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Abstract

In this paper we introduce a kind of labelled ordered tree. We obtain a
lattice of such trees considered up to a natural equivalence. In the second part
of this paper, which is in preparation, we study several algebraic properties of
this lattice ([9]). These results will be used in a forthcoming paper to study the
properties of the answer function for a knowledge representation and reasoning
system based on inheritance property.
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1 Introduction

The concepts of object, frame, and inheritance are used and interpreted in various
ways. In the most cases the concept of object is used in conjunction with the object
oriented databases ([3]) or the object oriented problem solving ([1]). The concept
of frame is encountered in knowledge representation, but it is applied in various
domains such as the theory of space-filling curves and Lindenmayer systems ([4]).
There are several major implications of these concepts in knowledge representation
languages, systems of knowledge processing and image synthesis. There are today
a lot of implemented systems using these concepts. Most of them are described in
literature ( for example CAKE [5], NETL [7] etc) and other systems can be taken
from Internet.

Knowledge representation is a major research domain in artificial intelligence.
The study of the knowledge representation and reasoning systems ([8], [10]) is a main
direction of research. An interesting problem related to this subject is the study of
the computability of the answer function for such systems. By the results specified in
the current paper we inaugurate a research line to study the properties of the answer
function of a knowledge system based on inheritance property. The final paper will
specify the computability of this function. Moreover, an algorithm will be given such
that the answers unknown and undefined are identified at once.

All properties specified in this paper are proved in a separate appendix.

2 Pairwise mappings and ω-labelled trees

In this section we introduce the concept of ω-labelled tree, which is based on the
concept of pairwise mapping.

A directed ordered graph is a pair G = (A,R), where
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• A is a finite set of elements, which are called nodes

• R is a nonempty finite set of elements of the form [(i, i1), . . . , (i, in)], where
n ≥ 1 and i, i1, . . .,in ∈ A

• R satisfies the following condition: if [(i, i1), . . . , (i, in)] ∈ R and [(j, j1), . . . ,
(j, js)] ∈ R then i 6= j

We observe that for an element [(i, i1), . . . , (i, in)] ∈ R we may have ij = ik for some
j 6= k.

We can represent a directed ordered graph as follows. We represent, as usual, a
node of the graph by a point. If [(i, i1), . . . , (i, in)] ∈ R then we draw an arc from the
node i to the node ij for every j ∈ {1, . . . n}. The elements i1, . . . , in are called the
direct descendants of i. We shall consider that all the direct descendants of i are linear
ordered and the order is given by the place of ij in the element [(i, i1), . . . , (i, in)].

If G = (A,R) is a directed ordered graph then we associate it a directed graph
G′ = (A,R′), where

R′ = {(i, j) | ∃[(i, i1), . . . , (i, in)] ∈ R,∃r ∈ {1, . . . , n} : j = ir}

An ordered tree is a directed ordered graph G = (A,R) satisfying the following prop-
erties:

• if [(i, i1), . . . , (i, in)] ∈ R then ij 6= ir for j 6= r

• the associated graph G′ is a tree

We consider a finite set L and a decomposition L = NL ∪ TL, where NL ∩ TL = ∅.
The elements of NL are called nonterminal labels and those of TL are called terminal
labels. The elements of L are called labels.

Definition 2.1 Let L = NL ∪ TL be a set of labels. A pairwise mapping ω on L
is a mapping ω : NL −→

⋃
k≥1{k} × Lk. For each b ∈ NL we shall denote ω(b) =

(ω1(b), ω2(b)) and therefore ω1(b) gives us the number of components for ω2(b).

This means that for every b ∈ NL we have ω2(b) ∈ Lω1(b), that is ω2(b) = (c1, . . . , cs),
where s = ω1(b) and ci ∈ L for i ∈ {1, . . . , s}.

