
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

c©1997 by CRC Press, Inc.

Chapter�
Pseudorandom Bits and Sequences

Contents in Brief

5.1 Introduction . 169
5.2 Random bit generation . 171
5.3 Pseudorandom bit generation . 173
5.4 Statistical tests . 175
5.5 Cryptographically secure pseudorandom bit generation 185
5.6 Notes and further references . 187

5.1 Introduction

The security of many cryptographic systems depends upon the generation of unpredictable
quantities. Examples include the keystream in the one-time pad (§1.5.4), the secret key in
the DES encryption algorithm (§7.4.2), the primes p, q in the RSA encryption (§8.2) and
digital signature (§11.3.1) schemes, the private key a in the DSA (§11.5.1), and the chal-
lenges used in challenge-response identification systems (§10.3). In all these cases, the
quantities generated must be of sufficient size and be “random” in the sense that the proba-
bility of any particular value being selected must be sufficiently small to preclude an adver-
sary from gaining advantage throughoptimizing a search strategy based on such probability.
For example, the key space for DES has size 256. If a secret key k were selected using a
true random generator, an adversary would on average have to try 255 possible keys before
guessing the correct key k. If, on the other hand, a key k were selected by first choosing a
16-bit random secret s, and then expanding it into a 56-bit key k using a complicated but
publicly known function f , the adversary would on average only need to try 215 possible
keys (obtained by running every possible value for s through the function f).

This chapter considers techniques for the generation of random and pseudorandom
bits and numbers. Related techniques for pseudorandom bit generation that are generally
discussed in the literature in the context of stream ciphers, including linear and nonlinear
feedback shift registers (Chapter 6) and the output feedback mode (OFB) of block ciphers
(Chapter 7), are addressed elsewhere in this book.

Chapter outline

The remainder of §5.1 introduces basic concepts relevant to random and pseudorandom
bit generation. §5.2 considers techniques for random bit generation, while §5.3 considers
some techniques for pseudorandom bit generation. §5.4 describes statistical tests designed

169

170 Ch. 5 Pseudorandom Bits and Sequences

to measure the quality of a random bit generator. Cryptographically secure pseudorandom
bit generators are the topic of §5.5. §5.6 concludes with references and further chapter notes.

5.1.1 Background and Classification

5.1 Definition A random bit generator is a device or algorithm which outputs a sequence of
statistically independent and unbiased binary digits.

5.2 Remark (random bits vs. random numbers) A random bit generator can be used to gener-
ate (uniformly distributed) random numbers. For example, a random integer in the interval
[0, n] can be obtained by generating a random bit sequence of length �lgn� + 1, and con-
verting it to an integer; if the resulting integer exceeds n, one option is to discard it and
generate a new random bit sequence.

§5.2 outlines some physical sources of random bits that are used in practice. Ideally,
secrets required in cryptographic algorithms and protocols should be generated with a (true)
random bit generator. However, the generation of random bits is an inefficient procedure in
most practical environments. Moreover, it may be impractical to securely store and transmit
a large number of random bits if these are required in applications such as the one-time pad
(§6.1.1). In such situations, the problem can be ameliorated by substituting a random bit
generator with a pseudorandom bit generator.

5.3 Definition A pseudorandom bit generator (PRBG) is a deterministic1 algorithm which,
given a truly random binary sequence of lengthk, outputs a binary sequence of length l � k
which “appears” to be random. The input to the PRBG is called the seed, while the output
of the PRBG is called a pseudorandom bit sequence.

The output of a PRBG is not random; in fact, the number of possible output sequences is at
most a small fraction, namely 2k/2l, of all possible binary sequences of length l. The intent
is to take a small truly random sequence and expand it to a sequence of much larger length,
in such a way that an adversary cannot efficiently distinguish between output sequences of
the PRBG and truly random sequences of length l. §5.3 discusses ad-hoc techniques for
pseudorandom bit generation. In order to gain confidence that such generators are secure,
they should be subjected to a variety of statistical tests designed to detect the specific char-
acteristics expected of random sequences. A collection of such tests is given in §5.4. As
the following example demonstrates, passing these statistical tests is a necessary but not
sufficient condition for a generator to be secure.

5.4 Example (linear congruential generators) A linear congruential generator produces a
pseudorandom sequence of numbers x1, x2, x3, . . . according to the linear recurrence

xn = axn−1 + b mod m, n ≥ 1;

integersa, b, andm are parameters which characterize the generator, whilex0 is the (secret)
seed. While such generators are commonly used for simulation purposes and probabilistic
algorithms, and pass the statistical tests of §5.4, they are predictable and hence entirely in-
secure for cryptographic purposes: given a partial output sequence, the remainder of the
sequence can be reconstructed even if the parameters a, b, andm are unknown. �
1Deterministic here means that given the same initial seed, the generator will always produce the same output

sequence.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.2 Random bit generation 171

A minimum security requirement for a pseudorandom bit generator is that the length
k of the random seed should be sufficiently large so that a search over 2k elements (the
total number of possible seeds) is infeasible for the adversary. Two general requirements
are that the output sequences of a PRBG should be statistically indistinguishable from truly
random sequences, and the output bits should be unpredictable to an adversary with limited
computational resources; these requirements are captured in Definitions 5.5 and 5.6.

5.5 Definition A pseudorandom bit generator is said to pass all polynomial-time2 statistical
tests if no polynomial-time algorithm can correctly distinguish between an output sequence
of the generator and a truly random sequence of the same length with probability signifi-
cantly greater that 12 .

5.6 Definition A pseudorandom bit generator is said to pass the next-bit test if there is no
polynomial-time algorithm which, on input of the first l bits of an output sequence s, can
predict the (l + 1)st bit of s with probability significantly greater than 12 .

Although Definition 5.5 appears to impose a more stringent security requirement on
pseudorandom bit generators than Definition 5.6 does, the next result asserts that they are,
in fact, equivalent.

5.7 Fact (universality of the next-bit test) A pseudorandom bit generator passes the next-bit
test if and only if it passes all polynomial-time statistical tests.

5.8 Definition A PRBG that passes the next-bit test (possibly under some plausible but un-
proved mathematical assumption such as the intractability of factoring integers) is called a
cryptographically secure pseudorandom bit generator (CSPRBG).

5.9 Remark (asymptotic nature of Definitions 5.5, 5.6, and 5.8) Each of the three definitions
above are given in complexity-theoretic terms and are asymptotic in nature because the no-
tion of “polynomial-time” is meaningful for asymptotically large inputs only; the resulting
notions of security are relative in the same sense. To be more precise in Definitions 5.5, 5.6,
5.8, and Fact 5.7, a pseudorandom bit generator is actually a family of such PRBGs. Thus
the theoretical security results for a family of PRBGs are only an indirect indication about
the security of individual members.

Two cryptographically secure pseudorandom bit generators are presented in §5.5.

5.2 Random bit generation

A (true) random bit generator requires a naturally occurring source of randomness. De-
signing a hardware device or software program to exploit this randomness and produce a
bit sequence that is free of biases and correlations is a difficult task. Additionally, for most
cryptographic applications, the generator must not be subject to observation or manipula-
tion by an adversary. This section surveys some potential sources of random bits.

Random bit generators based on natural sources of randomness are subject to influence
by external factors, and also to malfunction. It is imperative that such devices be tested
periodically, for example by using the statistical tests of §5.4.

