Lattices of labelled ordered trees (II)

Nicolae Ţăndăreanu

Abstract

In this paper the following results are presented: 1) we give a necessary and sufficient condition for the existence of the greatest element in the lattice $Tree_{\omega}(b_0)/\approx$ introduced in [2]; 2) we characterize the representatives of the greatest element. All these results will be used in a forthcoming paper to study the properties of the answer function for a knowledge representation and reasoning system based on inheritance property.

 ${\bf Keywords:}$ labelled tree, lattice, greatest element

AMS Subject Classification: 06B05, 06A12

1 Basic notions and results

In this section we summarize the main concepts and results obtained in [2]. We consider a finite set L and a decomposition $L = N_L \cup T_L$, where $N_L \cap T_L = \emptyset$. The elements of N_L are called *nonterminal labels* and those of T_L are called *terminal labels*. The elements of L are called *labels*. A *pairwise mapping* ω on L is a mapping $\omega : N_L \longrightarrow \bigcup_{k \ge 1} \{k\} \times L^k$. For each $b \in N_L$ we shall denote $\omega(b) = (\omega_1(b), \omega_2(b))$. An ω -labelled tree is a tuple t = (A, R, h), where

- (A, R) is an ordered tree
- $h: A \longrightarrow L$ is a mapping satisfying the following condition: if $[(i, i_1), \ldots, (i, i_s)] \in R$ then $h(i) \in N_L$, $s = \omega_1(h(i))$ and $\omega_2(h(i)) = (h(i_1), \ldots, h(i_s))$

We denote by 1, 2, ..., n the elements of the set A and these elements are the nodes of t. The root of t is denoted by root(t), therefore $root(t) \in A$. In general we suppose root(t) = 1.

We consider an element $b_0 \in N_L$ and denote by $Tree_{\omega}(b_0)$ the set of all ω -labelled trees t = (A, R, h) such that $h(root(t)) = b_0$. If $u = [(i, i_1), \ldots, (i, i_s)] \in R$ then we denote $pr_{r_1,\ldots,r_m}u = [(i, i_{r_1}), \ldots, (i, i_{r_m})]$ where $1 \leq r_1 < r_2 < \ldots < r_m \leq s$. We shall write $v \subseteq u$ if there are r_1, \ldots, r_m such that $v = pr_{r_1,\ldots,r_m}u$.

write $v \subseteq u$ if there are r_1, \ldots, r_m such that $v = pr_{r_1,\ldots,r_m}u$. Let be $t_1 = (A_1, R_1, h_1) \in Tree_{\omega}(b_0)$ and $t_2 = (A_2, R_2, h_2) \in Tree_{\omega}(b_0)$. We define the following binary relation on $Tree_{\omega}(b_0)$: $t_1 \preceq t_2$ if there is an injective mapping $\alpha : A_1 \longrightarrow A_2$ such that:

- 1) $\alpha(root(t_1)) = root(t_2)$
- 2) if $u = [(i, i_1), \dots, (i, i_s)] \in R_1$ then there is $v \in R_2$ such that $\overline{\alpha}(u) \subseteq v$, where $\overline{\alpha}(u) = [(\alpha(i), \alpha(i_1)), \dots, (\alpha(i), \alpha(i_s))]$

3) $h_1(i) = h_2(\alpha(i))$ for every $i \in A_1$

2 The distributive lattice $Tree_{\omega}(b_0)/\approx$

Let be $t_1, t_2 \in Tree_{\omega}(b_0)$. We define $t_1 \approx t_2$ iff $t_1 \leq t_2$ and $t_2 \leq t_1$. Because \approx is an equivalence relation (see [2]), we can consider the factor set $Tree_{\omega}(b_0)/\approx$ of the equivalence classes. For every tree $t \in Tree_{\omega}(b_0)$ we denote by [t] the equivalence class of t.