Definition 2.2 Let ω : NL −→
⋃

k≥1{k} × Lk be a pairwise mapping on L. An
ω-labelled tree is a tuple t = (A,R, h), where

• (A,R) is an ordered tree

• h : A −→ L is a mapping satisfying the following condition: if [(i, i1), . . . , (i, is)]
∈ R then h(i) ∈ NL, s = ω1(h(i)) and ω2(h(i)) = (h(i1), . . . , h(is))

In other words, if a node of t has at least one descendant then its label is a nonterminal
given by the labelling function h; on the other hand there is a connection between ω
and h, which is specified by the number of the direct descendants and their labels.

If t = (A,R, h) is an ω-labelled tree then by root(t) we denote the element of A
which gives the root of t. Frequently in this paper we suppose that A = {1, . . . , n}
for some natural number n and root(t) = 1.
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We consider an element b0 ∈ NL and denote by Treeω(b0) the set of all ω-labelled
trees t = (A,R, h) such that h(root(t)) = b0. If u = [(i, i1), . . . , (i, is)] ∈ R then we
denote prr1,...,rm

u = [(i, ir1), . . . , (i, irm
)] where 1 ≤ r1 < r2 < . . . < rm ≤ s. We shall

write v ⊆ u if there are r1, . . . , rm such that v = prr1,...,rm
u.

Let be t1 = (A1, R1, h1) ∈ Treeω(b0) and t2 = (A2, R2, h2) ∈ Treeω(b0). If
α : A1 −→ A2 is an arbitrary mapping then for every u = [(i, i1), . . . , (i, is)] ∈ R1 we
denote

α(u) = [(α(i), α(i1)), . . . , (α(i), α(is))]

Definition 2.3 Let be t1 = (A1, R1, h1) ∈ Treeω(b0) and
t2 = (A2, R2, h2) ∈ Treeω(b0). We define the following binary relation on Treeω(b0):
t1 � t2 if there is an injective mapping α : A1 −→ A2 such that:

1) α(root(t1)) = root(t2)

2) if u ∈ R1 then there is v ∈ R2 such that α(u) ⊆ v

3) h1(i) = h2(α(i)) for every i ∈ A1

A characterization of the relation � is given in Proposition 6.3.
By Proposition 6.4 the relation � is reflexive and transitive. It is not antisym-

metric as we can see in Figure 1. Therefore � is not a partial order.
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Figure 1: t1 � t2, t2 � t1, t1 6= t2

For this reason we introduce now an equivalence relation on Treeω(b0) and then
we define a partial order on the set of all equivalence classes.

Definition 2.4 Let be t1, t2 ∈ Treeω(b0). We define t1 ≈ t2 iff t1 � t2 and t2 � t1.

Obviously, the relation ≈ is a symmetric relation and therefore according to Propo-
sition 6.4 we obtain an equivalence relation.

Because ≈ is an equivalence relation, we can consider the factor set Treeω(b0)/≈
of the equivalence classes. For every t ∈ Treeω(b0) we denote by [t] the equivalence
class of t.

Definition 2.5 We define the following relation on Treeω(b0)/≈ :

[t1] � [t2] if and only if t1 � t2

By Proposition 6.6 the definition of � is not dependent on the representatives and
by Proposition 6.7 the relation � is a partial order.
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3 A suitable representation for ω-labelled trees

We shall give now a particular representation for the elements of Treeω(b0), which
will permit us to obtain several algebraic properties for the factor set Treeω(b0)/≈.
We consider an element t = (A,R, h) ∈ Treeω(b0). The set of all the paths of t is
denoted by Path(t). Because t is an ordered tree, the pair (i, j) is an arc of t if and
only if there is an element and only one u = [(i, i1), . . . , (i, is)] ∈ R such that j = ir
for some r ∈ {1, . . . , s}. We shall denote this fact by (i, j) ∈ R(r). This means that
(i, j) appears as the rth element of some list of R.

We denote by N the set of all natural numbers and an element from Np×Lp will
be denoted by ((l1, . . . , lp), (b1, . . . , bp)), where li ∈ N and bi ∈ L for i ∈ {1, . . . , p}.
We suppose root(t) = 1 for every t ∈ Treeω(b0).