2The running time of the test is bounded by a polynomial in the length l of the output sequence.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

172 Ch. 5 Pseudorandom Bits and Sequences

(i) Hardware-based generators

Hardware-based random bit generators exploit the randomness which occurs in some phys-
ical phenomena. Such physical processes may produce bits that are biased or correlated, in
which case they should be subjected to de-skewing techniques mentioned in (iii) below.
Examples of such physical phenomena include:

1. elapsed time between emission of particles during radioactive decay;
2. thermal noise from a semiconductor diode or resistor;
3. the frequency instability of a free running oscillator;
4. the amount a metal insulator semiconductor capacitor is charged during a fixed period

of time;
5. air turbulence within a sealed disk drive which causes random fluctuations in disk

drive sector read latency times; and
6. sound from a microphone or video input from a camera.

Generators based on the first two phenomena would, in general, have to be built externally
to the device using the random bits, and hence may be subject to observation or manipula-
tion by an adversary. Generators based on oscillators and capacitors can be built on VLSI
devices; they can be enclosed in tamper-resistant hardware, and hence shielded from active
adversaries.

(ii) Software-based generators

Designing a random bit generator in software is even more difficult than doing so in hard-
ware. Processes upon which software random bit generators may be based include:

1. the system clock;
2. elapsed time between keystrokes or mouse movement;
3. content of input/output buffers;
4. user input; and
5. operating system values such as system load and network statistics.

The behavior of such processes can vary considerably depending on various factors, such
as the computer platform. It may also be difficult to prevent an adversary from observing or
manipulating these processes. For instance, if the adversary has a rough idea of when a ran-
dom sequence was generated, she can guess the content of the system clock at that time with
a high degree of accuracy. A well-designed software random bit generator should utilize as
many good sources of randomness as are available. Using many sources guards against the
possibility of a few of the sources failing, or being observed or manipulated by an adver-
sary. Each source should be sampled, and the sampled sequences should be combined using
a complex mixing function; one recommended technique for accomplishing this is to apply
a cryptographic hash function such as SHA-1 (Algorithm 9.53) or MD5 (Algorithm 9.51) to
a concatenation of the sampled sequences. The purpose of the mixing function is to distill
the (true) random bits from the sampled sequences.

(iii) De-skewing

A natural source of random bits may be defective in that the output bits may be biased (the
probability of the source emitting a 1 is not equal to 1

2) or correlated (the probability of
the source emitting a 1 depends on previous bits emitted). There are various techniques for
generating truly random bit sequences from the output bits of such a defective generator;
such techniques are called de-skewing techniques.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.3 Pseudorandom bit generation 173

5.10 Example (removing biases in output bits) Suppose that a generator produces biased but
uncorrelated bits. Suppose that the probability of a 1 is p, and the probability of a 0 is 1−p,
where p is unknown but fixed, 0 < p < 1. If the output sequence of such a generator is
grouped into pairs of bits, with a 10 pair transformed to a 1, a 01 pair transformed to a 0, and
00 and 11 pairs discarded, then the resulting sequence is both unbiased and uncorrelated.�

A practical (although not provable) de-skewing technique is to pass sequences whose
bits are biased or correlated through a cryptographic hash function such as SHA-1 or MD5.

5.3 Pseudorandom bit generation

A one-way function f (Definition 1.12) can be utilized to generate pseudorandom bit se-
quences (Definition 5.3) by first selecting a random seed s, and then applying the function to
the sequence of values s, s+1, s+2, . . . ; the output sequence is f(s), f(s+1), f(s+2),
Depending on the properties of the one-way function used, it may be necessary to only keep
a few bits of the output values f(s + i) in order to remove possible correlations between
successive values. Examples of suitable one-way functions f include a cryptographic hash
function such as SHA-1 (Algorithm 9.53), or a block cipher such as DES (§7.4) with secret
key k.

Although such ad-hoc methods have not been proven to be cryptographically secure,
they appear sufficient for most applications. Two such methods for pseudorandom bit and
number generation which have been standardized are presented in §5.3.1 and §5.3.2. Tech-
niques for the cryptographically secure generation of pseudorandom bits are given in §5.5.

5.3.1 ANSI X9.17 generator

Algorithm 5.11 is a U.S. Federal Information Processing Standard (FIPS) approved method
from the ANSI X9.17 standard for the purpose of pseudorandomly generating keys and
initialization vectors for use with DES. Ek denotes DES E-D-E two-key triple-encryption
(Definition 7.32) under a key k; the key k should be reserved exclusively for use in this
algorithm.

5.11 Algorithm ANSI X9.17 pseudorandom bit generator

INPUT: a random (and secret) 64-bit seed s, integerm, and DES E-D-E encryption key k.
OUTPUT:m pseudorandom 64-bit strings x1, x2, . . . , xm.

1. Compute the intermediate value I = Ek(D), where D is a 64-bit representation of
the date/time to as fine a resolution as is available.

2. For i from 1 tom do the following:
2.1 xi←Ek(I ⊕ s).
2.2 s←Ek(xi ⊕ I).

3. Return(x1, x2, . . . , xm).

Each output bitstring xi may be used as an initialization vector (IV) for one of the DES
modes of operation (§7.2.2). To obtain a DES key from xi, every eighth bit of xi should be
reset to odd parity (cf. §7.4.2).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

174 Ch. 5 Pseudorandom Bits and Sequences

5.3.2 FIPS 186 generator

The algorithms presented in this subsection are FIPS-approved methods for pseudorandom-
ly generating the secret parameters for the DSA (§11.5.1). Algorithm 5.12 generates DSA
private keys a, while Algorithm 5.14 generates the per-message secrets k to be used in sign-
ing messages. Both algorithms use a secret seed swhich should be randomly generated, and
utilize a one-way function constructed by using either SHA-1 (Algorithm 9.53) or DES (Al-
gorithm 7.82), respectively described in Algorithms 5.15 and 5.16.

5.12 Algorithm FIPS 186 pseudorandom number generator for DSA private keys

INPUT: an integerm and a 160-bit prime number q.
OUTPUT:m pseudorandom numbers a1, a2, . . . , am in the interval [0, q − 1] which may
be used as DSA private keys.

1. If Algorithm 5.15 is to be used in step 4.3 then select an arbitrary integer b, 160 ≤
b ≤ 512; if Algorithm 5.16 is to be used then set b←160.

2. Generate a random (and secret) b-bit seed s.
3. Define the 160-bit string t = 67452301 efcdab89 98badcfe 10325476

c3d2e1f0 (in hexadecimal).
4. For i from 1 tom do the following:

4.1 (optional user input) Either select a b-bit string yi, or set yi←0.
4.2 zi←(s+ yi) mod 2b.
4.3 ai←G(t, zi) mod q. (G is either that defined in Algorithm 5.15 or 5.16.)
4.4 s←(1 + s+ ai) mod 2b.

5. Return(a1, a2, . . . , am).

5.13 Note (optional user input) Algorithm 5.12 permits a user to augment the seed s with ran-
dom or pseudorandom strings derived from alternate sources. The user may desire to do
this if she does not trust the quality or integrity of the random bit generator which may be
built into a cryptographic module implementing the algorithm.

5.14 Algorithm FIPS 186 pseudorandom number generator for DSA per-message secrets

INPUT: an integerm and a 160-bit prime number q.
OUTPUT:m pseudorandom numbers k1, k2, . . . , km in the interval [0, q − 1] which may
be used as the per-message secret numbers k in the DSA.

1. If Algorithm 5.15 is to be used in step 4.1 then select an integer b, 160 ≤ b ≤ 512;
if Algorithm 5.16 is to be used then set b←160.

2. Generate a random (and secret) b-bit seed s.
3. Define the 160-bit string t = efcdab89 98badcfe 10325476 c3d2e1f0

67452301 (in hexadecimal).
4. For i from 1 tom do the following:

4.1 ki←G(t, s) mod q. (G is either that defined in Algorithm 5.15 or 5.16.)
4.2 s←(1 + s+ ki) mod 2b.

