Lattices of labelled ordered trees (II)

Nicolae Ţăndăreanu

Abstract

In this paper the following results are presented: 1) we give a necessary and sufficient condition for the existence of the greatest element in the lattice $\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx$ introduced in [2]; 2) we characterize the representatives of the greatest element. All these results will be used in a forthcoming paper to study the properties of the answer function for a knowledge representation and reasoning system based on inheritance property.

Keywords: labelled tree, lattice, greatest element
AMS Subject Classification: 06B05, 06A12

1 Basic notions and results

In this section we summarize the main concepts and results obtained in [2]. We consider a finite set L and a decomposition $L=N_{L} \cup T_{L}$, where $N_{L} \cap T_{L}=\emptyset$. The elements of N_{L} are called nonterminal labels and those of T_{L} are called terminal labels. The elements of L are called labels. A pairwise mapping ω on L is a mapping $\omega: N_{L} \longrightarrow \bigcup_{k \geq 1}\{k\} \times L^{k}$. For each $b \in N_{L}$ we shall denote $\omega(b)=\left(\omega_{1}(b), \omega_{2}(b)\right)$. An ω-labelled tree is a tuple $t=(A, R, h)$, where

- (A, R) is an ordered tree
- $h: A \longrightarrow L$ is a mapping satisfying the following condition: if $\left[\left(i, i_{1}\right), \ldots,\left(i, i_{s}\right)\right]$ $\in R$ then $h(i) \in N_{L}, s=\omega_{1}(h(i))$ and $\omega_{2}(h(i))=\left(h\left(i_{1}\right), \ldots, h\left(i_{s}\right)\right)$

We denote by $1,2, \ldots, n$ the elements of the set A and these elements are the nodes of t. The root of t is denoted by $\operatorname{root}(t)$, therefore $\operatorname{root}(t) \in A$. In general we suppose $\operatorname{root}(t)=1$.

We consider an element $b_{0} \in N_{L}$ and denote by $\operatorname{Tree}_{\omega}\left(b_{0}\right)$ the set of all ω-labelled trees $t=(A, R, h)$ such that $h(\operatorname{root}(t))=b_{0}$. If $u=\left[\left(i, i_{1}\right), \ldots,\left(i, i_{s}\right)\right] \in R$ then we denote $p r_{r_{1}, \ldots, r_{m}} u=\left[\left(i, i_{r_{1}}\right), \ldots,\left(i, i_{r_{m}}\right)\right]$ where $1 \leq r_{1}<r_{2}<\ldots<r_{m} \leq s$. We shall write $v \subseteq u$ if there are r_{1}, \ldots, r_{m} such that $v=p r_{r_{1}, \ldots, r_{m}} u$.

Let be $t_{1}=\left(A_{1}, R_{1}, h_{1}\right) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ and $t_{2}=\left(A_{2}, R_{2}, h_{2}\right) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$. We define the following binary relation on $\operatorname{Tree}_{\omega}\left(b_{0}\right): t_{1} \preceq t_{2}$ if there is an injective mapping $\alpha: A_{1} \longrightarrow A_{2}$ such that:

1) $\alpha\left(\operatorname{root}\left(t_{1}\right)\right)=\operatorname{root}\left(t_{2}\right)$
2) if $u=\left[\left(i, i_{1}\right), \ldots,\left(i, i_{s}\right)\right] \in R_{1}$ then there is $v \in R_{2}$ such that $\bar{\alpha}(u) \subseteq v$, where

$$
\bar{\alpha}(u)=\left[\left(\alpha(i), \alpha\left(i_{1}\right)\right), \ldots,\left(\alpha(i), \alpha\left(i_{s}\right)\right)\right]
$$

3) $h_{1}(i)=h_{2}(\alpha(i))$ for every $i \in A_{1}$

2 The distributive lattice $\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx$

Let be $t_{1}, t_{2} \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$. We define $t_{1} \approx t_{2}$ iff $t_{1} \preceq t_{2}$ and $t_{2} \preceq t_{1}$. Because \approx is an equivalence relation (see [2]), we can consider the factor set $\operatorname{Tree} e_{\omega}\left(b_{0}\right) / \approx$ of the equivalence classes. For every tree $t \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ we denote by $[t]$ the equivalence class of t.

