition shows that the layers of G� are exactly the sets Dn.

Proposition 3.9 Let G� = (G;L�; T; �T ; f
�) be the labelled strati�ed graph obtained in theorem

3.1. Then Layer(L�; n) = Dn for every n � 0.

Proof. By de�nition 3.7 we have L� =
S
j�0Dj . For every j � 0 we have Dj � Hj n Hj�1,

where for j = 0 we consider Hj�1 = H�1 = ;. It follows that

Dj \ (Hk+1 nHk) =

(
; for j 6= k + 1

Dk+1 for j = k + 1
(4)

From (3) and (4) we obtain:

Layer(L�; k + 1) = L
� \ (Hk+1 nHk) =

[
j�0

Dj \ (Hk+1 nHk) = Dk+1

For n = 0 the property is obviously true and thus the proposition is proved.

The set L� may be divided into an in�nite number of layers. In order to emphasize this

fact we take the following example. We consider the labelled graph from Figure 2. We take

S = fx1; x2; x3g and L0 = fa; bg. We consider the binary relations

�1 = f(x1; x2); (x2; x1)g; �2 = f(x1; x3); (x2; x3)g

Let be T0 = f�1; �2g, T = Clprod(T0) and �T = prod. If we denote �3 = f(x1; x1); (x2; x2)g then

we obtain
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Figure 2: A labelled graph having an in�nite hierarchy of layers

a b

�(a; b) �(a; a)

�(a; �(a; a)) �(a; �(a; b)) �(�(a; a); �(a; a))

�(�(a; a); a) �(�(a; a); b)

�(�(a; a); �(a; b))

D0

D1

D2

�1 �2 �3

Figure 3: An in�nite hierarchy of layers

�T (�1; �1) = �3, �T (�1; �2) = �2, �T (�1; �3) = �1

�T (�3; �1) = �1, �T (�3; �2) = �2 �T (�3; �3) = �3

Applying proposition 3.2 we have T1 = T0 [ f�3g and T2 = T1 therefore T = f�1; �2; �3g.

The computation of the elements Dn will conduce us to the elements speci�ed in Figure 3.

Taking into consideration the values of the mapping f
� we obtain three containers of labels,

each of them containing all the labels for �1, �2, �3 respectively. Each container contains an

in�nite set of labels. In order to verify this fact we denote

�(P;Q) = f�(u; v) j u 2 P; v 2 Qg

and for each natural number n we take

�n(A;B) =
[
j�n

[�(An; Bj) [ �(Aj ; Bn)]

where Aj ; Bj are subsets of L, A is the sequence A0; A1; : : : and B is the sequence B0; B1; : : :.

For every j � 0 and i 2 f1; 2; 3g we denote Dj(�i) = fu 2 Dj j f(u) = �ig and let D(�i) be the

sequence D0(�i);D1(�i); : : :.

Taking into account the manner in which �T is de�ned we obtain the following equations:8><
>:

Dn+1(�3) = �n(D(�1);D(�1)) [ �n(D(�3);D(�3))

Dn+1(�2) = �n(D(�1);D(�2)) [ �n(D(�3);D(�2))

Dn+1(�1) = �n(D(�1);D(�3)) [ �n(D(�3);D(�1))

(5)
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We observe that D2(�1);D2(�2) and D2(�3) are nonempty sets. Based on (5) we can verify by

induction that Dn(�1), Dn(�2) and Dn(�3) are also nonempty sets for every n � 3. Thus we

obtain an in�nite hierarchy of layers for L�.

4 Conclusions and future work

Using some concepts and results from universal algebra we develop in this paper the concept of

labelled strati�ed graph. We show that for each labelled graph G and each environment there

is a labelled strati�ed graph G over G. We give also a method to obtain such structures. The

environment is covered by a label set by means of a surjective morphism of universal algebra.

This set is divided into several levels. In an example we show that may be an in�nite number of

layers and I hope this case is interesting in image synthesis. The concept of labelled strati�ed

graph was used in order to introduce the concept of knowledge base with output ([2]), but it

can be used independently in domains such as problem solving and expert systems. In what

concerns the applications of the labelled strati�ed graphs in problem solving we relieve that this

concept gives us a mathematical tool by which we can �nd all the solutions of a problem. We

intend to use also this concept in image synthesis. In a forthcoming paper we study the algebra

of all the labelled strati�ed graphs over G, where G is a given labelled graph.
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