5. Return(k1, k2, . . . , km).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 175

5.15 Algorithm FIPS 186 one-way function using SHA-1

INPUT: a 160-bit string t and a b-bit string c, 160 ≤ b ≤ 512.
OUTPUT: a 160-bit string denotedG(t, c).

1. Break up t into five 32-bit blocks: t = H1‖H2‖H3‖H4‖H5.
2. Pad c with 0’s to obtain a 512-bit message block: X←c‖0512−b.
3. DivideX into 16 32-bit words: x0x1 . . . x15, and setm←1.
4. Execute step 4 of SHA-1 (Algorithm 9.53). (This alters the Hi’s.)
5. The output is the concatenation: G(t, c) = H1‖H2‖H3‖H4‖H5.

5.16 Algorithm FIPS 186 one-way function using DES

INPUT: two 160-bit strings t and c.
OUTPUT: a 160-bit string denotedG(t, c).

1. Break up t into five 32-bit blocks: t = t0‖t1‖t2‖t3‖t4.
2. Break up c into five 32-bit blocks: c = c0‖c1‖c2‖c3‖c4.
3. For i from 0 to 4 do the following: xi←ti ⊕ ci.
4. For i from 0 to 4 do the following:

4.1 b1←c(i+4)mod5, b2←c(i+3)mod5.
4.2 a1←xi, a2←x(i+1)mod5 ⊕ x(i+4)mod5.
4.3 A←a1‖a2, B←b′1‖b2, where b′1 denotes the 24 least significant bits of b1.
4.4 Use DES with key B to encryptA: yi←DESB(A).
4.5 Break up yi into two 32-bit blocks: yi = Li‖Ri.

5. For i from 0 to 4 do the following: zi←Li ⊕R(i+2)mod5 ⊕ L(i+3)mod5.
6. The output is the concatenation: G(t, c) = z0‖z1‖z2‖z3‖z4.

5.4 Statistical tests

This section presents some tests designed to measure the quality of a generator purported
to be a random bit generator (Definition 5.1). While it is impossible to give a mathematical
proof that a generator is indeed a random bit generator, the tests described here help detect
certain kinds of weaknesses the generator may have. This is accomplished by taking a sam-
ple output sequence of the generator and subjecting it to various statistical tests. Each statis-
tical test determines whether the sequence possesses a certain attribute that a truly random
sequence would be likely to exhibit; the conclusion of each test is not definite, but rather
probabilistic. An example of such an attribute is that the sequence should have roughly the
same number of 0’s as 1’s. If the sequence is deemed to have failed any one of the statistical
tests, the generator may be rejected as being non-random; alternatively, the generator may
be subjected to further testing. On the other hand, if the sequence passes all of the statisti-
cal tests, the generator is accepted as being random. More precisely, the term “accepted”
should be replaced by “not rejected”, since passing the tests merely provides probabilistic
evidence that the generator produces sequences which have certain characteristics of ran-
dom sequences.
§5.4.1 and §5.4.2 provide some relevant background in statistics. §5.4.3 establishes

some notation and lists Golomb’s randomness postulates. Specific statistical tests for ran-
domness are described in §5.4.4 and §5.4.5.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

176 Ch. 5 Pseudorandom Bits and Sequences

5.4.1 The normal and chi-square distributions

The normal and χ2 distributions are widely used in statistical applications.

5.17 Definition If the result X of an experiment can be any real number, then X is said to be
a continuous random variable.

5.18 Definition A probability density function of a continuous random variableX is a function
f(x) which can be integrated and satisfies:

(i) f(x) ≥ 0 for all x ∈ R;
(ii)
∫∞
−∞ f(x) dx = 1; and

(iii) for all a, b ∈ R, P (a < X ≤ b) =
∫ b
a
f(x) dx.

(i) The normal distribution

The normal distribution arises in practice when a large number of independent random vari-
ables having the same mean and variance are summed.

5.19 Definition A (continuous) random variableX has a normal distribution with mean µ and
variance σ2 if its probability density function is defined by

f(x) =
1

σ
√
2π
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞.

Notation: X is said to be N(µ, σ2). If X is N(0, 1), then X is said to have a standard
normal distribution.

A graph of the N(0, 1) distribution is given in Figure 5.1. The graph is symmetric

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3x

f(x)

Figure 5.1: The normal distribution N(0, 1).

about the vertical axis, and hence P (X > x) = P (X < −x) for any x. Table 5.1 gives
some percentiles for the standard normal distribution. For example, the entry (α = 0.05,
x = 1.6449) means that if X is N(0, 1), thenX exceeds 1.6449 about 5% of the time.

Fact 5.20 can be used to reduce questions about a normal distribution to questions about
the standard normal distribution.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 177

α 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

x 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905

Table 5.1: Selected percentiles of the standard normal distribution. IfX is a random variable having
a standard normal distribution, then P (X > x) = α.

5.20 Fact If the random variableX is N(µ, σ2), then the random variable Z = (X − µ)/σ is
N(0, 1).

(ii) The χ2 distribution

The χ2 distribution can be used to compare the goodness-of-fit of the observed frequencies
of events to their expected frequencies under a hypothesized distribution. The χ2 distribu-
tion with v degrees of freedom arises in practice when the squares of v independent random
variables having standard normal distributions are summed.

5.21 Definition Let v≥1 be an integer. A (continuous) random variableX has a χ2 (chi-squ-
are) distribution with v degrees of freedom if its probability density function is defined by

f(x) =

⎧⎨
⎩

1

Γ(v/2)2v/2
x(v/2)−1e−x/2, 0 ≤ x <∞,

0, x < 0,

where Γ is the gamma function.3 The mean and variance of this distribution are µ = v,
and σ2 = 2v.

A graph of the χ2 distribution with v = 7 degrees of freedom is given in Figure 5.2.
Table 5.2 gives some percentiles of the χ2 distribution for various degrees of freedom. For

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20
x

f(x)

Figure 5.2: The χ2 (chi-square) distribution with v = 7 degrees of freedom.

example, the entry in row v = 5 and column α = 0.05 is x = 11.0705; this means that if
X has a χ2 distribution with 5 degrees of freedom, then X exceeds 11.0705 about 5% of
the time.
3The gamma function is defined by Γ(t) =

∫∞
0 x

t−1e−xdx, for t > 0.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

178 Ch. 5 Pseudorandom Bits and Sequences

α

v 0.100 0.050 0.025 0.010 0.005 0.001

1 2.7055 3.8415 5.0239 6.6349 7.8794 10.8276
2 4.6052 5.9915 7.3778 9.2103 10.5966 13.8155
3 6.2514 7.8147 9.3484 11.3449 12.8382 16.2662
4 7.7794 9.4877 11.1433 13.2767 14.8603 18.4668
5 9.2364 11.0705 12.8325 15.0863 16.7496 20.5150
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.4577
7 12.0170 14.0671 16.0128 18.4753 20.2777 24.3219
8 13.3616 15.5073 17.5345 20.0902 21.9550 26.1245
9 14.6837 16.9190 19.0228 21.6660 23.5894 27.8772