We define the following relation on Tree $_{\omega}\left(b_{0}\right) / \approx:$

$$
\left[t_{1}\right] \ll\left[t_{2}\right] \quad \text { if and only if } \quad t_{1} \preceq t_{2}
$$

Let be $t=(A, R, h) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$. We denote by $S(t)$ the following subset of $\bigcup_{p \geq 1} N^{p} \times L^{p}$:

$$
\left(\left(l_{1}, \ldots, l_{s}\right),\left(b_{1}, \ldots, b_{s}\right)\right) \in S(t)
$$

iff there is $\left(1, i_{1}, \ldots, i_{s}\right) \in \operatorname{Path}(t)$ such that $\left(1, i_{1}\right) \in R^{\left(l_{1}\right)}, \ldots,\left(i_{s-1}, i_{s}\right) \in R^{\left(l_{s}\right)}$ and $h\left(i_{1}\right)=b_{1}, \ldots, h\left(i_{s}\right)=b_{s}$.

We have $t_{1} \preceq t_{2}$ if and only if $S\left(t_{1}\right) \subseteq S\left(t_{2}\right)$ and therefore $t_{1} \approx t_{2}$ if and only if $S\left(t_{1}\right)=S\left(t_{2}\right)$ (see [2]).

We define the algebraic operations

$$
\begin{aligned}
& \vee: \operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx \times \operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx \longrightarrow \operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx \\
& \wedge: \operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx \times \operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx \longrightarrow \operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx
\end{aligned}
$$

as follows:

$$
\begin{aligned}
& {\left[t_{1}\right] \vee\left[t_{2}\right]=[t], \text { where } S(t)=S\left(t_{1}\right) \cup S\left(t_{2}\right)} \\
& {\left[t_{1}\right] \wedge\left[t_{2}\right]=[t], \text { where } S(t)=S\left(t_{1}\right) \cap S\left(t_{2}\right)}
\end{aligned}
$$

In [2] is shown that $\left(\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx, \vee, \wedge\right)$ is a lattice. Moreover, using the corre\left. sponding properties from the set theory we deduce now that the lattice ${\operatorname{Tr} e e_{\omega}}^{(} b_{0}\right) / \approx$ is a distributive one, a property which is proved in the next proposition.

Proposition 2.1 The lattice $\left(\right.$ Tree $\left._{\omega}\left(b_{0}\right) / \approx, \vee, \wedge\right)$ is distributive.
Proof. Really, if we denote $\alpha=\left[t_{1}\right] \wedge\left(\left[t_{2}\right] \vee\left[t_{3}\right]\right), \beta=\left(\left[t_{1}\right] \wedge\left[t_{2}\right]\right) \vee\left(\left[t_{1}\right] \wedge\left[t_{3}\right]\right)$ and we consider $p \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ then the following sentences are equivalent:

- $p \in \alpha$
- $S(p)=S\left(t_{1}\right) \cap\left(S\left(t_{2}\right) \cup S\left(t_{3}\right)\right)=\left(S\left(t_{1}\right) \cap S\left(t_{2}\right)\right) \cup\left(S\left(t_{1}\right) \cap S\left(t_{3}\right)\right)$
- $p \in \beta$

It follows that $\alpha=\beta$.

3 The greatest element of the lattice $\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx$

In this section we give a necessary and sufficient condition for the existence of the greatest element in the lattice $\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx$. Moreover, we give a characterization for the greatest element.