We define the following relation on $Tree_{\omega}(b_0)/_{\approx}$:

 $[t_1] \ll [t_2]$ if and only if $t_1 \preceq t_2$

Let be $t = (A, R, h) \in Tree_{\omega}(b_0)$. We denote by S(t) the following subset of $\bigcup_{p>1} N^p \times L^p$:

$$((l_1,\ldots,l_s),(b_1,\ldots,b_s)) \in S(t)$$

iff there is $(1, i_1, \ldots, i_s) \in Path(t)$ such that $(1, i_1) \in R^{(l_1)}, \ldots, (i_{s-1}, i_s) \in R^{(l_s)}$ and $h(i_1) = b_1, \ldots, h(i_s) = b_s$.

We have $t_1 \leq t_2$ if and only if $S(t_1) \subseteq S(t_2)$ and therefore $t_1 \approx t_2$ if and only if $S(t_1) = S(t_2)$ (see [2]).

We define the algebraic operations

$$\begin{array}{l} \lor: Tree_{\omega}(b_0)/_{\approx} \times Tree_{\omega}(b_0)/_{\approx} \longrightarrow Tree_{\omega}(b_0)/_{\approx} \\ \\ \land: Tree_{\omega}(b_0)/_{\approx} \times Tree_{\omega}(b_0)/_{\approx} \longrightarrow Tree_{\omega}(b_0)/_{\approx} \end{array}$$

as follows:

$$[t_1] \lor [t_2] = [t]$$
, where $S(t) = S(t_1) \cup S(t_2)$
 $[t_1] \land [t_2] = [t]$, where $S(t) = S(t_1) \cap S(t_2)$

In [2] is shown that $(Tree_{\omega}(b_0)/_{\approx}, \vee, \wedge)$ is a lattice. Moreover, using the corresponding properties from the set theory we deduce now that the lattice $Tree_{\omega}(b_0)/_{\approx}$ is a distributive one, a property which is proved in the next proposition.

Proposition 2.1 The lattice $(Tree_{\omega}(b_0)/_{\approx}, \lor, \land)$ is distributive.

Proof. Really, if we denote $\alpha = [t_1] \land ([t_2] \lor [t_3]), \beta = ([t_1] \land [t_2]) \lor ([t_1] \land [t_3])$ and we consider $p \in Tree_{\omega}(b_0)$ then the following sentences are equivalent:

• $p \in \alpha$

•
$$S(p) = S(t_1) \cap (S(t_2) \cup S(t_3)) = (S(t_1) \cap S(t_2)) \cup (S(t_1) \cap S(t_3))$$

• $p \in \beta$

It follows that $\alpha = \beta$.

3 The greatest element of the lattice $Tree_{\omega}(b_0)/_{\approx}$

In this section we give a necessary and sufficient condition for the existence of the greatest element in the lattice $Tree_{\omega}(b_0)/\approx$. Moreover, we give a characterization for the greatest element.

Let be $L = N_L \cup T_L$ a set of labels, $\omega : N_L \longrightarrow \bigcup_{k \ge 1} \{k\} \times L^k$ a pairwise mapping and $b_0 \in N_L$. Let us consider $X \subseteq L$ and define:

$$U(X) = \{ y \in L \mid \exists a \in X \cap N_L, \exists i \in \{1, \dots, \omega_1(a)\} : y = pr_i \omega_2(a) \}$$

where $pr_i\omega_2(a)$ denotes the i^{th} component of the element $\omega_2(a)$.