10 15.9872 18.3070 20.4832 23.2093 25.1882 29.5883
11 17.2750 19.6751 21.9200 24.7250 26.7568 31.2641
12 18.5493 21.0261 23.3367 26.2170 28.2995 32.9095
13 19.8119 22.3620 24.7356 27.6882 29.8195 34.5282
14 21.0641 23.6848 26.1189 29.1412 31.3193 36.1233
15 22.3071 24.9958 27.4884 30.5779 32.8013 37.6973
16 23.5418 26.2962 28.8454 31.9999 34.2672 39.2524
17 24.7690 27.5871 30.1910 33.4087 35.7185 40.7902
18 25.9894 28.8693 31.5264 34.8053 37.1565 42.3124
19 27.2036 30.1435 32.8523 36.1909 38.5823 43.8202
20 28.4120 31.4104 34.1696 37.5662 39.9968 45.3147
21 29.6151 32.6706 35.4789 38.9322 41.4011 46.7970
22 30.8133 33.9244 36.7807 40.2894 42.7957 48.2679
23 32.0069 35.1725 38.0756 41.6384 44.1813 49.7282
24 33.1962 36.4150 39.3641 42.9798 45.5585 51.1786
25 34.3816 37.6525 40.6465 44.3141 46.9279 52.6197
26 35.5632 38.8851 41.9232 45.6417 48.2899 54.0520
27 36.7412 40.1133 43.1945 46.9629 49.6449 55.4760
28 37.9159 41.3371 44.4608 48.2782 50.9934 56.8923
29 39.0875 42.5570 45.7223 49.5879 52.3356 58.3012
30 40.2560 43.7730 46.9792 50.8922 53.6720 59.7031
31 41.4217 44.9853 48.2319 52.1914 55.0027 61.0983
63 77.7454 82.5287 86.8296 92.0100 95.6493 103.4424

127 147.8048 154.3015 160.0858 166.9874 171.7961 181.9930
255 284.3359 293.2478 301.1250 310.4574 316.9194 330.5197
511 552.3739 564.6961 575.5298 588.2978 597.0978 615.5149

1023 1081.3794 1098.5208 1113.5334 1131.1587 1143.2653 1168.4972

Table 5.2: Selected percentiles of the χ2 (chi-square) distribution. A (v, α)-entry of x in the table
has the following meaning: if X is a random variable having a χ2 distribution with v degrees of
freedom, then P (X > x) = α.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 179

Fact 5.22 relates the normal distribution to the χ2 distribution.

5.22 Fact If the random variableX is N(µ, σ2), σ2 > 0, then the random variable Z = (X −
µ)2/σ2 has a χ2 distribution with 1 degree of freedom. In particular, ifX is N(0, 1), then
Z = X2 has a χ2 distribution with 1 degree of freedom.

5.4.2 Hypothesis testing

A statistical hypothesis, denotedH0, is an assertion about a distribution of one or more ran-
dom variables. A test of a statistical hypothesis is a procedure, based upon observed values
of the random variables, that leads to the acceptance or rejection of the hypothesisH0. The
test only provides a measure of the strength of the evidence provided by the data against
the hypothesis; hence, the conclusion of the test is not definite, but rather probabilistic.

5.23 Definition The significance level α of the test of a statistical hypothesisH0 is the proba-
bility of rejectingH0 when it is true.

In this section, H0 will be the hypothesis that a given binary sequence was produced
by a random bit generator. If the significance levelα of a test ofH0 is too high, then the test
may reject sequences that were, in fact, produced by a random bit generator (such an error
is called a Type I error). On the other hand, if the significance level of a test of H0 is too
low, then there is the danger that the test may accept sequences even though they were not
produced by a random bit generator (such an error is called a Type II error).4 It is, therefore,
important that the test be carefully designed to have a significance level that is appropriate
for the purpose at hand; a significance level α between 0.001 and 0.05might be employed
in practice.

A statistical test is implementedby specifying a statistic on the random sample.5 Statis-
tics are generally chosen so that they can be efficiently computed, and so that they (approxi-
mately) follow anN(0, 1) or a χ2 distribution (see §5.4.1). The value of the statistic for the
sample output sequence is computed and compared with the value expected for a random
sequence as described below.

1. Suppose that a statistic X for a random sequence follows a χ2 distribution with v
degrees of freedom, and suppose that the statistic can be expected to take on larger
values for nonrandom sequences. To achieve a significance level of α, a threshold
value xα is chosen (using Table 5.2) so that P (X > xα) = α. If the valueXs of the
statistic for the sample output sequence satisfiesXs > xα, then the sequence fails the
test; otherwise, it passes the test. Such a test is called a one-sided test. For example,
if v = 5 and α = 0.025, then xα = 12.8325, and one expects a random sequence to
fail the test only 2.5% of the time.

2. Suppose that a statisticX for a random sequence follows anN(0, 1) distribution, and
suppose that the statistic can be expected to take on both larger and smaller values for
nonrandom sequences. To achieve a significance level of α, a threshold value xα is
chosen (using Table 5.1) so that P (X > xα) = P (X < −xα) = α/2. If the value

4Actually, the probability β of a Type II error may be completely independent of α. If the generator is not a
random bit generator, the probability β depends on the nature of the defects of the generator, and is usually difficult
to determine in practice. For this reason, assuming that the probability of a Type II error is proportional to α is a
useful intuitive guide when selecting an appropriate significance level for a test.
5A statistic is a function of the elements of a random sample; for example, the number of 0’s in a binary se-

quence is a statistic.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

180 Ch. 5 Pseudorandom Bits and Sequences

Xs of the statistic for the sample output sequence satisfies Xs > xα orXs < −xα,
then the sequence fails the test; otherwise, it passes the test. Such a test is called a
two-sided test. For example, if α = 0.05, then xα = 1.96, and one expects a random
sequence to fail the test only 5% of the time.

5.4.3 Golomb’s randomness postulates

Golomb’s randomness postulates (Definition 5.28) are presented here for historical reasons
– they were one of the first attempts to establish some necessary conditions for a periodic
pseudorandomsequence to look random. It is emphasized that these conditions are far from
being sufficient for such sequences to be considered random. Unless otherwise stated, all
sequences are binary sequences.

5.24 Definition Let s = s0, s1, s2, . . . be an infinite sequence. The subsequence consisting of
the first n terms of s is denoted by sn = s0, s1, . . . , sn−1.

5.25 Definition The sequence s = s0, s1, s2, . . . is said to be N -periodic if si = si+N for
all i ≥ 0. The sequence s is periodic if it is N -periodic for some positive integerN . The
period of a periodic sequence s is the smallest positive integerN for which s isN -periodic.
If s is a periodic sequence of periodN , then the cycle of s is the subsequence sN .

5.26 Definition Let s be a sequence. A run of s is a subsequence of s consisting of consecutive
0’s or consecutive 1’s which is neither preceded nor succeeded by the same symbol. A run
of 0’s is called a gap, while a run of 1’s is called a block.

5.27 Definition Let s = s0, s1, s2, . . . be a periodic sequence of period N . The autocorrela-
tion function of s is the integer-valued function C(t) defined as

C(t) =
1

N

N−1∑
i=0

(2si − 1) · (2si+t − 1), for 0 ≤ t ≤ N − 1.

The autocorrelation function C(t) measures the amount of similarity between the se-
quence s and a shift of s by t positions. If s is a random periodic sequence of period N ,
then |N ·C(t)| can be expected to be quite small for all values of t, 0 < t < N .

5.28 Definition Let s be a periodic sequence of period N . Golomb’s randomness postulates
are the following.

R1: In the cycle sN of s, the number of 1’s differs from the number of 0’s by at most 1.
R2: In the cycle sN , at least half the runs have length 1, at least one-fourth have length
2, at least one-eighth have length 3, etc., as long as the number of runs so indicated
exceeds 1. Moreover, for each of these lengths, there are (almost) equally many gaps
and blocks.6

R3: The autocorrelation function C(t) is two-valued. That is for some integerK,

N · C(t) =
N−1∑
i=0

(2si − 1) · (2si+t − 1) =

{
N, if t = 0,
K, if 1 ≤ t ≤ N − 1.