Let be $L=N_{L} \cup T_{L}$ a set of labels, $\omega: N_{L} \longrightarrow \bigcup_{k \geq 1}\{k\} \times L^{k}$ a pairwise mapping and $b_{0} \in N_{L}$. Let us consider $X \subseteq L$ and define:

$$
U(X)=\left\{y \in L \mid \exists a \in X \cap N_{L}, \exists i \in\left\{1, \ldots, \omega_{1}(a)\right\}: y=p r_{i} \omega_{2}(a)\right\}
$$

where $p r_{i} \omega_{2}(a)$ denotes the $i^{\text {th }}$ component of the element $\omega_{2}(a)$.
For an arbitrary element $b \in L$ we define the sequence:

$$
\left\{\begin{array}{l}
S_{b}^{0}=U(\{b\}) \\
S_{b}^{n+1}=S_{b}^{n} \cup U\left(S_{b}^{n}\right), \quad n \geq 0
\end{array}\right.
$$

We observe that for $b \in T_{L}$ we obtain $S_{b}^{0}=S_{b}^{1}=\ldots=\emptyset$. For $b \in N_{L}$, the sequence $\left\{S_{b}^{n}\right\}_{n}$ is an increasing one:

$$
\emptyset \neq S_{b}^{0} \subseteq S_{b}^{1} \subseteq \ldots \subseteq S_{b}^{n} \subseteq \ldots \subseteq L
$$

If $S_{b}^{0} \subseteq T_{L}$ then $S_{b}^{0}=S_{b}^{1}=\ldots$ and we take $m(b)=0$. Otherwise, since L is a finite set there is $m(b) \geq 1$ such that $S_{b}^{0} \subset \ldots \subset S_{b}^{m(b)}=S_{b}^{m(b)+1}=\ldots$. In other words, $m(b)=0$ for $b \in T_{L}$ and $m(b) \geq 1$ for $b \in N_{L}$. This notation permits us to define $T: L \longrightarrow 2^{L}$ as follows:

$$
T(b)=\left\{\begin{array}{l}
\emptyset \quad \text { if } \quad b \in T_{L} \\
S_{b}^{m(b)} \quad \text { if } \quad b \in N_{L}
\end{array}\right.
$$

The mapping T is used to characterize the existence of the greatest element in $\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx$. We shall obtain first several auxiliary properties.

We consider $b_{0}, b \in L$. Let be $t_{1}=\left(A_{1}, R_{1}, h_{1}\right) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ and $t_{2}=\left(A_{2}, R_{2}, h_{2}\right)$ $\in \operatorname{Tree}_{\omega}(b)$ such that for some leaf i of t_{1} we have $h(i)=b$. We suppose $A_{1}=$ $\left\{1, \ldots, n_{1}\right\}$ and $A_{2}=\left\{1, \ldots, n_{2}\right\}$. We denote by $t_{1} \oplus_{i} t_{2}=(A, R, h)$ the following tree:

- $A=A_{1} \cup\left\{n_{1}+1, \ldots, n_{1}+n_{2}-1\right\}$
- $R=R_{1} \cup R_{2}^{\prime}$ where R_{2}^{\prime} is defined as follows:
- $\left[\left(i, m_{1}+n_{1}-1\right), \ldots,\left(i, m_{p}+n_{1}-1\right)\right] \in R_{2}^{\prime}$ iff $\left[\left(1, m_{1}\right), \ldots,\left(1, m_{p}\right)\right] \in R_{2}$
- $\left[\left(n_{1}+j-1, n_{1}+j_{1}-1\right), \ldots,\left(n_{1}+j-1, n_{1}+j_{s}-1\right)\right] \in R_{2}^{\prime}$ if and only if $j \neq 1$ and $\left[\left(j, j_{1}\right), \ldots,\left(j, j_{s}\right)\right] \in R_{2}$
- $h(k)=\left\{\begin{array}{l}h_{1}(k) \quad \text { if } \quad k \in\left\{1, \ldots, n_{1}\right\} \\ h_{2}\left(k-n_{1}+1\right) \quad \text { if } \quad k \in\left\{n_{1}+1, \ldots, n_{1}+n_{2}-1\right\}\end{array}\right.$

Figure 1: Two labelled trees

Figure 2: The tree $t_{1} \oplus_{5} t_{2}$

This construction is illustrated in Figure 1 and Figure 2. We consider $A_{1}=$ $\{1,2, \ldots, 6\}$ and $A_{2}=\{1,2,3,4\}$ and the trees t_{1} and t_{2} specified in Figure 1. Taking $i=5$ and applying this construction we obtain the tree $t_{1} \oplus_{5} t_{2} \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ represented in Figure 2.