Definition 3.1 Let be t = (A,R, h) ∈ Treeω(b0). We denote by S(t) the following
subset of

⋃
p≥1 Np × Lp:

((l1, . . . , ls), (b1, . . . , bs)) ∈ S(t)

iff there is (1, i1, . . . , is) ∈ Path(t) such that (1, i1) ∈ R(l1), . . . , (is−1, is) ∈ R(ls) and
h(i1) = b1, . . . , h(is) = bs. We define Ht : S(t) −→ Path(t) as follows:

Ht((l1, . . . , ls), (b1, . . . , bs)) = (1, i1, . . . , is)

Let us show that the mapping Ht is well defined and is bijective. Suppose that
(1, i1, . . . , is) ∈ Path(t) and (1, j1, . . . , js) ∈ Path(t) are two paths satisfying Defini-
tion 3.1. From (1, i1) ∈ Rl1 and (1, j1) ∈ Rl1 we deduce i1 = j1. Similarly we have
i2 = j2 and so on. Therefore Ht is well defined. Let us assume

Ht((l1, . . . , ls), (b1, . . . , bs)) = Ht((m1, . . . ,mq), (c1, . . . , cq))

It follows that s = q and if we denote by (1, i1, . . . , is) the corresponding value then
(1, i1) ∈ R(l1)∩R(m1), . . ., (is−1, is) ∈ R(ls)∩R(ms), h(i1) = b1 = c1, . . ., h(is) = bs =
cs. Therefore l1 = m1, . . ., ls = ms.

According to Proposition 6.8 and Proposition 6.9 we have t1 � t2 if and only
if S(t1) ⊆ S(t2). Taking into consideration the definition of ≈ we deduce now that
t1 ≈ t2 if and only if S(t1) = S(t2).

We consider a finite set X ⊆
⋃

k≥1 Nk × Lk. For x = (b1, . . . , bk) ∈ Lk and
i ∈ {1, . . . , k} we denote prix = bi. For every k ≥ 1, the level k of X is defined as
levk(X) = X ∩ (Nk ×Lk). We shall use the following notation: if Y ⊆ levk+1X then

pr1,...,kY = {((l1, . . . , lk), (b1, . . . , bk)) | ∃l, b : ((l1, . . . , lk, l), (b1, . . . , bk, b)) ∈ Y }

Definition 3.2 Let ω : NL −→
⋃

k≥1{k} × Lk be a pairwise mapping and b0 ∈ NL.
We say that X ⊆

⋃
k≥1 Nk × Lk satisfies the ω − b0- conditions if the following

conditions ω1 and ω2 are fulfilled:

(ω1) ((l), (bl)) ∈ X iff l ∈ {1, . . . , ω1(b0)} and bl = prlω2(b0)

(ω2) If ((l1, . . . , lk, l), (b1, . . . , bk, a)) ∈ X then

• ((l1, . . . , lk), (b1, . . . , bk)) ∈ X
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• l ∈ {1, . . . , ω1(bk)} and a = prlω2(bk)

• ((l1, . . . , lk, i), (b1, . . . , bk, priω2(bk))) ∈ X for all i ∈ {1, . . . , ω1(bk)}

Directly from this definition we observe that:
1) the condition ω1 can be written equivalently

lev1(X) = {((l), (prlω2(b0)))}l=1,...,ω1(b0)

2) if ((l1, . . . , lk), (b1, . . . , bk)) ∈ X and ((l1, . . . , lk), (a1, . . . , ak)) ∈ X then bj = aj for
j ∈ {1, . . . , k}.

The sets S(t) for t ∈ Treeω(b0) are identified by Proposition 6.10 with the
sets satisfying the ω − b0 conditions and this result is used in the next subsection.
Moreover, the proof of Proposition 6.10 includes an algorithm which is used to
obtain a tree t such X = S(t), where X is a given set satisfying the ω− b0 conditions.

4 The lattice Treeω(b0)/≈

In this section we introduce two binary operations on the set Treeω(b0)/≈ such that
a lattice structure is obtained.

