Intuitive Aspects of the Semantic Computations in a KBO

Nicolae ŢĂNDĂREANU
Faculty of Mathematics and Computer Science, University of Craiova, str.A.I.Cuza 13, 1100-Craiova, Romania
ntand@oltenia.ro

Abstract

The concept of Knowledge Bases with Output (KBO) was introduced in [2]. In this paper we present several intuitive aspects concerning the semantic computations realized in a $K B O$. We explain the manner in which the information contained in a knowledge piece is transposed in a labelled graph and then we show how we can build a labelled stratified graph such that a reasoning process can be formalized. If we append an output space and a morphism of partial algebras then we obtain a knowledge base with output. The intuitive aspects with respect to this morphism are presented and all the concepts treated in [1] and [2] are relieved on an example.

1 Introduction

The concept of labelled stratified graph was suggested by the graph-based methods for knowledge representation. By generalizing the knowledge representation in a semantic network and using several concepts and results of universal algebra we obtain the concept of labelled stratified graph, which is the main component of a $K B O$. This concept is treated in [1]. If we try to give a simple description of this concept, we say that a $K B O$ is represented by the equation $K B O=L S G+O S$. This means that a $K B O$ is a structure consisting in a labelled stratified graph $(L S G)$ and an output space $(O S)$. The elements of $O S$ may be sentences in a natural language, graphical images and so on. In what follows we shall present by means of an example several aspects of the computations in such a structure.

2 Initial knowledge and labelled graphs

By a knowledge piece we understand the description of some world of objects. The description is given in a natural language. The information specified in a knowledge piece consists of several objects and the relations between them. We shall suppose these relations are binary ones, that is, they are subsets of some Cartesian product. The whole information given in a knowledge piece is named initial knowledge.

In this section we explain the manner in which the initial knowledge, can be transposed in a labelled graph. Intuitively, a labelled graph is an oriented graph such that each arc is assigned to some element of a set; this element is called label. In a labelled graph several binary relations are obtained. A binary relation is defined by the set of all the pairs of objects such that they are connected by an arc containing the same label. But the cardinal number of the binary relations may be less than the cardinal number of the labels. This can be explained by the fact that may exist several labels for the same binary relation. Such a situation is encountered in the case when a given relation has several meanings in the knowledge piece.

We consider the following knowledge piece $K P$:
Emily is Helen's child. Helen is Ann's sister. Ann is Peter's sister. Emily likes to play tennis with Helen. Ann is the tennis trainer of Emily.

We observe that this piece relieves several objects: Emily, Helen, Ann and Peter. We denote by $S=\{$ Emily, Helen, Ann, Peter $\}$ the set of the corresponding objects. There are several binary relations between some of them. Obviously we obtain the following binary relations on S :

```
\(\rho_{1}=\{(\) Emily, Helen \()\}\),
\(\rho_{2}=\{(\) Helen, Ann \(),(\) Ann, Peter \()\}\),
\(\rho_{3}=\{(\) Ann, Emily \()\}\)
```

We can transpose $K P$ into some labelled graph $G=\left(S, L_{0}, T_{0}, f_{0}\right)$, where

- $S=\{$ Emily, Helen, Ann, Peter $\}$
- $T_{0}=\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}$
- L_{0} is a set of elements called labels for the relations from T_{0}
- $f_{0}: L_{0} \longrightarrow T_{0}$ is a surjective mapping.

The first question that can arise is the following: how many labels contains the set L_{0} ? In order to answer this question we analyse every pair of objects and for every distinct meaning of the relation specified in $K P$ we assign a symbol in L_{0}. Thus, for the pair (Emily, Helen) from ρ_{1} we find two meanings: we assign the symbol a_{1} for the property "child of" and the symbol b_{1} for the property "likes to play tennis". We denote by a_{2} the symbol assigned to ρ_{2}, that is the property "is sister of", and by a_{3} the symbol assigned to ρ_{3}. We obtain the labelled graph drawn in figure 1.

As a consequence we obtain the mapping f_{0}. Because this mapping shows the assignment described above, we obtain:

$$
f_{0}\left(a_{1}\right)=f_{0}\left(b_{1}\right)=\rho_{1}, f_{0}\left(a_{2}\right)=\rho_{2}, f_{0}\left(a_{3}\right)=\rho_{3}
$$

We consider a labelled stratified graph $\mathcal{G}=\left(G, L, T, \sigma_{T}, f\right)$ over $G([1])$. We remember that

- $L \subseteq H$, where $H=\bigcup_{n \geq 0} H_{n}, H_{0}=L_{0}$ and $H_{n+1}=H_{n} \cup\{\sigma(u, v) \mid u, v \in$ $\left.H_{n}\right\}$