The following properties can be verified immediately:

- $t_{1} \oplus_{i} t_{2} \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ if $t_{1} \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$
- $t_{1} \preceq t_{1} \oplus_{i} t_{2}$ for every t_{2} and every i
- every $j \in\left\{1, \ldots, n_{1}\right\} \backslash\{i\}$, which is a leaf in t_{1}, is also a leaf in $t_{1} \oplus_{i} t_{2}$
- if j is a leaf of t_{2} then $n_{1}+j-1$ is a leaf of $t_{1} \oplus_{i} t_{2}$

The next proposition gives a characterization for the elements of the set $T\left(b_{0}\right)$, where $b_{0} \in N_{L}$. The proof uses the above construction for $t_{1} \oplus_{i} t_{2}$.

Proposition 3.1 Let be $b_{0} \in N_{L}$. We have $b \in T\left(b_{0}\right)$ iff there is $t=(A, R, h) \in$ Tree $_{\omega}\left(b_{0}\right)$ such that $h(i)=b$ for some leaf i of t.

Proof. By induction on n we shall prove that if $b \in S_{b_{0}}^{n}$ then there is $t \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ such that $h(i)=b$ for some leaf i of t. Obviously this assertion is true for $n=0$. Suppose the assertion is true for $n=m$. Let us consider $b \in S_{b_{0}}^{m+1} \backslash S_{b_{0}}^{m}=U\left(S_{b_{0}}^{m}\right)$. There is $a \in S_{b_{0}}^{m} \cap N_{L}$ such that $\omega_{2}(a)=\left(b_{1}, \ldots, b_{\omega_{1}(a)}\right)$ and $b=b_{i}$ for some $i \in$ $\left\{1, \ldots, \omega_{1}(a)\right\}$. By inductive assumption there is $t_{a}=(A, R, h) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ such that $h(j)=a$ for some leaf j of t_{a}. We consider the tree $t_{1}=\left(A_{1}, R_{1}, h_{1}\right)$, where $A_{1}=\left\{1, \ldots, \omega_{1}(a)+1\right\}, R_{1}=\left\{\left[(1,2), \ldots,\left(1, \omega_{1}(a)+1\right)\right]\right\}$ and $h_{1}(1)=a, h_{1}(2)=b_{1}$, $\ldots, h_{1}\left(\omega_{1}(a)+1\right)=b_{\omega_{1}(a)}$. The tree $t_{a} \oplus_{j} t_{1}$ satisfies the conditions: $t_{a} \oplus_{j} t_{1} \in$ $\operatorname{Tree}_{\omega}\left(b_{0}\right)$ and there is a leaf which is labelled by b.
In order to prove the converse property, we consider $t=(A, R, h) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ and we prove by induction on k that if $i \in \operatorname{level}_{k}(t)$ then $h(i) \in T\left(b_{0}\right)$. Obviously if $i \in$ level $_{1}(t)$ then $h(i) \in S_{b_{0}}^{0}$. Suppose the property is true for k and let be $i \in$ level $_{k+1}(t)$. There is a path $\left(1, i_{1}, \ldots, i_{k}, i\right)$ in t. By inductive assumption $h\left(i_{k}\right) \in T\left(b_{0}\right)$. There is $m \geq 0$ such that $h\left(i_{k}\right) \in S_{b_{0}}^{m}$. Let $\left[\left(i_{k}, j_{1}\right), \ldots,\left(i_{k}, j_{s}\right)\right] \in R$ such that $i=j_{r}$ for some $r \in\{1, \ldots, s\}$. We have $s=\omega_{1}\left(h\left(i_{k}\right)\right)$ and $\omega_{2}\left(h\left(i_{k}\right)\right)=\left(h\left(j_{1}\right), \ldots, h\left(j_{s}\right)\right)$. Thus $h\left(j_{r}\right) \in S_{b_{0}}^{m+1} \subseteq T\left(b_{0}\right)$, that is $h(i) \in T\left(b_{0}\right)$.