6Postulate R2 implies postulate R1.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 181

5.29 Definition A binary sequence which satisfies Golomb’s randomness postulates is called
a pseudo-noise sequence or a pn-sequence.

Pseudo-noise sequences arise in practice as output sequences of maximum-length lin-
ear feedback shift registers (cf. Fact 6.14).

5.30 Example (pn-sequence) Consider the periodic sequence s of periodN = 15 with cycle

s15 = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1.

The following shows that the sequence s satisfies Golomb’s randomness postulates.

R1: The number of 0’s in s15 is 7, while the number of 1’s is 8.
R2: s15 has 8 runs. There are 4 runs of length 1 (2 gaps and 2 blocks), 2 runs of length 2

(1 gap and 1 block), 1 run of length 3 (1 gap), and 1 run of length 4 (1 block).
R3: The autocorrelation function C(t) takes on two values: C(0) = 1 and C(t) = −1

15
for 1 ≤ t ≤ 14.

Hence, s is a pn-sequence. �

5.4.4 Five basic tests

Let s = s0, s1, s2, . . . , sn−1 be a binary sequence of length n. This subsection presents
five statistical tests that are commonly used for determining whether the binary sequence
s possesses some specific characteristics that a truly random sequence would be likely to
exhibit. It is emphasized again that the outcome of each test is not definite, but rather prob-
abilistic. If a sequence passes all five tests, there is no guarantee that it was indeed produced
by a random bit generator (cf. Example 5.4).

(i) Frequency test (monobit test)

The purpose of this test is to determine whether the number of 0’s and 1’s in s are approxi-
mately the same, as would be expected for a random sequence. Let n0, n1 denote the num-
ber of 0’s and 1’s in s, respectively. The statistic used is

X1 =
(n0 − n1)2

n
(5.1)

which approximately follows a χ2 distribution with 1 degree of freedom if n ≥ 10. 7

(ii) Serial test (two-bit test)

The purpose of this test is to determine whether the number of occurrences of 00, 01, 10,
and 11 as subsequences of s are approximately the same, as would be expected for a random
sequence. Let n0, n1 denote the number of 0’s and 1’s in s, respectively, and let n00, n01,
n10, n11 denote the number of occurrences of 00, 01, 10, 11 in s, respectively. Note that
n00 + n01 + n10 + n11 = (n − 1) since the subsequences are allowed to overlap. The
statistic used is

X2 =
4

n− 1

(
n200 + n

2
01 + n

2
10 + n

2
11

)
−
2

n

(
n20 + n

2
1

)
+ 1 (5.2)

which approximately follows a χ2 distribution with 2 degrees of freedom if n ≥ 21.

7In practice, it is recommended that the length n of the sample output sequence be much larger (for example,
n� 10000) than the minimum specified for each test in this subsection.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

182 Ch. 5 Pseudorandom Bits and Sequences

(iii) Poker test

Letm be a positive integer such that � nm� ≥ 5·(2
m), and let k = � nm�. Divide the sequence

s into k non-overlapping parts each of lengthm, and let ni be the number of occurrences of
the ith type of sequence of lengthm, 1 ≤ i ≤ 2m. The poker test determines whether the
sequences of lengthm each appear approximately the same number of times in s, as would
be expected for a random sequence. The statistic used is

X3 =
2m

k

(
2m∑
i=1

n2i

)
− k (5.3)

which approximately follows a χ2 distribution with 2m − 1 degrees of freedom. Note that
the poker test is a generalization of the frequency test: settingm = 1 in the poker test yields
the frequency test.

(iv) Runs test

The purpose of the runs test is to determine whether the number of runs (of either zeros or
ones; see Definition 5.26) of various lengths in the sequence s is as expected for a random
sequence. The expected number of gaps (or blocks) of length i in a random sequence of
lengthn is ei = (n−i+3)/2i+2. Let k be equal to the largest integer i for which ei ≥ 5. Let
Bi,Gi be the number of blocks and gaps, respectively, of length i in s for each i, 1 ≤ i ≤ k.
The statistic used is

X4 =
k∑
i=1

(Bi − ei)2

ei
+

k∑
i=1

(Gi − ei)2

ei
(5.4)

which approximately follows a χ2 distribution with 2k − 2 degrees of freedom.

(v) Autocorrelation test

The purpose of this test is to check for correlations between the sequence s and (non-cyclic)
shifted versions of it. Let d be a fixed integer, 1 ≤ d ≤ �n/2�. The number of bits in s not
equal to their d-shifts is A(d) =

∑n−d−1
i=0 si⊕si+d, where ⊕ denotes the XOR operator.

The statistic used is

X5 = 2

(
A(d)−

n− d

2

)
/
√
n− d (5.5)

which approximately follows anN(0, 1) distribution if n− d ≥ 10. Since small values of
A(d) are as unexpected as large values of A(d), a two-sided test should be used.

5.31 Example (basic statistical tests) Consider the (non-random) sequence s of length n =
160 obtained by replicating the following sequence four times:

11100 01100 01000 10100 11101 11100 10010 01001.

(i) (frequency test) n0 = 84, n1 = 76, and the value of the statistic X1 is 0.4.
(ii) (serial test) n00 = 44, n01 = 40, n10 = 40, n11 = 35, and the value of the statistic
X2 is 0.6252.

(iii) (poker test) Herem = 3 and k = 53. The blocks 000, 001, 010, 011, 100, 101, 110,
111 appear 5, 10, 6, 4, 12, 3, 6, and 7 times, respectively, and the value of the statistic
X3 is 9.6415.

(iv) (runs test) Here e1 = 20.25, e2 = 10.0625, e3 = 5, and k = 3. There are 25, 4, 5
blocks of lengths 1, 2, 3, respectively, and 8, 20, 12 gaps of lengths 1, 2, 3, respec-
tively. The value of the statistic X4 is 31.7913.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 183

(v) (autocorrelation test) If d = 8, then A(8) = 100. The value of the statistic X5 is
3.8933.

For a significance level of α = 0.05, the threshold values forX1,X2,X3,X4, andX5 are
3.8415, 5.9915, 14.0671, 9.4877, and 1.96, respectively (see Tables 5.1 and 5.2). Hence,
the given sequence s passes the frequency, serial, and poker tests, but fails the runs and
autocorrelation tests. �

5.32 Note (FIPS 140-1 statistical tests for randomness) FIPS 140-1 specifies four statistical
tests for randomness. Instead of making the user select appropriate significance levels for
these tests, explicit bounds are provided that the computed value of a statistic must satisfy.
A single bitstring s of length 20000 bits, output from a generator, is subjected to each of the
following tests. If any of the tests fail, then the generator fails the test.

(i) monobit test. The number n1 of 1’s in s should satisfy 9654 < n1 < 10346.
(ii) poker test. The statistic X3 defined by equation (5.3) is computed for m = 4. The

poker test is passed if 1.03 < X3 < 57.4.
(iii) runs test. The numberBi andGi of blocks and gaps, respectively, of length i in s are

counted for each i, 1 ≤ i ≤ 6. (For the purpose of this test, runs of length greater
than 6 are considered to be of length 6.) The runs test is passed if the 12 counts Bi,
Gi, 1 ≤ i ≤ 6, are each within the corresponding interval specified by the following
table.

Length of run Required interval

1 2267 − 2733
2 1079 − 1421
3 502− 748
4 223− 402
5 90− 223
6 90− 223

(iv) long run test. The long run test is passed if there are no runs of length 34 or more.