For an arbitrary element $b \in L$ we define the sequence:

$$\left\{ \begin{array}{ll} S_b^0 = U(\{b\})\\ \\ S_b^{n+1} = S_b^n \cup U(S_b^n), \qquad n \geq 0 \end{array} \right.$$

We observe that for $b \in T_L$ we obtain $S_b^0 = S_b^1 = \ldots = \emptyset$. For $b \in N_L$, the sequence $\{S_b^n\}_n$ is an increasing one:

$$\emptyset \neq S_b^0 \subseteq S_b^1 \subseteq \ldots \subseteq S_b^n \subseteq \ldots \subseteq L$$

If $S_b^0 \subseteq T_L$ then $S_b^0 = S_b^1 = \ldots$ and we take m(b) = 0. Otherwise, since L is a finite set there is $m(b) \ge 1$ such that $S_b^0 \subset \ldots \subset S_b^{m(b)} = S_b^{m(b)+1} = \ldots$. In other words, m(b) = 0 for $b \in T_L$ and $m(b) \ge 1$ for $b \in N_L$. This notation permits us to define $T: L \longrightarrow 2^L$ as follows:

$$T(b) = \begin{cases} \emptyset & if \quad b \in T_L \\ \\ S_b^{m(b)} & if \quad b \in N_L \end{cases}$$

The mapping T is used to characterize the existence of the greatest element in $Tree_{\omega}(b_0)/_{\approx}$. We shall obtain first several auxiliary properties.

We consider $b_0, b \in L$. Let be $t_1 = (A_1, R_1, h_1) \in Tree_{\omega}(b_0)$ and $t_2 = (A_2, R_2, h_2) \in Tree_{\omega}(b)$ such that for some leaf *i* of t_1 we have h(i) = b. We suppose $A_1 = \{1, \ldots, n_1\}$ and $A_2 = \{1, \ldots, n_2\}$. We denote by $t_1 \oplus_i t_2 = (A, R, h)$ the following tree:

- $A = A_1 \cup \{n_1 + 1, \dots, n_1 + n_2 1\}$
- $R = R_1 \cup R'_2$ where R'_2 is defined as follows:
 - $[(i, m_1 + n_1 1), \dots, (i, m_p + n_1 1)] \in R'_2$ iff $[(1, m_1), \dots, (1, m_p)] \in R_2$
 - $[(n_1 + j 1, n_1 + j_1 1), \dots, (n_1 + j 1, n_1 + j_s 1)] \in R'_2$ if and only if $j \neq 1$ and $[(j, j_1), \dots, (j, j_s)] \in R_2$

•
$$h(k) = \begin{cases} h_1(k) & \text{if } k \in \{1, \dots, n_1\} \\ \\ h_2(k - n_1 + 1) & \text{if } k \in \{n_1 + 1, \dots, n_1 + n_2 - 1\} \end{cases}$$

Figure 2: The tree $t_1 \oplus_5 t_2$

This construction is illustrated in **Figure 1** and **Figure 2**. We consider $A_1 = \{1, 2, \ldots, 6\}$ and $A_2 = \{1, 2, 3, 4\}$ and the trees t_1 and t_2 specified in **Figure 1**. Taking i = 5 and applying this construction we obtain the tree $t_1 \oplus_5 t_2 \in Tree_{\omega}(b_0)$ represented in **Figure 2**.

The following properties can be verified immediately:

- $t_1 \oplus_i t_2 \in Tree_{\omega}(b_0)$ if $t_1 \in Tree_{\omega}(b_0)$
- $t_1 \leq t_1 \oplus_i t_2$ for every t_2 and every i
- every $j \in \{1, \ldots, n_1\} \setminus \{i\}$, which is a leaf in t_1 , is also a leaf in $t_1 \oplus_i t_2$
- if j is a leaf of t_2 then $n_1 + j 1$ is a leaf of $t_1 \oplus_i t_2$

The next proposition gives a characterization for the elements of the set $T(b_0)$, where $b_0 \in N_L$. The proof uses the above construction for $t_1 \oplus_i t_2$.

Proposition 3.1 Let be $b_0 \in N_L$. We have $b \in T(b_0)$ iff there is $t = (A, R, h) \in Tree_{\omega}(b_0)$ such that h(i) = b for some leaf i of t.