Definition 4.1 We define the algebraic operations

∨ : Treeω(b0)/≈ × Treeω(b0)/≈ −→ Treeω(b0)/≈

∧ : Treeω(b0)/≈ × Treeω(b0)/≈ −→ Treeω(b0)/≈

as follows:

[t1] ∨ [t2] = [t], where S(t) = S(t1) ∪ S(t2)

[t1] ∧ [t2] = [t], where S(t) = S(t1) ∩ S(t2)

The above definitions are correctly given. Really, if t1, t2 ∈ Treeω(b0) then by
Proposition 6.10, S(t1) and S(t2) satisfy the ω − b0 conditions. By Proposi-
tion 6.11, S(t1) ∪ S(t2) and S(t1) ∩ S(t2) satisfy also these conditions. Accord-
ing to Proposition 6.10 it follows that there are t3, t4 ∈ Treeω(b0) such that
S(t3) = S(t1) ∪ S(t2) and S(t4) = S(t1) ∩ S(t2). By Definition 4.1 we take
[t1] ∨ [t2] = [t3] and [t1] ∧ [t2] = [t4]. Now, if t′3 and t′4 are two elements such that
S(t′3) = S(t1)∪S(t2) and S(t′4) = S(t1)∩S(t2) then S(t3) = S(t′3) and S(t4) = S(t′4),
therefore by Proposition 6.8 and Proposition 6.9 we have t3 ≈ t′3 and t4 ≈ t′4.
Thus [t3] = [t′3] and [t4] = [t′4].

In Theorem 6.1 we prove that (Treeω(b0)/≈,∨,∧) is a lattice.

5 Conclusions and future work

Based on the concept of pairwise mapping some kind of labelled ordered tree is in-
troduced in this paper. Several properties of these trees are established, a natural
equivalence relation is introduced and a lattice structure of labelled ordered trees is
obtained. This research work will be continued as follows: in a forthcoming paper
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([9]) several algebraic properties of the lattice introduced in this paper will be pre-
sented; in order to study the computability of the answer function of a knowledge
representation system based on inheritance property, these properties will be used
and this is the aim of of a paper in preparation.

6 APPENDIX: Theoretical results

In this section we give the formal proofs for the properties concerning the ω-labelled
trees.

Proposition 6.1 Let be t1, t2 ∈ Treeω(b0). If t1 � t2 then for every u ∈ R1 we have
α(u) ∈ R2.

Proof. Let be u = [(i, i1), . . . , (i, is)] ∈ R1. Since t1 ∈ Treeω(b0) we have s =
ω1(h1(i)). But α(u) = [(α(i), α(i1)), . . . , (α(i), α(is))] and h1(i) = h2(α(i)) therefore
s = ω1(h2(α(i))). There is v ∈ R2 such that α(u) ⊆ v. It follows that there is k ≥ s
and there are j1, . . . , jk such that v = [(α(i), j1), . . . , (α(i), jk)]. From v ∈ R2 we
deduce k = ω1(h2(α(i))), therefore k = s. Thus α(u) = v ∈ R2.

If t = (A,R, h) ∈ Treeω(b0) then we denote level0(t) = {root(t)} and levelk(t) is
the set of all nodes i ∈ A such that there is a path of length k from 1 to i.

Proposition 6.2 Let be t1, t2 ∈ Treeω(b0). If t1 � t2 then for every k we have

α(levelk(t1)) ⊆ levelk(t2)

Proof. We proceed by induction on k. For k = 0 the property is true because
we have α(level0(t1))=α({root(t1)})={root(t2)}. Suppose the property is true for
k = m−1, where m ≥ 1. If i ∈ levelm(t1) then there is ji ∈ levelm−1(t1) such that i is
a direct descendant of ji in t1. By inductive assumption we have α(ji) ∈ levelm−1(t2).
By Proposition 6.1 the node α(i) is a direct descendant of α(ji) in t2. Therefore
α(i) ∈ levelm(t2).