For high security applications, FIPS 140-1 mandates that the four tests be performed each
time the random bit generator is powered up. FIPS 140-1 allows these tests to be substituted
by alternative tests which provide equivalent or superior randomness checking.

5.4.5 Maurer’s universal statistical test

The basic idea behind Maurer’s universal statistical test is that it should not be possible to
significantly compress (without loss of information) the output sequence of a random bit
generator. Thus, if a sample output sequence s of a bit generator can be significantly com-
pressed, the generator should be rejected as being defective. Instead of actually compress-
ing the sequence s, the universal statistical test computes a quantity that is related to the
length of the compressed sequence.

The universality of Maurer’s universal statistical test arises because it is able to detect
any one of a very general class of possible defects a bit generator might have. This class
includes the five defects that are detectable by the basic tests of §5.4.4. A drawback of the
universal statistical test over the five basic tests is that it requires a much longer sample
output sequence in order to be effective. Provided that the required output sequence can be
efficiently generated, this drawback is not a practical concern since the universal statistical
test itself is very efficient.

Algorithm 5.33 computes the statisticXu for a sample output sequence s = s0, s1, . . . ,
sn−1 to be used in the universal statistical test. The parameter L is first chosen from the

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

184 Ch. 5 Pseudorandom Bits and Sequences

L µ σ21

1 0.7326495 0.690

2 1.5374383 1.338

3 2.4016068 1.901

4 3.3112247 2.358

5 4.2534266 2.705

6 5.2177052 2.954

7 6.1962507 3.125

8 7.1836656 3.238

L µ σ21

9 8.1764248 3.311

10 9.1723243 3.356

11 10.170032 3.384

12 11.168765 3.401

13 12.168070 3.410

14 13.167693 3.416

15 14.167488 3.419

16 15.167379 3.421

Table 5.3: Mean µ and variance σ2 of the statistic Xu for random sequences, with parameters L,
K as Q→∞. The variance ofXu is σ2 = c(L,K)2 · σ21/K, where c(L,K) ≈ 0.7− (0.8/L) +
(1.6 + (12.8/L)) ·K−4/L forK ≥ 2L.

interval [6, 16]. The sequence s is then partitioned into non-overlappingL-bit blocks, with
any leftover bits discarded; the total number of blocks isQ+K, whereQ andK are defined
below. For each i, 1 ≤ i ≤ Q+K, let bi be the integer whose binary representation is the ith

block. The blocks are scanned in order. A table T is maintained so that at each stage T [j] is
the position of the last occurrence of the block corresponding to integer j, 0 ≤ j ≤ 2L−1.
The firstQ blocks of s are used to initialize table T ;Q should be chosen to be at least 10·2L

in order to have a high likelihood that each of the 2L L-bit blocks occurs at least once in
the first Q blocks. The remainingK blocks are used to define the statistic Xu as follows.
For each i, Q + 1 ≤ i ≤ Q +K, let Ai = i − T [bi]; Ai is the number of positions since
the last occurrence of block bi. Then

Xu =
1

K

Q+K∑
i=Q+1

lgAi. (5.6)

K should be at least 1000 ·2L (and, hence, the sample sequence s should be at least (1010 ·
2L · L) bits in length). Table 5.3 lists the mean µ and variance σ2 of Xu for random se-
quences for some sample choices of L as Q→∞.

5.33 Algorithm Computing the statisticXu for Maurer’s universal statistical test

INPUT: a binary sequence s = s0, s1, . . . , sn−1 of length n, and parameters L, Q,K.
OUTPUT: the value of the statistic Xu for the sequence s.

1. Zero the table T . For j from 0 to 2L − 1 do the following: T [j]←0.
2. Initialize the table T . For i from 1 to Q do the following: T [bi]←i.
3. sum←0.
4. For i fromQ+ 1 to Q+K do the following:

4.1 sum←sum+ lg(i− T [bi]).
4.2 T [bi]←i.

5. Xu←sum/K.
6. Return(Xu).

Maurer’s universal statistical test uses the computed value ofXu for the sample output
sequence s in the manner prescribed by Fact 5.34. To test the sequence s, a two-sided test
should be used with a significance level α between 0.001 and 0.01 (see §5.4.2).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.5 Cryptographically secure pseudorandom bit generation 185

5.34 Fact Let Xu be the statistic defined in (5.6) having mean µ and variance σ2 as given in
Table 5.3. Then, for random sequences, the statistic Zu = (Xu − µ)/σ approximately
follows anN(0, 1) distribution.

5.5 Cryptographically secure pseudorandom bit
generation

Two cryptographically secure pseudorandom bit generators (CSPRBG – see Definition 5.8)
are presented in this section. The security of each generator relies on the presumed in-
tractability of an underlying number-theoretic problem. The modular multiplications that
these generators use make them relatively slow compared to the (ad-hoc) pseudorandom
bit generators of §5.3. Nevertheless they may be useful in some circumstances, for exam-
ple, generating pseudorandombits on hardware devices which already have the circuitry for
performing modular multiplications. Efficient techniques for implementing modular mul-
tiplication are presented in §14.3.

5.5.1 RSA pseudorandom bit generator

The RSA pseudorandom bit generator is a CSPRBG under the assumption that the RSA
problem is intractable (§3.3; see also §3.9.2).

5.35 Algorithm RSA pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence z1, z2, . . . , zl of length l is generated.

1. Setup. Generate two secret RSA-like primes p and q (cf. Note 8.8), and computen =
pq and φ = (p − 1)(q − 1). Select a random integer e, 1 < e < φ, such that
gcd(e, φ) = 1.

2. Select a random integer x0 (the seed) in the interval [1, n− 1].
3. For i from 1 to l do the following:

3.1 xi←xei−1 mod n.
3.2 zi← the least significant bit of xi.

4. The output sequence is z1, z2, . . . , zl.

5.36 Note (efficiency of the RSA PRBG) If e = 3 is chosen (cf. Note 8.9(ii)), then generating
each pseudorandom bit zi requires one modular multiplication and one modular squaring.
The efficiency of the generator can be improved by extracting the j least significant bits
of xi in step 3.2, where j = c lg lgn and c is a constant. Provided that n is sufficiently
large, this modified generator is also cryptographically secure (cf. Fact 3.87). For a mod-
ulus n of a fixed bitlength (e.g., 1024 bits), an explicit range of values of c for which the
resulting generator remains cryptographically secure (cf. Remark 5.9) under the intractabil-
ity assumption of the RSA problem has not been determined.

The following modification improves the efficiency of the RSA PRBG.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

186 Ch. 5 Pseudorandom Bits and Sequences

5.37 Algorithm Micali-Schnorr pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence is generated.

1. Setup. Generate two secret RSA-like primes p and q (cf. Note 8.8), and computen =
pq and φ = (p−1)(q−1). LetN = �lg n�+1 (the bitlength of n). Select an integer
e, 1 < e < φ, such that gcd(e, φ) = 1 and 80e ≤ N . Let k = �N(1 − 2

e
)� and

r = N − k.
2. Select a random sequence x0 (the seed) of bitlength r.
3. Generate a pseudorandom sequence of length k · l. For i from 1 to l do the following:

3.1 yi←xei−1 mod n.
3.2 xi← the r most significant bits of yi.
3.3 zi← the k least significant bits of yi.

4. The output sequence is z1 ‖ z2 ‖ · · · ‖ zl, where ‖ denotes concatenation.

5.38 Note (efficiency of the Micali-Schnorr PRBG) Algorithm 5.37 is more efficient than the
RSA PRBG since �N(1 − 2

e
)� bits are generated per exponentiation by e. For example,

if e = 3 and N = 1024, then k = 341 bits are generated per exponentiation. Moreover,
each exponentiation requires only one modular squaring of an r = 683-bit number, and one
modular multiplication.