Fig. 1. Labelled graph for $K P$

- σ_{T} is a restriction of the mapping prod_{S}, where prod_{S} is the product operation of binary relations on S
- T is the closure of T_{0} with respect to σ_{T}
- $f: L \longrightarrow T$ is a surjective extension of f_{0} such that the following diagram is commutative:

Let us choose a mapping σ_{T}, a restriction of the operation prod_{S}. The mapping prod_{S} is represented in table 1, where

$$
\begin{aligned}
& \rho_{4}=\{(\text { Emily }, \text { Ann })\} ; \rho_{5}=\{(\text { Helen }, \text { Peter })\} \\
& \rho_{6}=\{(\text { Helen }, \text { Emily })\} ; \rho_{7}=\{(\text { Ann }, \text { Helen },\}
\end{aligned}
$$

Taking the closure of T_{0} with respect to prod_{S} we obtain

$$
\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\} \cup\left\{\rho_{4}, \rho_{5}, \rho_{6}, \rho_{7}\right\} \cup \ldots
$$

If we take the restriction σ_{T} of prod_{S}, given in table 2 , then the closure T of T_{0} under σ_{T} is the following:

$$
T=T_{0} \cup\left\{\rho_{4}, \rho_{5}, \rho_{6}\right\}
$$

We know ([1])that

$$
\operatorname{dom}\left(\sigma_{L}\right)=\left\{(u, v) \in L \times L \mid(f(u), f(v)) \in \operatorname{dom}\left(\sigma_{T}\right)\right\}
$$

prod $_{S}$	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	\cdots
ρ_{1}		ρ_{4}			ρ_{8}	
ρ_{2}		ρ_{5}	ρ_{6}			
ρ_{3}	ρ_{7}					
ρ_{4}		ρ_{8}				
\cdots	\ldots	\cdots				

Table 1. The mapping prod $_{S}$

σ_{T}	ρ_{1}	ρ_{2}	ρ_{3}
ρ_{1}	ρ_{4}		
ρ_{2}		ρ_{5}	ρ_{6}
ρ_{3}			

Table 2. The mapping σ_{T}

The mapping f and the set L can be obtained if we impose the condition of commutativity of the diagram specified in the definition of a labelled stratified graph:

In this way we obtain the set L :

$$
L=L_{0} \cup\left\{\sigma\left(a_{1}, a_{2}\right), \sigma\left(b_{1}, a_{2}\right), \sigma\left(a_{2}, a_{2}\right), \sigma\left(a_{2}, a_{3}\right)\right\}
$$

We shall denote by K_{0} the set

$$
K_{0}=\left\{(x, a, y) \in S \times L_{0} \times S \mid(x, y) \in f_{0}(a)\right\}
$$

We observe that the elements of K_{0} are taken from the labelled graph G : an element (x, a, y) is introduced in K_{0} if and only if there is an arc from x to y and the label of this arc is a.

A knowledge base with output $(K B O)$ is a system $K B O=(\mathcal{G}, Y, *, g)$, where ([2])

- \mathcal{G} is a labelled graph
- Y is a set named output space and $*: Y \times Y \longrightarrow Y$ is a partial binary operation
- $g: K_{0} \longrightarrow Y$

Various elements can be included in the output space Y. In our case we denote by Y a set of sentences of the form:
$p_{1}(\mathrm{x}, \mathrm{y})=" \mathrm{x}$ is the child of $\mathrm{y} "$
$q_{1}(\mathrm{x}, \mathrm{y})=" \mathrm{x}$ likes to play tennis with $\mathrm{y} "$
$p_{2}(\mathrm{x}, \mathrm{y})=" \mathrm{x}$ is the sister of $\mathrm{y} "$
$p_{3}(\mathrm{x}, \mathrm{y})=" \mathrm{x}$ is the tennis trainer of $\mathrm{y} "$
$p_{4}(\mathrm{x}, \mathrm{y})=" \mathrm{x}$ is the niece of $\mathrm{y} "$

$$
p_{5}(\mathrm{x}, \mathrm{y})=" \mathrm{x} \text { is the sister of the tennis trainer of } \mathrm{y} "
$$

where x and y will be substituted by objects of $K P$. The partial binary operation * will be defined as follows:

$$
\begin{aligned}
& p_{1}(\mathrm{x}, \mathrm{y}) * p_{2}(\mathrm{y}, \mathrm{z})=p_{4}(\mathrm{x}, \mathrm{z}) \\
& p_{2}(\mathrm{x}, \mathrm{y}) * p_{2}(\mathrm{y}, \mathrm{z})=p_{2}(\mathrm{x}, \mathrm{z}) \\
& p_{2}(\mathrm{x}, \mathrm{y}) * p_{3}(\mathrm{y}, \mathrm{z})=p_{5}(\mathrm{x}, \mathrm{z}) \\
& p_{4}(\mathrm{x}, \mathrm{y}) * p_{2}(\mathrm{y}, \mathrm{z})=p_{4}(\mathrm{x}, \mathrm{z})
\end{aligned}
$$