Proof. By induction on n we shall prove that if $b \in S_{b_0}^{n}$ then there is $t \in Tree_{\omega}(b_0)$ such that h(i) = b for some leaf i of t. Obviously this assertion is true for n = 0. Suppose the assertion is true for n = m. Let us consider $b \in S_{b_0}^{m+1} \setminus S_{b_0}^m = U(S_{b_0}^m)$. There is $a \in S_{b_0}^m \cap N_L$ such that $\omega_2(a) = (b_1, \ldots, b_{\omega_1(a)})$ and $b = b_i$ for some $i \in \{1, \ldots, \omega_1(a)\}$. By inductive assumption there is $t_a = (A, R, h) \in Tree_{\omega}(b_0)$ such that h(j) = a for some leaf j of t_a . We consider the tree $t_1 = (A_1, R_1, h_1)$, where $A_1 = \{1, \ldots, \omega_1(a) + 1\}, R_1 = \{[(1, 2), \ldots, (1, \omega_1(a) + 1)]\}$ and $h_1(1) = a, h_1(2) = b_1, \ldots, h_1(\omega_1(a) + 1) = b_{\omega_1(a)}$. The tree $t_a \oplus_j t_1$ satisfies the conditions: $t_a \oplus_j t_1 \in Tree_{\omega}(b_0)$ and there is a leaf which is labelled by b.

In order to prove the converse property, we consider $t = (A, R, h) \in Tree_{\omega}(b_0)$ and we prove by induction on k that if $i \in level_k(t)$ then $h(i) \in T(b_0)$. Obviously if $i \in level_1(t)$ then $h(i) \in S_{b_0}^0$. Suppose the property is true for k and let be $i \in level_{k+1}(t)$. There is a path $(1, i_1, \ldots, i_k, i)$ in t. By inductive assumption $h(i_k) \in T(b_0)$. There is $m \ge 0$ such that $h(i_k) \in S_{b_0}^m$. Let $[(i_k, j_1), \ldots, (i_k, j_s)] \in R$ such that $i = j_r$ for some $r \in \{1, \ldots, s\}$. We have $s = \omega_1(h(i_k))$ and $\omega_2(h(i_k)) = (h(j_1), \ldots, h(j_s))$. Thus $h(j_r) \in S_{b_0}^{m+1} \subseteq T(b_0)$, that is $h(i) \in T(b_0)$.

Proposition 3.2 If $b \in T(c)$ and $c \in T(a)$ then $b \in T(a)$.

Proof. By **Proposition 3.1** it follows that there are $t_1 \in Tree_{\omega}(c)$ and $t_2 \in Tree_{\omega}(a)$ such that some leaf i_1 of t_1 is labelled by b and some leaf i_2 of t_2 is labelled by c. We take the tree $t_2 \oplus_{i_2} t_1 \in Tree_{\omega}(a)$ and by **Proposition 3.1** it follows that $b \in T(a)$.

Proposition 3.3 If the lattice $(Tree_{\omega}(b_0)/_{\approx}, \lor, \land)$ has a greatest element then $b \notin T(b)$ for every $b \in \{b_0\} \cup T(b_0)$.

Proof.

Suppose the lattice has a greatest element. By contrary we assume that $b \in T(b)$ for some $b \in \{b_0\} \cup T(b_0)$. Two cases will be analyzed:

1) Suppose $b \in T(b_0)$

If $b \in T_L$ then $T(b) = \emptyset$ and thus we have $b \notin T(b)$. We suppose now $b \in N_L$. From $b \in T(b_0) \cap T(b)$ and by **Proposition 3.1** it follows that there are $t_0 = (A_0, R_0, h_0) \in Tree_{\omega}(b_0)$ and $t_1 = (A_1, R_1, h_1) \in Tree_{\omega}(b)$ such that $h_0(i_0) = h_1(i) = b$ for some leaves i_0 and i in t_0 , respectively t_1 . We consider the tree $t_0 \oplus_{i_0} t_1 \in Tree_{\omega}(b_0)$. There is a leaf i_1 in this tree having the label b. We take the tree $(t_0 \oplus_{i_0} t_1) \oplus_{i_1} t_1$ and we repeat this step. Thus we obtain a sequence of trees:

$$\begin{cases} \alpha_0 = t_0 \oplus_{i_0} t_1 \\ \alpha_{j+1} = \alpha_j \oplus_{i_{j+1}} t_1, \qquad j \ge 0 \end{cases}$$

such that each α_j contains a leaf labelled by b. If B_0, B_1, \ldots are the corresponding sets of the nodes for these trees then $Card(B_0) < Card(B_1) < \ldots$. Let be $[t_g]$ the greatest element of $Tree_{\omega}(b_0)/_{\approx}$. If A_g is the node set of t_g then we have $Card(B_0) < Card(B_1) < \ldots < Card(A_g)$, which is not true since A_g is a finite set.

2) $b = b_0$ We take $t_1 = t_0$ and we proceed as above.

Thus, the assumption $b \in T(b)$ for some $b \in \{b_0\} \cup T(b_0)$ is not true.

Proposition 3.4 Let be $b_0 \in N_L$. Suppose $b \notin T(b)$ for every $b \in \{b_0\} \cup T(b_0)$. We define recursively the following sets Q_1, Q_2, \ldots as follows:

- $((l), (b)) \in Q_1$ iff $l \in \{1, \dots, \omega_1(b_0)\}$ and $b = pr_l \omega_2(b_0)$
- $((l_1, \ldots, l_k, l), (b_1, \ldots, b_k, b)) \in Q_{k+1}$ if and only if $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Q_k, l \in \{1, \ldots, \omega_1(b_k)\}, b = pr_l \omega_2(b_k)$

Then the following properties are satisfied:

- 1) $Q_{n(l)+1} = Q_{n(l)+2} = ... = \emptyset$, where $n_l = Card(N_L)$
- 2) $X = \bigcup_{k=1}^{n(l)} Q_k$ satisfies the ωb_0 -conditions
- 3) For every Y satisfying the ωb_0 -conditions we have $Y \subseteq X$

Proof. For every $k \ge 1$, if $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Q_k$ then $b_j \in T(b_i)$ for every i, j such that $0 \le i < j \le k$. We prove this assertion by induction on k. For k = 1, if $((l), (b)) \in Q_1$ then $b = pr_l\omega_2(b_0)$ and $l \in \{1, \ldots, \omega_1(b_0)\}$. Then $b \in U(\{b_0\}) \subseteq T(b_0)$. Assuming the assertion is true for k, if $((l_1, \ldots, l_k, l), (b_1, \ldots, b_k, b)) \in Q_{k+1}$ then $b_j \in T(b_i)$ for $0 \le i < j \le k$ and $b = pr_l\omega_2(b_k)$, where $l \in \{1, \ldots, \omega_1(b_k)\}$. Then $b \in U(\{b_k\}) \subseteq T(b_k)$. By inductive assumption $b_k \in T(b_i)$ for every $i \in \{0, \ldots, k-1\}$. By **Proposition 3.2** it follows that $b \in T(b_i)$ for each $i \in \{0, \ldots, k-1\}$. Thus, if $((l_1, \ldots, l_k, l_{k+1}), (b_1, \ldots, b_k, b_{k+1})) \in Q_{k+1}$ then $T(b_i) \ne \emptyset$ for every $i \in \{1, \ldots, k\}$, therefore $b_1, \ldots, b_k \in N_L$. The sequence b_0, b_1, \ldots, b_k satisfies the condition $b_i \ne b_j$ for $i \ne j$. Really, if $b_i = b_j = b$ for some i < j then we have $b \in T(b)$, where $b \in \{b_0\} \cup T(b_0)$, which is not true. Therefore, if $Q_{k+1} \ne \emptyset$ then $k+1 \le n_l$. If we

suppose that $Q_{n(l)+1} \neq \emptyset$ then there is $((k_1, \ldots, k_{n(l)+1}), (b_1, \ldots, b_{n(l)+1})) \in Q_{n(l)+1}$. This implies that $b_0, b_1, \ldots, b_{n(l)}$ are distinct elements of N_L , which is not true. Thus the first property is proved.