Proposition 6.3 Let be t1, t2 ∈ Treeω(b0). We have t1 � t2 iff there is an injective
mapping α : A1 −→ A2 such that

• α(root(t1)) = root(t2)

• α(u) ∈ R2 for every u ∈ R1

Proof. The direct implication is obtained from Proposition 6.1. Let us prove
the converse implication. We verify the property h1(i) = h2(α(i)) for every i ∈
A1 =

⋃
m≥0 levelm(t1). We proceed by induction on m. For m = 0 we have

levelm(t1) = {root(t1)}, h1(root(t1)) = b0 = h2(root(t2)) = h2(α(root(t1))). We
suppose h1(i) = h2(α(i)) for every i ∈ levelk−1(t1). Let be i ∈ levelk(t1). There
is u = [(j, r1), . . . , (j, rs)] ∈ R1 and there is p ∈ {1, . . . , s} such that rp = i. The
values of α are taken from R2, therefore α(u) ∈ R2. But t1 and t2 belong to
Treeω(b0) and α(u) = [(α(j), α(r1)), . . . , (α(j), α(rs))]. It follows that ω2(h1(j)) =
(h1(r1), . . . , h1(rs)), ω2(h2(α(j))) = (h2(α(r1)), . . . , h2(α(rs))). On the other hand
j ∈ levelk−1t1 and by the inductive assumption we have h1(j) = h2(α(j)). It fol-
lows that ω2(h1(j)) = ω2(h2(α(j))) therefore h1(rp) = h2(α(rp)). Thus we have
h1(i) = h2(α(i)).
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Proposition 6.4 The binary relation � is reflexive and transitive.

Proof. Immediate, by the fact that the superposition of two injective function is an
injective one.

Proposition 6.5 Let be t1 = (A1, R1, h1) ∈ Treeω(b0), t2 = (A2, R2, h2) ∈ Treeω(b0).
We have t1 ≈ t2 iff there is a bijective mapping α : A1 −→ A2 such that:

• α(root(t1)) = root(t2)

• α(u) ∈ R2 for every u ∈ R1

Proof. Suppose t1 ≈ t2. By Proposition 6.3 we deduce that there are the injective
mappings α1 : A1 −→ A2 and α2 : A2 −→ A1 such that α1(u) ∈ R2 for every u ∈ R1

and α2(v) ∈ R1 for every v ∈ R2. It follows that Card(A1) ≤ Card(A2) ≤ Card(A1),
therefore α1 is a bijective mapping because A1 and A2 are finite sets. The di-
rect implication is proved. Let us consider a mapping α : A1 −→ A2 such that
α(root(t1)) = root(t2) and α(u) ∈ R2 for every u ∈ R1. We shall prove that t1 ≈ t2.
By Proposition 6.3 we have t1 � t2. There is α−1 : A2 −→ A1 and moreover, we
have α−1(root(t2)) = α−1(α(root(t1))) = root(t1). We shall prove that α−1(v) ∈ R1

for every v ∈ R2. We take v = [(i, i1), . . . , (i, is)] ∈ R2, where i, i1, . . . , is ∈ A2.
We obtain α−1(v) = [(α−1(i), α−1(i1)), . . . , (α−1(i), α−1(is))]. Taking the direct
descendants of α−1(i) in t1 we obtain u = [(α−1(i), k1), . . . , (α−1(i), kp)] ∈ R1.
By the properties verified by α we have α(u) = [(i, α(k1)), . . . , (i, α(kp))] ∈ R2

and we have also v = [(i, i1), . . . , (i, is)] ∈ R2. It follows p = s and α(k1) =
i1, . . . , α(kp) = ip. Equivalently we have k1 = α−1(i1), . . . , kp = α−1(ip) therefore
α−1(v) = [(α−1(i), k1), . . . , (α−1(i), kp)] = u ∈ R1. By Proposition 6.3 we have
t2 � t1 and the proof is complete.

Proposition 6.6 The definition of the relation � on Treeω(b0)/≈ does not depend
on the representatives.

Proof. Let us suppose t1 � t2 and t′1 ≈ t1, t′2 ≈ t2. We have t′1 � t1, t1 � t2 and
t2 � t′2. By transitivity we have t′1 � t′2.