Proposition 3.2 If $b \in T(c)$ and $c \in T(a)$ then $b \in T(a)$.
Proof. By Proposition 3.1 it follows that there are $t_{1} \in \operatorname{Tree}_{\omega}(c)$ and $t_{2} \in$ $\operatorname{Tree}_{\omega}(a)$ such that some leaf i_{1} of t_{1} is labelled by b and some leaf i_{2} of t_{2} is labelled by c. We take the tree $t_{2} \oplus_{i_{2}} t_{1} \in \operatorname{Tree}_{\omega}(a)$ and by Proposition 3.1 it follows that $b \in T(a)$.

Proposition 3.3 If the lattice $\left(\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx, \vee, \wedge\right)$ has a greatest element then $b \notin$ $T(b)$ for every $b \in\left\{b_{0}\right\} \cup T\left(b_{0}\right)$.

Proof.

Suppose the lattice has a greatest element. By contrary we assume that $b \in T(b)$ for some $b \in\left\{b_{0}\right\} \cup T\left(b_{0}\right)$. Two cases will be analyzed:

1) Suppose $b \in T\left(b_{0}\right)$

If $b \in T_{L}$ then $T(b)=\emptyset$ and thus we have $b \notin T(b)$. We suppose now $b \in$ N_{L}. From $b \in T\left(b_{0}\right) \cap T(b)$ and by Proposition 3.1 it follows that there are $t_{0}=\left(A_{0}, R_{0}, h_{0}\right) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ and $t_{1}=\left(A_{1}, R_{1}, h_{1}\right) \in \operatorname{Tree}_{\omega}(b)$ such that $h_{0}\left(i_{0}\right)=h_{1}(i)=b$ for some leaves i_{0} and i in t_{0}, respectively t_{1}. We consider the tree $t_{0} \oplus_{i_{0}} t_{1} \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$. There is a leaf i_{1} in this tree having the label b. We take the tree $\left(t_{0} \oplus_{i_{0}} t_{1}\right) \oplus_{i_{1}} t_{1}$ and we repeat this step. Thus we obtain a sequence of trees:

$$
\left\{\begin{array}{l}
\alpha_{0}=t_{0} \oplus_{i_{0}} t_{1} \\
\alpha_{j+1}=\alpha_{j} \oplus_{i_{j+1}} t_{1}, \quad j \geq 0
\end{array}\right.
$$

such that each α_{j} contains a leaf labelled by b. If B_{0}, B_{1}, \ldots are the corresponding sets of the nodes for these trees then $\operatorname{Card}\left(B_{0}\right)<\operatorname{Card}\left(B_{1}\right)<\ldots$. Let be $\left[t_{g}\right]$ the greatest element of $\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx$. If A_{g} is the node set of t_{g} then we have $\operatorname{Card}\left(B_{0}\right)<\operatorname{Card}\left(B_{1}\right)<\ldots<\operatorname{Card}\left(A_{g}\right)$, which is not true since A_{g} is a finite set.
2) $b=b_{0}$

We take $t_{1}=t_{0}$ and we proceed as above.
Thus, the assumption $b \in T(b)$ for some $b \in\left\{b_{0}\right\} \cup T\left(b_{0}\right)$ is not true.
Proposition 3.4 Let be $b_{0} \in N_{L}$. Suppose $b \notin T(b)$ for every $b \in\left\{b_{0}\right\} \cup T\left(b_{0}\right)$. We define recursively the following sets Q_{1}, Q_{2}, \ldots as follows:

- $((l),(b)) \in Q_{1}$ iff $l \in\left\{1, \ldots, \omega_{1}\left(b_{0}\right)\right\}$ and $b=\operatorname{pr}_{l} \omega_{2}\left(b_{0}\right)$
- $\left(\left(l_{1}, \ldots, l_{k}, l\right),\left(b_{1}, \ldots, b_{k}, b\right)\right) \in Q_{k+1}$ if and only if $\left(\left(l_{1}, \ldots, l_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right) \in$ $Q_{k}, l \in\left\{1, \ldots, \omega_{1}\left(b_{k}\right)\right\}, b=\operatorname{pr}_{l} \omega_{2}\left(b_{k}\right)$

Then the following properties are satisfied:

1) $Q_{n(l)+1}=Q_{n(l)+2}=\ldots=\emptyset$, where $n_{l}=\operatorname{Card}\left(N_{L}\right)$
2) $X=\bigcup_{k=1}^{n(l)} Q_{k}$ satisfies the $\omega-b_{0}$-conditions
3) For every Y satisfying the $\omega-b_{0}$-conditions we have $Y \subseteq X$

Proof. For every $k \geq 1$, if $\left(\left(l_{1}, \ldots, l_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right) \in Q_{k}$ then $b_{j} \in T\left(b_{i}\right)$ for every i, j such that $0 \leq i<j \leq k$. We prove this assertion by induction on k. For $k=1$, if $((l),(b)) \in Q_{1}$ then $b=\operatorname{pr}_{l} \omega_{2}\left(b_{0}\right)$ and $l \in\left\{1, \ldots, \omega_{1}\left(b_{0}\right)\right\}$. Then $b \in U\left(\left\{b_{0}\right\}\right) \subseteq T\left(b_{0}\right)$. Assuming the assertion is true for k, if $\left(\left(l_{1}, \ldots, l_{k}, l\right),\left(b_{1}, \ldots, b_{k}, b\right)\right) \in Q_{k+1}$ then $b_{j} \in T\left(b_{i}\right)$ for $0 \leq i<j \leq k$ and $b=\operatorname{pr}_{l} \omega_{2}\left(b_{k}\right)$, where $l \in\left\{1, \ldots, \omega_{1}\left(b_{k}\right)\right\}$. Then $b \in U\left(\left\{b_{k}\right\}\right) \subseteq T\left(b_{k}\right)$. By inductive assumption $b_{k} \in T\left(b_{i}\right)$ for every $i \in\{0, \ldots, k-1\}$. By Proposition 3.2 it follows that $b \in T\left(b_{i}\right)$ for each $i \in\{0, \ldots, k-1\}$. Thus, if $\left(\left(l_{1}, \ldots, l_{k}, l_{k+1}\right),\left(b_{1}, \ldots, b_{k}, b_{k+1}\right)\right) \in Q_{k+1}$ then $T\left(b_{i}\right) \neq \emptyset$ for every $i \in\{1, \ldots, k\}$, therefore $b_{1}, \ldots, b_{k} \in N_{L}$. The sequence $b_{0}, b_{1}, \ldots, b_{k}$ satisfies the condition $b_{i} \neq b_{j}$ for $i \neq j$. Really, if $b_{i}=b_{j}=b$ for some $i<j$ then we have $b \in T(b)$, where $b \in\left\{b_{0}\right\} \cup T\left(b_{0}\right)$, which is not true. Therefore, if $Q_{k+1} \neq \emptyset$ then $k+1 \leq n_{l}$. If we
suppose that $Q_{n(l)+1} \neq \emptyset$ then there is $\left(\left(k_{1}, \ldots, k_{n(l)+1}\right),\left(b_{1}, \ldots, b_{n(l)+1}\right)\right) \in Q_{n(l)+1}$. This implies that $b_{0}, b_{1}, \ldots, b_{n(l)}$ are distinct elements of N_{L}, which is not true. Thus the first property is proved.