Obviously $X = \bigcup_{k=1}^{n(l)} Q_k$ satisfies the $\omega - b_0$ -conditions. Let Y be a set satisfying the $\omega - b_0$ -conditions. We verify by induction k that for every $k \ge 1$, if $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Y$ then $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Q_k$. For k = 1 the assertion is true. We assume the assertion is true for k and let be $((l_1, \ldots, l_k, l), (b_1, \ldots, b_k)) \in Y$. Since Y satisfies the $\omega - b_0$ -conditions we have $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Y$, $l \in \{1, \ldots, \omega_1(b_k)\}$, $b = pr_l\omega_2(b_k)$ and $((l_1, \ldots, l_k, m), (b_1, \ldots, b_k, pr_m\omega_2(b_k))) \in Y$ for $m \in \{1, \ldots, \omega_1(b_k)\}$. By inductive assumption we have $((l_1, \ldots, l_k), (b_1, \ldots, b_k)) \in Q_k$ and by the definition of Q_{k+1} we have $((l_1, \ldots, l_k, m), (b_1, \ldots, b_k, pr_m\omega_2(b_k))) \in Q_{k+1}$ for every $m \in \{1, \ldots, \omega_1(b_k)\}$. Particularly we have $((l_1, \ldots, l_k, l), (b_1, \ldots, b_k, b)) \in Q_{k+1}$. Thus $Y \subseteq \bigcup_{k \ge 1} Q_k = \bigcup_{k=1}^{n(l)} Q_k = X$.

Proposition 3.5 Suppose that $b_0 \in N_L$ and $b \notin T(b)$ for every $b \in \{b_0\} \cup T(b_0)$. Then the lattice $(Tree_{\omega}(b_0)/_{\approx}, \vee, \wedge)$ contains a greatest element.

Proof. Let us consider $X = \bigcup_{k=1}^{n(l)} Q_k$ from **Proposition 3.4**. Since X satisfies the $\omega - b_0$ -conditions it follows that there is $t_g \in Tree_{\omega}(b_0)$ such that $S(t_g) = X$. Let be now $[t] \in Tree_{\omega}(b_0)/_{\approx}$. S(t) satisfies the $\omega - b_0$ -conditions, therefore $S(t) \subseteq S(t_g)$. This implies $t \leq t_g$, therefore $[t] \leq [t_g]$.

Proposition 3.6 Suppose $(Tree_{\omega}(b_0)/\approx, \lor, \land)$ contains a greatest element. If $t_0 = (A_0, R_0, h_0) \in Tree_{\omega}(b_0)$ is such that for every leaf *i* of t_0 we have $h_0(i) \in T_L$ then for every $t \in Tree_{\omega}(b_0)$ we have $t \leq t_0$.