Proposition 6.7 The binary relation � on Treeω(b0)/≈ is reflexive, antisymmetric
and transitive, therefore it is a partial order.

Proof. If [t1] � [t2] and [t2] � [t1] then t1 � t2 and t2 � t1. Thus we have [t1] = [t2].
The reflexivity and transitivity is obtained from the corresponding properties for the
relation � on Treeω(b0).

Proposition 6.8 Let be t1, t2 ∈ Treeω(b0). If t1 � t2 then S(t1) ⊆ S(t2).

Proof. Let be t1 = (A1, R1, h1) and t2 = (A2, R2, h2) such that t1 ≤ t2. If
((l1, . . . , ls), (b1, . . . , bs)) ∈ S(t1) then there is (1, i1, . . . , is) ∈ Path(t1) such that
(1, i1) ∈ R

(l1)
1 , (i1, i2) ∈ R

(l2)
1 , . . ., (is−1, is) ∈ R

(ls)
1 . Using Proposition 6.1, from

t1 � t2 it follows that (α(1), α(i1)) ∈ R
(l1)
2 , (α(i1), α(i2)) ∈ R

(l2)
2 , . . ., (α(is−1), α(is)) ∈

R
(ls)
2 . Since α(1) = 1 we deduce that (1, α(i1), . . . , α(is)) ∈ Path(t2). Moreover,

h2(α(i1)) = h1(i1) = b1, . . ., h2(α(is)) = h1(is) = bs. Thus ((l1, . . . , ls), (b1, . . . , bs))∈
S(t2).
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Proposition 6.9 Let be t1, t2 ∈ Treeω(b0). If S(t1) ⊆ S(t2) then t1 � t2.

Proof. We use the same notations as in the previous proposition. In order to
prove that t1 � t2 we must define an injective mapping α : A1 −→ A2 satisfying
Definition 2.3. We define α(1) = 1. Let be i ∈ A1 \{1} an arbitrary element. There
is (1, i1, . . . , is) ∈ Path(t1) such that is = i. We consider Ht2(H

−1
t1 (1, i1, . . . , is)) =

(1, j1, . . . , js) and define α(i) = js. The mapping α is well defined since for every
i ∈ A1 \ {1} there is only one path (1, i1, . . . , is) such that is = i and on the other
hand S(t1) ⊆ S(t2), therefore Ht2 can be composed with H−1

t1 .
It is not difficult to verify by induction on s that if (1, i1, . . . , is) ∈ Path(t1) then

Ht2(H
−1
t1 (1, i1, . . . , is)) = (1, α(i1), . . . , α(is))

Moreover, if (ir−1, ir) ∈ R
(lr)
1 then (α(ir−1), α(ir)) ∈ R

(lr)
2 , where r ∈ {1, . . . , s} and

i0 = 1. Really, if ((l1, . . . , ls), (b1, . . . , bs)) = H−1
t1 (1, i1, . . . , is) and

Ht2((l1, . . . , ls), (b1, . . . , bs)) = (1, α(i1), . . . , α(is)) then by the definition of Ht2 we
have (1, α(i1)) ∈ R

(l1)
2 , . . .,(α(is−1), α(is)) ∈ R

(ls)
2 .

Let us prove that α satisfies the conditions of Definition 2.3. Since t1, t2 ∈ Treeω(b0)
we have h1(1) = h2(1) = b0 therefore h2(α(1)) = h1(1). Let us verify that h2(α(i)) =
h1(i) for every i ∈ A1\{1}. Let be ((l1, . . . , ls), (b1, . . . , bs))=H−1

t1 (1, i1, . . . , is), where
is = i. Then Ht2((l1, . . . , ls), (b1, . . . , bs)) = (1, α(i1), . . . , α(is)) and by the definition
of Ht2 we have h2(α(is)) = bs, therefore h2(α(i)) = h1(i).
We verify now that if u ∈ R1 then α(u) ⊆ v for some v ∈ R2. Let be u =
[(i, i1), . . . , (i, is)] ∈ R1. Then (i, ij) ∈ R