Obviously $X=\bigcup_{k=1}^{n(l)} Q_{k}$ satisfies the $\omega-b_{0}$-conditions. Let Y be a set satisfying the $\omega-b_{0}$-conditions. We verify by induction k that for every $k \geq 1$, if $\left(\left(l_{1}, \ldots, l_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right) \in Y$ then $\left(\left(l_{1}, \ldots, l_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right) \in Q_{k}$. For $k=1$ the assertion is true. We assume the assertion is true for k and let be $\left(\left(l_{1}, \ldots, l_{k}, l\right),\left(b_{1}, \ldots\right.\right.$, $\left.\left.b_{k}, b\right)\right) \in Y$. Since Y satisfies the $\omega-b_{0}$-conditions we have $\left(\left(l_{1}, \ldots, l_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right) \in$ $Y, l \in\left\{1, \ldots, \omega_{1}\left(b_{k}\right)\right\}, b=\operatorname{pr}_{l} \omega_{2}\left(b_{k}\right)$ and $\left(\left(l_{1}, \ldots, l_{k}, m\right),\left(b_{1}, \ldots, b_{k}, p r_{m} \omega_{2}\left(b_{k}\right)\right)\right) \in Y$ for $m \in\left\{1, \ldots, \omega_{1}\left(b_{k}\right)\right\}$. By inductive assumption we have $\left(\left(l_{1}, \ldots, l_{k}\right),\left(b_{1}, \ldots, b_{k}\right)\right) \in$ Q_{k} and by the definition of Q_{k+1} we have $\left(\left(l_{1}, \ldots, l_{k}, m\right),\left(b_{1}, \ldots, b_{k}, p r_{m} \omega_{2}\left(b_{k}\right)\right)\right) \in$ Q_{k+1} for every $m \in\left\{1, \ldots, \omega_{1}\left(b_{k}\right)\right\}$. Particularly we have $\left(\left(l_{1}, \ldots, l_{k}, l\right),\left(b_{1}, \ldots\right.\right.$ $\left.\left., b_{k}, b\right)\right) \in Q_{k+1}$. Thus $Y \subseteq \bigcup_{k \geq 1} Q_{k}=\bigcup_{k=1}^{n(l)} Q_{k}=X$.
Proposition 3.5 Suppose that $b_{0} \in N_{L}$ and $b \notin T(b)$ for every $b \in\left\{b_{0}\right\} \cup T\left(b_{0}\right)$. Then the lattice $\left(\right.$ Tree $\left._{\omega}\left(b_{0}\right) / \approx, \vee, \wedge\right)$ contains a greatest element.
Proof. Let us consider $X=\bigcup_{k=1}^{n(l)} Q_{k}$ from Proposition 3.4. Since X satisfies the $\omega-b_{0}$-conditions it follows that there is $t_{g} \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ such that $S\left(t_{g}\right)=X$. Let be now $[t] \in$ Tree $_{\omega}\left(b_{0}\right) / \approx . S(t)$ satisfies the $\omega-b_{0}$-conditions, therefore $S(t) \subseteq S\left(t_{g}\right)$. This implies $t \leq t_{g}$, therefore $[t] \preceq\left[t_{g}\right]$.