Proof. Suppose that for every leaf i of t_0 we have $h_0(i) \in T_L$. Let be $t = (A, R, h) \in Tree_{\omega}(b_0)$. We shall verify that $S(t) \subseteq S(t_0)$, which will show that $t \preceq t_0$. Let be $((l_1, \ldots, l_s), (b_1, \ldots, b_s)) \in S(t)$. There is $(1, i_1, \ldots, i_s) \in Path(t)$ such that $(1, i_1) \in R^{(l_1)}, (i_1, i_2) \in R^{(l_2)}, \ldots, (i_{s-1}, i_s) \in R^{(l_s)}, h(i_1) = b_1, \ldots, h(i_s) = b_s$. Only the nodes labelled by nonterminal labels may have direct descendants, therefore $b_1, \ldots, b_{s-1} \in N_L$. In order to simplify the notation we denote $\omega_1(b_j) = n_j$ for $j \in \{0, \ldots, s-1\}$. For every $j \in \{1, \ldots, s\}$ there is $u_j = [(i_{j-1}, k_1^{(j)}), \ldots, (i_{j-1}, k_{n_{j-1}}^{(j)})] \in R$ such that $i_j = k_{l_j}^{(j)}$, where $i_0 = 1$. Since t_0 is an ω -labelled tree it follows that there is $v_1 = [(1, r_1^{(1)}), \ldots, (1, r_{n_0}^{(1)})] \in R_0$ such that $h_0(r_{l_1}^{(1)}) = b_1$. We denote $j_1 = r_{l_1}^{(1)}$. By induction on p we prove that for every $p \in \{1, \ldots, s\}$ there is $v_p = [(j_{p-1}, r_1^{(p)}), \ldots, (j_{p-1}, r_{n_{p-1}}^{(p)})] \in R_0$ such that $h_0(r_{l_p}^{(p)}) = b_p$, where $j_p = r_{l_p}^{(p)}$ and $j_0 = 1$. For p = 1 the property is verified. We assume the property is verified for some $p \in \{1, \ldots, s-1\}$. Since $b_p \in N_L$ and $h_0(j_p) = b_p$ it follows that j_p has n_p direct descendants in t_0 . Thus there is $v_{p+1} = [(j_p, r_1^{(p+1)}), \ldots, (j_p, r_{n_p}^{(p+1)})] \in R_0$ such that $h_0(r_{l_{p+1}}^{(p+1)}) = b_{p+1}$. We take $j_{p+1} = r_{l_{p+1}}^{(p+1)}$. In this way we obtain $(1, j_1, \ldots, j_s) \in Path(t_0)$ such that $(1, j_1) \in R_0^{(l_1)}, (j_1, j_2) \in R_0^{(l_2)}, \ldots, (j_{s-1}, j_s) \in R_0^{(l_s)}, h_0(j_1) = b_1, \ldots, h_0(j_s) = b_s$. Therefore $((l_1, \ldots, l_s), (b_1, \ldots, b_s)) \in S(t_0)$.

Corollary 3.1 Suppose $(Tree_{\omega}(b_0) / \approx, \lor, \land)$ contains a greatest element. If $t_1 = (A_1, R_1, h_1) \in Tree_{\omega}(b_0)$ and $t_2 = (A_2, R_2, h_2) \in Tree_{\omega}(b_0)$ are such that $h_1(i) \in T_L$ and $h_2(j) \in T_L$ for each leaves i and j then $t_1 \approx t_2$, therefore $[t_1] = [t_2]$.

Proof. Really, by **Proposition 3.6** we have $t_1 \leq t_2$ and $t_2 \leq t_1$, therefore $t_1 \approx t_2$.

Remark 3.1 Suppose $(Tree_{\omega}(b_0) / \approx, \lor, \land)$ contains a greatest element. The tree $t_0 = (A_0, R_0, h_0) \in Tree_{\omega}(b_0)$ is a representative of the greatest element if and only if for every leaf i of t_0 we have $h_0(i) \in T_L$.

References

- [1] Sergiu Rudeanu, Lattice Functions and Equations, Springer, 2001
- [2] N. Ţăndăreanu, Lattices of labelled ordered trees (I), Annals of the University of Craiova, Mathematics and Computer Science Series, Vol. XXVIII, 2001, p.29-39

Author's address:

Nicolae Țăndăreanu Faculty of Mathematics and Computer Science University of Craiova 13, Al.I. Cuza st., 1100, Craiova, România Tel/Fax: 40-251413728 e-mail: ntand@oltenia.ro