(j)
1 for j ∈ {1, . . . , s}. Therefore (α(i), α(ij)) ∈

R
(j)
2 for j ∈ {1, . . . , s}. It follows that there is v ∈ R2 such that α(u) = pr1,...,sv, that

is α(u) ⊆ v.
Let us verify that α is an injective mapping. Let be i, k ∈ A1 \ {1} such that
α(i) = α(k). There are (1, i1, . . . , ip, i), (1, j1, . . . , jq, k) in Path(t1), therefore

Ht2(H
−1
t1 (1, i1, . . . , ip, i)) = (1, α(i1), . . . , α(ip), α(i)) ∈ Path(t2)

Ht2(H
−1
t1 (1, j1, . . . , jq, k)) = (1, α(j1), . . . , α(jq), α(k)) ∈ Path(t2)

Since t2 is a tree and α(i) = α(k) we deduce p = q, α(ir) = α(jr) for r = 1, . . . , p.
But Ht2 and Ht1 are bijective mappings, therefore (1, i1, . . . , ip, i) = (1, j1, . . . , jp, k).
Thus i = k.
We have also α(i) 6= 1 for every i 6= 1. Really, if α(i) = α(1) for i 6= 1 then there is a
path (1, . . . , i) ∈ Path(t1), therefore (1, . . . , α(i)) ∈ Path(t2), which is not true since
α(i) = 1.

Proposition 6.10 Let X ⊆
⋃

k≥1 Nk × Lk be a finite set. There is t ∈ Treeω(b0)
such that S(t) = X iff X satisfies the ω − b0-conditions.

Proof. Let be t = (A,R, h) ∈ Treeω(b0). We shall verify that S(t) satisfies the
ω − b0-conditions. The element ((l, bl)) belongs to S(t) iff there is (1, i) ∈ R(l) such
that h(i) = bl. Let be [(1, i1), . . . , (1, is)] ∈ R. Since t is an ω-labelled tree and more-
over, t ∈ Treeω(b0), it follows that s = ω1(h(1)) = ω1(b0) and (h(i1), . . . , h(is)) =
ω2(h(1)) = ω2(b0). It follows that there is (1, i) ∈ R(l) such that h(i) = bl iff
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l ∈ {1, . . . , ω1(b0)} and bl = prlω2(b0). Thus the condition ω1 is satisfied.
Let us consider an element ((l1, . . . , lk, l), (b1, . . . , bk, a)) ∈ S(t) and let us denote

Ht((l1, . . . , lk, l), (b1, . . . , bk, a)) = (1, i1, . . . , ik, i)

By the definition of S(t) we deduce that (1, i1) ∈ R(l1), (i1, i2) ∈ R(l2), . . ., (ik−1, ik) ∈
R(lk), (ik, i) ∈ R(l), h(i1) = b1, . . ., h(ik) = bk, h(i) = a. Obviously
((l1, . . . , lk), (b1, . . . , bk)) ∈ S(t). Since (ik, i) ∈ R(l) we deduce that there is u =
[(ik, j1), . . . , (ik, js)] ∈ R such that i = jl. Because t is an ω-labelled tree we have
s = ω1(h(ik)) = ω1(bk) and l ∈ {1, . . . , s}= {1, . . . , ω1(bk)}. Moreover, ω2(bk) =
ω2(h(ik)) = (h(j1), . . . , h(js)), therefore prlω2(bk) = h(jl) = h(i) = a. Since
(1, i1, . . . , ik) ∈ Path(t) and [(ik, j1), . . . , (ik, js)] ∈ R we deduce
{(1, i1, . . . , ik, j1), . . . , (1, i1, . . . , ik, js)} ⊆ Path(t). The mapping Ht is a bijective
one, therefore {H−1

t (1, i1, . . . , ik, j1), . . . ,H−1
t (1, i1, . . . , ik, js)} ⊆ S(t). But

H−1
t (1, i1, . . . , ik, jm) = ((l1, . . . , lk,m), (b1, . . . , bk, h(jm)))

for m ∈ {1, . . . , s}, ω2(bk) = (h(j1), . . . , h(js)) and s = ω1(bk).
Conversely, we suppose that X satisfies the ω-b0-conditions. We build a tree t ∈
Treeω(b0) recursively, taking into account the levels of the set X. We apply the
following algorithm:

Algorithm 6.1

A := {1}; h(1) = b0; R := ∅; n1 := ω1(b0) + 1;

A := A ∪ {2, . . . , n1}; (b1, . . . , bn1−1) := ω2(b0);

for i ∈ {1, . . . , n1 − 1} do

H1((i), (bi)) := (1, i + 1); h(i + 1) := bi;

endfor

R := R ∪ {[(1, 2), . . . , (1, n1)]; m := max{k | levk(X) 6= ∅};

for k = 1 to m− 1 do

Bk = pr1,...,klevk+1(X); pk := Card(Bk); denote Bk = {z1, . . . , zpk};
for s = 1 to pk do

denote zs = ((l1, . . . , lk), (b1, . . . , bk));
n := Card(A); (1, i1, . . . , ik) := Hk(zs);
A := A ∪ {n + 1, . . . , n + ω1(bk)}; (a1, . . . , aω1(bk)) := ω2(bk);

for l ∈ {1, . . . , ω1(bk)} do
Hk+1((l1, . . . , lk, l), (b1, . . . , bk, al)) := (1, i1, . . . , ik, n + l);
h(n + l) := al;

endfor
R := R ∪ {[(ik, n + 1), . . . , (ik, n + ω1(bk))]};

endfor
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endfor

End of algorithm
We obtain the tree t = (A,R, h) ∈ Treeω(b0). We observe that for every l ∈

{1, . . . , ω1(bk)} we have

Hk+1((l1, . . . , lk, l), (b1, . . . , bk, al)) = (1, i1, . . . , ik, jl)

iff Hk((l1, . . . , lk), (b1, . . . , bk)) = (1, i1, . . . , ik), h(jl) = al and (ik, jl) ∈ R(l). Now,
we can verify by induction on k that levk(X) = levk(S(t)) for every k ∈ {1, . . . ,m},
therefore X = S(t).

Proposition 6.11 If X1 and X2 satisfy the ω-b0-conditions then X1∩X2 and X1∪X2

satisfy also the ω-b0-conditions.

Proof. Obviously, the conditions ω1 and ω2 are satisfied.

Theorem 6.1 (Treeω(b0)/≈,∨,∧) is a lattice.

Proof. Let be [t1], [t2] ∈ Treeω(b0)/≈. We take X = S(t1)∩S(t2). Since S(t1) and
S(t2) statisfy the ω-b0-conditions it follows that X satisfies also these conditions. Thus
there is t∗ ∈ Treeω(b0) such that X = S(t∗). Applying Proposition 6.9 we deduce
t∗ � t1 and t∗ � t2, therefore [t∗] � [t1] and [t∗] � [t2]. Let be t0 ∈ Treeω(b0) such
that [t0] � [t1] and [t0] � [t2]. Applying Proposition 6.8 we obtain S(t0) ⊆ S(t1)
and S(t0) ⊆ S(t2), therefore S(t0) ⊆ X. By Proposition 6.9 we have [t0] � [t∗].
Thus we have [t∗] = inf{[t1], [t2]}. But [t∗] = [t1] ∧ [t2], therefore [t1] ∧ [t2] =
inf{[t1], [t2]}. Similarly, we have sup{[t1], [t2]}=[t∗∗], where S(t∗∗) = S(t1) ∪ S(t2)
and [t1] ∨ [t2] = sup{[t1], [t2]}.
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[9] N. Ţăndăreanu, Lattices of labelled ordered trees (II), in preparation

[10] G. Wagner, Vivid Logic, Knowledge-Based Reasoning with Two Kinds of Nega-
tion, Lecture Notes in Artificial Intelligence 764 (Springer Verlag, 1994).

Author’s address:

Nicolae Ţăndăreanu
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