Proposition 3.6 Suppose $\left(\right.$ Tree $\left._{\omega}\left(b_{0}\right) / \approx, \vee, \wedge\right)$ contains a greatest element. If $t_{0}=$ $\left(A_{0}, R_{0}, h_{0}\right) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ is such that for every leaf i of t_{0} we have $h_{0}(i) \in T_{L}$ then for every $t \in$ Tree $_{\omega}\left(b_{0}\right)$ we have $t \preceq t_{0}$.

Proof. Suppose that for every leaf i of t_{0} we have $h_{0}(i) \in T_{L}$. Let be $t=(A, R, h) \in$ $\operatorname{Tree}_{\omega}\left(b_{0}\right)$. We shall verify that $S(t) \subseteq S\left(t_{0}\right)$, which will show that $t \preceq t_{0}$. Let be $\left(\left(l_{1}, \ldots, l_{s}\right),\left(b_{1}, \ldots, b_{s}\right)\right) \in S(t)$. There is $\left(1, i_{1}, \ldots, i_{s}\right) \in \operatorname{Path}(t)$ such that $\left(1, i_{1}\right) \in R^{\left(l_{1}\right)},\left(i_{1}, i_{2}\right) \in R^{\left(l_{2}\right)}, \ldots,\left(i_{s-1}, i_{s}\right) \in R^{\left(l_{s}\right)}, h\left(i_{1}\right)=b_{1}, \ldots, h\left(i_{s}\right)=b_{s}$. Only the nodes labelled by nonterminal labels may have direct descendants, therefore $b_{1}, \ldots, b_{s-1} \in N_{L}$. In order to simplify the notation we denote $\omega_{1}\left(b_{j}\right)=n_{j}$ for $j \in$ $\{0, \ldots, s-1\}$. For every $j \in\{1, \ldots, s\}$ there is $u_{j}=\left[\left(i_{j-1}, k_{1}^{(j)}\right), \ldots,\left(i_{j-1}, k_{n_{j-1}}^{(j)}\right)\right] \in R$ such that $i_{j}=k_{l_{j}}^{(j)}$, where $i_{0}=1$. Since t_{0} is an ω-labelled tree it folows that there is $v_{1}=\left[\left(1, r_{1}^{(1)}\right), \ldots,\left(1, r_{n_{0}}^{(1)}\right)\right] \in R_{0}$ such that $h_{0}\left(r_{l_{1}}^{(1)}\right)=b_{1}$. We denote $j_{1}=r_{l_{1}}^{(1)}$. By induction on p we prove that for every $p \in\{1, \ldots, s\}$ there is $v_{p}=\left[\left(j_{p-1}, r_{1}^{(p)}\right), \ldots,\left(j_{p-1}, r_{n_{p-1}}^{(p)}\right)\right] \in R_{0}$ such that $h_{0}\left(r_{l_{p}}^{(p)}\right)=b_{p}$, where $j_{p}=r_{l_{p}}^{(p)}$ and $j_{0}=1$. For $p=1$ the property is verified. We assume the property is verified for some $p \in\{1, \ldots, s-1\}$. Since $b_{p} \in N_{L}$ and $h_{0}\left(j_{p}\right)=b_{p}$ it follows that j_{p} has n_{p} direct descendants in t_{0}. Thus there is $v_{p+1}=\left[\left(j_{p}, r_{1}^{(p+1)}\right), \ldots,\left(j_{p}, r_{n_{p}}^{(p+1)}\right)\right] \in R_{0}$ such that $h_{0}\left(r_{l_{p+1}}^{(p+1)}\right)=b_{p+1}$. We take $j_{p+1}=r_{l_{p+1}}^{(p+1)}$. In this way we obtain $\left(1, j_{1}, \ldots, j_{s}\right) \in$ $\operatorname{Path}\left(t_{0}\right)$ such that $\left(1, j_{1}\right) \in R_{0}^{\left(l_{1}\right)},\left(j_{1}, j_{2}\right) \in R_{0}^{\left(l_{2}\right)}, \ldots,\left(j_{s-1}, j_{s}\right) \in R_{0}^{\left(l_{s}\right)}, h_{0}\left(j_{1}\right)=b_{1}$, $\ldots, h_{0}\left(j_{s}\right)=b_{s}$. Therefore $\left(\left(l_{1}, \ldots, l_{s}\right),\left(b_{1}, \ldots, b_{s}\right)\right) \in S\left(t_{0}\right)$.

Corollary 3.1 Suppose (Tree $\omega\left(b_{0}\right) / \approx, \vee, \wedge$) contains a greatest element. If $t_{1}=$ $\left(A_{1}, R_{1}, h_{1}\right) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ and $t_{2}=\left(A_{2}, R_{2}, h_{2}\right) \in$ Tree $_{\omega}\left(b_{0}\right)$ are such that $h_{1}(i) \in T_{L}$ and $h_{2}(j) \in T_{L}$ for each leaves i and j then $t_{1} \approx t_{2}$, therefore $\left[t_{1}\right]=\left[t_{2}\right]$.

Proof. Really, by Proposition 3.6 we have $t_{1} \preceq t_{2}$ and $t_{2} \preceq t_{1}$, therefore $t_{1} \approx t_{2}$.

Remark 3.1 Suppose $\left(\operatorname{Tree}_{\omega}\left(b_{0}\right) / \approx, \vee, \wedge\right)$ contains a greatest element. The tree $t_{0}=\left(A_{0}, R_{0}, h_{0}\right) \in \operatorname{Tree}_{\omega}\left(b_{0}\right)$ is a representative of the greatest element if and only if for every leaf i of t_{0} we have $h_{0}(i) \in T_{L}$.

References

[1] Sergiu Rudeanu, Lattice Functions and Equations, Springer, 2001
[2] N. Ţăndăreanu, Lattices of labelled ordered trees (I), Annals of the University of Craiova, Mathematics and Computer Science Series, Vol. XXVIII, 2001, p.29-39

Author's address:

Nicolae Ţăndăreanu
Faculty of Mathematics and Computer Science
University of Craiova
13, Al.I. Cuza st., 1100, Craiova, România
Tel/Fax: 40-251413728
e-mail: ntand@oltenia.ro