5.39 Note (security of the Micali-Schnorr PRBG) Algorithm 5.37 is cryptographically secure
under the assumption that the following is true: the distribution xe mod n for random r-bit
sequences x is indistinguishable by all polynomial-time statistical tests from the uniform
distribution of integers in the interval [0, n−1]. This assumption is stronger than requiring
that the RSA problem be intractable.

5.5.2 Blum-Blum-Shub pseudorandom bit generator

The Blum-Blum-Shub pseudorandom bit generator (also known as the x2 mod n genera-
tor or the BBS generator) is a CSPRBG under the assumption that integer factorization is
intractable (§3.2). It forms the basis for the Blum-Goldwasser probabilistic public-key en-
cryption scheme (Algorithm 8.56).

5.40 Algorithm Blum-Blum-Shub pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence z1, z2, . . . , zl of length l is generated.

1. Setup. Generate two large secret random (and distinct) primes p and q (cf. Note 8.8),
each congruent to 3 modulo 4, and compute n = pq.

2. Select a random integer s (the seed) in the interval [1, n−1] such that gcd(s, n) = 1,
and compute x0←s2 mod n.

3. For i from 1 to l do the following:

3.1 xi←x2i−1 mod n.
3.2 zi← the least significant bit of xi.

4. The output sequence is z1, z2, . . . , zl.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.6 Notes and further references 187

5.41 Note (efficiency of the Blum-Blum-Shub PRBG) Generating each pseudorandom bit zi re-
quires one modular squaring. The efficiency of the generator can be improved by extracting
the j least significant bits of xi in step 3.2, where j = c lg lg n and c is a constant. Provided
that n is sufficiently large, this modified generator is also cryptographically secure. For a
modulus n of a fixed bitlength (eg. 1024 bits), an explicit range of values of c for which
the resulting generator is cryptographically secure (cf. Remark 5.9) under the intractability
assumption of the integer factorization problem has not been determined.

5.6 Notes and further references
§5.1

Chapter 3 of Knuth [692] is the definitive reference for the classic (non-cryptographic)gen-
eration of pseudorandom numbers. Knuth [692, pp.142-166] contains an extensive discus-
sion of what it means for a sequence to be random. Lagarias [724] gives a survey of theo-
retical results on pseudorandom number generators. Luby [774] provides a comprehensive
and rigorous overview of pseudorandom generators.

For a study of linear congruential generators (Example 5.4), see Knuth [692, pp.9-25].
Plumstead/Boyar [979, 980] showed how to predict the output of a linear congruential gen-
erator given only a few elements of the output sequence, and when the parameters a, b,
and m of the generator are unknown. Boyar [180] extended her method and showed that
linear multivariate congruential generators (having recurrence equation xn = a1xn−1 +
a2xn−2+ · · ·+alxn−l+ b mod m), and quadratic congruential generators (having recur-
rence equation xn = ax2n−1+ bxn−1+ c mod m) are cryptographically insecure. Finally,
Krawczyk [713] generalized these results and showed how the output of any multivariate
polynomial congruential generator can be efficiently predicted. A truncated linear congru-
ential generator is one where a fraction of the least significant bits of the xi are discarded.
Frieze et al. [427] showed that these generators can be efficiently predicted if the genera-
tor parameters a, b, andm are known. Stern [1173] extended this method to the case where
onlym is known. Boyar [179] presented an efficient algorithm for predicting linear congru-
ential generators whenO(log logm) bits are discarded, and when the parameters a, b, and
m are unknown. No efficient prediction algorithms are known for truncated multivariate
polynomial congruential generators. For a summary of cryptanalytic attacks on congruen-
tial generators, see Brickell and Odlyzko [209, pp.523-526].

For a formal definition of a statistical test (Definition 5.5), see Yao [1258]. Fact 5.7 on
the universality of the next-bit test is due to Yao [1258]. For a proof of Yao’s result, see
Kranakis [710] and §12.2 of Stinson [1178]. A proof of a generalization of Yao’s result
is given by Goldreich, Goldwasser, and Micali [468]. The notion of a cryptographically
secure pseudorandom bit generator (Definition 5.8) was introduced by Blum and Micali
[166]. Blum and Micali also gave a formal description of the next-bit test (Definition 5.6),
and presented the first cryptographically secure pseudorandombit generator whose security
is based on the discrete logarithm problem (see page 189). Universal tests were presented
by Schrift and Shamir [1103] for verifying the assumed properties of a pseudorandom gen-
erator whose output sequences are not necessarily uniformly distributed.

The first provably secure pseudorandom number generator was proposed by Shamir [1112].
Shamir proved that predicting the next number of an output sequence of this generator is
equivalent to inverting the RSA function. However, even though the numbers as a whole
may be unpredictable, certain parts of the number (for example, its least significant bit) may

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

188 Ch. 5 Pseudorandom Bits and Sequences

be biased or predictable. Hence, Shamir’s generator is not cryptographically secure in the
sense of Definition 5.8.

§5.2
Agnew [17] proposed a VLSI implementation of a random bit generator consisting of two
identical metal insulator semiconductor capacitors close to each other. The cells are charged
over the same period of time, and then a 1 or 0 is assigned depending on which cell has
a greater charge. Fairfield, Mortenson, and Coulthart [382] described an LSI random bit
generator based on the frequency instability of a free running oscillator. Davis, Ihaka, and
Fenstermacher [309] used the unpredictability of air turbulence occurring in a sealed disk
drive as a random bit generator. The bits are extracted by measuring the variations in the
time to access disk blocks. Fast Fourier Transform (FFT) techniques are then used to re-
move possible biases and correlations. A sample implementation generated 100 random
bits per minute. For further guidance on hardware and software-based techniques for gen-
erating random bits, see RFC 1750 [1043].

The de-skewing technique of Example 5.10 is due to von Neumann [1223]. Elias [370]
generalized von Neumann’s technique to a more efficient scheme (one where fewer bits
are discarded). Fast Fourier Transform techniques for removing biases and correlations are
described by Brillinger [213]. For further ways of removing correlations, see Blum [161],
Santha and Vazirani [1091], Vazirani [1217], and Chor and Goldreich [258].

§5.3
The idea of using a one-way function f for generating pseudorandombit sequences is due to
Shamir [1112]. Shamir illustrated why it is difficult to prove that such ad-hoc generators are
cryptographically secure without imposing some further assumptions on f . Algorithm 5.11
is from Appendix C of the ANSI X9.17 standard [37]; it is one of the approved methods for
pseudorandom bit generation listed in FIPS 186 [406]. Meyer and Matyas [859, pp.316-
317] describe another DES-based pseudorandom bit generator whose output is intended for
use as data-encrypting keys. The four algorithms of §5.3.2 for generating DSA parameters
are from FIPS 186.

§5.4
Standard references on statistics include Hogg and Tanis [559] and Wackerly, Mendenhall,
and Scheaffer [1226]. Tables 5.1 and 5.2 were generated using the Maple symbolic algebra
system [240]. Golomb’s randomness postulates (§5.4.3) were proposed by Golomb [498].

The five statistical tests for local randomness outlined in §5.4.4 are from Beker and Piper
[84]. The serial test (§5.4.4(ii)) is due to Good [508]. It was generalized to subsequences of
length greater than 2 by Marsaglia [782] who called it the overlappingm-tuple test, and later
by Kimberley [674] who called it the generalized serial test. The underlying distribution
theories of the serial test and the runs test (§5.4.4(iv)) were analyzed by Good [507] and
Mood [897], respectively. Gustafson [531] considered alternative statistics for the runs test
and the autocorrelation test (§5.4.4(v)).