The mapping $g: K_{0} \longrightarrow Y$ will be defined by the relations:

$$
\begin{aligned}
& g\left(x, a_{1}, y\right)=p_{1}(x, y) \\
& g\left(x, a_{2}, y\right)=p_{2}(x, y) \\
& g\left(x, b_{1}, y\right)=q_{1}(x, y) \\
& g\left(x, a_{3}, y\right)=p_{3}(x, y)
\end{aligned}
$$

The manner in which the mapping g is defined is obvious: the mapping g specifies the meaning of each symbol from L_{0} and this meaning was used when I defined the elements of this set.

Now, we shall extend the mapping g such that for every pair $(x, y) \in S \times S$ and $u \in L$ for which $(x, y) \in f(u), g(x, u, y)$ will represent the element of Y giving the meaning of u. In other words, we extend the mapping g such that g becomes a partial mapping $g: S \times L \times S \longrightarrow Y$: if $g(x, u, y)$ and $g(y, v, z)$ are defined elements in Y and the pair $(g(x, u, y), g(y, v, z))$ belongs to the domains of the partial binary operation $*$ then we take $g\left(x, \sigma_{L}(u, v), z\right)=g(x, u, y) * g(y, v, z)$. We observe that the mapping g "works" as a morphism of partial algebras. In order to relieve this morphism we consider the set

$$
\mathcal{T}=\{(x, u, y) \in S \times L \times S \mid(x, y) \in f(u)\}
$$

This set becomes a partial algebra if we consider the following binary operation on \mathcal{T} :

$$
\odot: \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{T}
$$

defined as follows:

1) \odot is defined on the pair $((x, u, y),(y, v, z))$ if and only if $(u, v) \in \operatorname{dom}\left(\sigma_{L}\right)$
$2)$ if the previous condition is realized then

$$
\odot((x, u, y),(y, v, z))=\left(x, \sigma_{L}(u, v), z\right)
$$

The mapping g becomes a morphism from the partial algebra (\mathcal{T}, \odot) to $(Y, *)$:

$$
\begin{aligned}
& g: \mathcal{T} \longrightarrow Y \\
& g((x, u, y) \odot(y, v, z))=g(x, u, y) * g(y, v, z)
\end{aligned}
$$

The values of the mapping g can be obtained by a bottom-up method. In order to describe this method we shall consider the path

$$
d=\left([\text { Emily, Helen, Ann, Peter }],\left[a_{1}, a_{2}, a_{2}\right]\right)
$$

Fig. 2. The syntactic tree
in G. We consider the tuples (Emily, a_{1}, Helen), (Helen, a_{2}, Ann) and $\left(A n n, a_{2}\right.$, Peter $)$ and we dispose these elements on the leaves of a tree as in figure 2.

Taking the image by the mapping g and its extension, we obtain the semantic tree from figure 3.

Fig. 3. The semantic tree

In conclusion, the result of the deduction process corresponding to the label $\sigma\left(\sigma\left(a_{1}, a_{2}\right), a_{2}\right)$ for the pair (Emily, Peter) is Emily is the niece of Peter. The same conclusion for the deduction process is obtained if we consider the label $\sigma\left(a_{1}, \sigma\left(a_{2}, a_{2}\right)\right)$.

We shall remark that the semantic computation is not possible for any path in G. Really, if we consider the paths ([Emily, Helen, Ann, Emily $\left.],\left[a_{1}, a_{2}, a_{3}\right]\right)$ then the syntactic computation can not be realized: we can build the node (Emily, $\left.\sigma\left(a_{1}, a_{2}\right), A n n\right)$, but we can not obtain the node

$$
\left(\text { Emily, } \sigma\left(\sigma\left(a_{1}, a_{2}\right), a_{3}\right), \text { Emily }\right)
$$

This is due to the fact that $\sigma\left(\sigma\left(a_{1}, a_{2}\right), a_{3}\right) \notin L$. Although we try to obtain the syntactic tree corresponding to the label $\sigma\left(a_{1}, \sigma\left(a_{2}, a_{3}\right)\right)$ we find that this computation is not possible because $\sigma\left(a_{1}, \sigma\left(a_{2}, a_{3}\right)\right) \notin L$.

References

[1] Tăndăreanu, N., Proving the existence of Labelled Stratified Graphs, Annals of the University of Craiova (to appear, 2000)
[2] Tुăndăreanu, N., Knowledge Bases with Output, Knowledge an Information Systems 2(2000) 4, 438-460.
[3] Way, E.C., "Knowledge Representation and Metaphor", Kluwer Academic Publisher, Studies in cognitive systems, Vol. 7, 1991.