There are numerous other statistical tests of local randomness. Many of these tests, includ-
ing the gap test, coupon collector’s test, permutation test, run test, maximum-of-t test, col-
lision test, serial test, correlation test, and spectral test are described by Knuth [692]. The
poker test as formulated by Knuth [692, p.62] is quite different from that of §5.4.4(iii). In
the former, a sample sequence is divided intom-bit blocks, each of which is further subdi-
vided into l-bit sub-blocks (for some divisor l ofm). The number ofm-bit blocks having r
distinct l-bit sub-blocks (1 ≤ r ≤ m/l) is counted and compared to the corresponding ex-
pected numbers for random sequences. Erdmann [372] gives a detailed exposition of many

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.6 Notes and further references 189

of these tests, and applies them to sample output sequences of six pseudorandom bit gener-
ators. Gustafson et al. [533] describe a computer package which implements various statis-
tical tests for assessing the strength of a pseudorandom bit generator. Gustafson, Dawson,
and Golić [532] proposed a new repetition test which measures the number of repetitions of
l-bit blocks. The test requires a count of the number of patterns repeated, but does not re-
quire the frequency of each pattern. For this reason, it is feasible to apply this test for larger
values of l (e.g. l = 64) than would be permissible by the poker test or Maurer’s universal
statistical test (Algorithm 5.33). Two spectral tests have been developed, one based on the
discrete Fourier transform by Gait [437], and one based on the Walsh transform by Yuen
[1260]. For extensions of these spectral tests, see Erdmann [372] and Feldman [389].

FIPS 140-1 [401] specifies security requirements for the design and implementation of
cryptographic modules, including random and pseudorandom bit generators, for protecting
(U.S. government) unclassified information.

The universal statistical test (Algorithm 5.33) is due to Maurer [813] and was motivated by
source coding algorithms of Elias [371] and Willems [1245]. The class of defects that the
test is able to detect consists of those that can be modeled by an ergodic stationary source
with limited memory; Maurer argues that this class includes the possible defects that could
occur in a practical implementation of a random bit generator. Table 5.3 is due to Maurer
[813], who provides derivations of formulae for the mean and variance of the statisticXu.

§5.5
Blum and Micali [166] presented the following general construction for CSPRBGs. LetD
be a finite set, and let f : D → D be a permutation that can be efficiently computed. Let
B : D → {0, 1} be a Boolean predicate with the property that B(x) is hard to compute
given only x ∈ D, however, B(x) can be efficiently computed given y = f−1(x). The
output sequence z1, z2, . . . , zl corresponding to a seed x0 ∈ D is obtained by computing
xi = f(xi−1), zi = B(xi), for 1 ≤ i ≤ l. This generator can be shown to pass the
next-bit test (Definition 5.6). Blum and Micali [166] proposed the first concrete instance of
a CSPRBG, called the Blum-Micali generator. Using the notation introduced above, their
method can be described as follows. Let p be a large prime, andα a generator ofZ∗p. Define
D = Z∗p = {1, 2, . . . , p− 1}. The function f : D → D is defined by f(x) = αx mod p.
The function B : D → {0, 1} is defined by B(x) = 1 if 0 ≤ logα x ≤ (p − 1)/2, and
B(x) = 0 if logα x > (p−1)/2. Assuming the intractability of the discrete logarithm prob-
lem in Z∗p (§3.6; see also §3.9.1), the Blum-Micali generator was proven to satisfy the next-
bit test. Long and Wigderson [772] improved the efficiency of the Blum-Micali generator
by simultaneously extracting O(lg lg p) bits (cf. §3.9.1) from each xi. Kaliski [650, 651]
modified the Blum-Micali generator so that the security depends on the discrete logarithm
problem in the group of points on an elliptic curve defined over a finite field.

The RSA pseudorandom bit generator (Algorithm 5.35) and the improvement mentioned
in Note 5.36 are due to Alexi et al. [23]. The Micali-Schnorr improvement of the RSA
PRBG (Algorithm 5.37) is due to Micali and Schnorr [867], who also described a method
that transforms any CSPRBG into one that can be accelerated by parallel evaluation. The
method of parallelization is perfect: m parallel processors speed the generation of pseudo-
random bits by a factor ofm.

Algorithm 5.40 is due to Blum, Blum, and Shub [160], who showed that their pseudoran-
dom bit generator is cryptographically secure assuming the intractability of the quadratic
residuosity problem (§3.4). Vazirani and Vazirani [1218] established a stronger result re-
garding the security of this generator by proving it cryptographically secure under the
weaker assumption that integer factorization is intractable. The improvement mentioned in

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

190 Ch. 5 Pseudorandom Bits and Sequences

Note 5.41 is due to Vazirani and Vazirani. Alexi et al. [23] proved analogous results for the
modified-Rabin generator, which differs as follows from the Blum-Blum-Shub generator:
in step 3.1 of Algorithm 5.40, let x = x2i−1 mod n; if x < n/2, then xi = x; otherwise,
xi = n− x.

Impagliazzo and Naor [569] devised efficient constructions for a CSPRBG and for a univer-
sal one-way hash function which are provably as secure as the subset sum problem. Fischer
and Stern [411] presented a simple and efficient CSPRBG which is provably as secure as
the syndrome decoding problem.

Yao [1258] showed how to obtain a CSPRBG using any one-way permutation. Levin [761]
generalized this result and showed how to obtain a CSPRBG using any one-way function.
For further refinements, see Goldreich, Krawczyk, and Luby [470], Impagliazzo, Levin,
and Luby [568], and Håstad [545].

A random function f : {0, 1}n→ {0, 1}n is a function which assigns independent and ran-
dom values f(x) ∈ {0, 1}n to all arguments x ∈ {0, 1}n. Goldreich, Goldwasser, and
Micali [468] introduced a computational complexity measure of the randomness of func-
tions. They defined a function to be poly-random if no polynomial-time algorithm can dis-
tinguish between values of the function and true random strings, even when the algorithm
is permitted to select the arguments to the function. Goldreich, Goldwasser, and Micali
presented an algorithm for constructing poly-random functions assuming the existence of
one-way functions. This theory was applied by Goldreich, Goldwasser, and Micali [467]
to develop provably secure protocols for the (essentially) storageless distribution of secret
identification numbers, message authentication with timestamping, dynamic hashing, and
identify friend or foe systems. Luby and Rackoff [776] showed how poly-random permu-
tations can be efficiently constructed from poly-random functions. This result was used,
together with some of the design principles of DES, to show how any CSPRBG can be
used to construct a symmetric-key block cipher which is provably secure against chosen-
plaintext attack. A simplified and generalized treatment of Luby and Rackoff’s construction
was given by Maurer [816].

Schnorr [1096] used Luby and Rackoff’s poly-random permutation generator to construct
a pseudorandom bit generator that was claimed to pass all statistical tests depending only
on a small fraction of the output sequence, even when infinite computational resources are
available. Rueppel [1079] showed that this claim is erroneous, and demonstrated that the
generator can be distinguished from a truly random bit generator using only a small num-
ber of output bits. Maurer and Massey [821] extended Schnorr’s work, and proved the ex-
istence of pseudorandom bit generators that pass all statistical tests depending only on a
small fraction of the output sequence, even when infinite computational resources are avail-
able. The security of the generators does not rely on any unproved hypothesis, but rather
on the assumption that the adversary can access only a limited number of bits of the gener-
ated sequence. This work is primarily of theoretical interest since no such polynomial-time
generators are known.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

