This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

©1997 by CRC Press, Inc.

Chapter

Pseudorandom Bits and Sequences

Contentsin Brief

51 Introduction. L 169
5.2 Random bitgeneration Lo 171
5.3 Pseudorandom bitgeneration. L. 173
54 Statigticaltests Lo 175
5,5 Cryptographically secure pseudorandom bit generation 185
56 Notesand further references 187

5.1 Introduction

The security of many cryptographic systems depends upon the generation of unpredictable
guantities. Examplesinclude the keystream in the one-time pad (§1.5.4), the secret key in
the DES encryption algorithm (§7.4.2), the primes p, ¢ in the RSA encryption (§8.2) and
digital signature (§11.3.1) schemes, the private key « in the DSA (§11.5.1), and the chal-
lenges used in challenge-response identification systems (§10.3). In al these cases, the
guantities generated must be of sufficient size and be “random” in the sense that the proba-
bility of any particular value being selected must be sufficiently small to preclude an adver-
sary from gai ning advantage through opti mizing asearch strategy based on such probability.
For example, the key space for DES has size 2°6. If a secret key k were selected using a
true random generator, an adversary would on average have to try 25° possible keys before
guessing the correct key k. If, on the other hand, akey k were selected by first choosing a
16-bit random secret s, and then expanding it into a 56-bit key k& using a complicated but
publicly known function f, the adversary would on average only need to try 215 possible
keys (obtained by running every possible value for s through the function f).

This chapter considers techniques for the generation of random and pseudorandom
bits and numbers. Related techniques for pseudorandom bit generation that are generally
discussed in the literature in the context of stream ciphers, including linear and nonlinear
feedback shift registers (Chapter 6) and the output feedback mode (OFB) of block ciphers
(Chapter 7), are addressed el sewhere in this book.

Chapter outline

The remainder of §5.1 introduces basic concepts relevant to random and pseudorandom
bit generation. §5.2 considers techniques for random bit generation, while §5.3 considers
some techniques for pseudorandom bit generation. §5.4 describes statistical tests designed

169

170

Ch.5 Pseudorandom Bits and Sequences

to measure the quality of arandom hit generator. Cryptographically secure pseudorandom
bit generatorsarethetopic of §5.5. §5.6 concludeswith referencesand further chapter notes.

5.1.1 Background and Classification

51

5.2

53

54

Definition A random bit generator is a device or algorithm which outputs a sequence of
statistically independent and unbiased binary digits.

Remark (randombitsvs. randomnumbers) A random bit generator can be used to gener-
ate (uniformly distributed) random numbers. For example, arandom integer in theinterval
[0, n] can be obtained by generating arandom bit sequence of length |1gn| + 1, and con-
verting it to an integer; if the resulting integer exceeds n, one option is to discard it and
generate a new random bhit sequence.

§5.2 outlines some physical sources of random bits that are used in practice. Ideally,
secretsrequired in cryptographic algorithmsand protocol s should be generated with a(true)
random bit generator. However, the generation of random bitsis an inefficient procedurein
most practical environments. Moreover, it may beimpractical to securely storeand transmit
alarge number of random bits if these are required in applications such as the one-time pad
(§6.1.1). In such situations, the problem can be ameliorated by substituting a random bit
generator with a pseudorandom bit generator.

Definition A pseudorandom bit generator (PRBG) is a deterministic! algorithm which,
givenatruly random binary sequence of length k&, outputsabinary sequenceof lengthl > &
which “appears’ to be random. The input to the PRBG is called the seed, while the output
of the PRBG is called a pseudorandom bit sequence.

The output of aPRBG is not random; in fact, the number of possible output sequencesis at
most asmall fraction, namely 2% /2, of all possible binary sequencesof length /. Theintent
isto takeasmall truly random sequence and expand it to a sequence of much larger length,
in such away that an adversary cannot efficiently distinguish between output sequences of
the PRBG and truly random sequences of length [. §5.3 discusses ad-hoc techniques for
pseudorandom bit generation. In order to gain confidence that such generators are secure,
they should be subjected to avariety of statistical tests designed to detect the specific char-
acteristics expected of random sequences. A collection of such testsis givenin §5.4. As
the following example demonstrates, passing these statistical tests is a necessary but not
sufficient condition for a generator to be secure.

Example (linear congruential generators) A linear congruential generator produces a
pseudorandom sequence of numbers 1, zo, x3, . . . according to the linear recurrence

T, = aT,_1 +bmodm, n>1;

integersa, b, and m are parameter swhich characterizethe generator, while z¢ isthe (secret)
seed. While such generators are commonly used for simulation purposes and probabilistic
algorithms, and pass the statistical tests of §5.4, they are predictable and hence entirely in-
secure for cryptographic purposes. given a partial output sequence, the remainder of the
seguence can be reconstructed even if the parameters a, b, and m are unknown. O

I Deterministic here means that given the sameinitial seed, the generator will always produce the same output
sequence.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.2 Random bit generation 171

A minimum security requirement for a pseudorandom bit generator is that the length
k of the random seed should be sufficiently large so that a search over 2% elements (the
total number of possible seeds) is infeasible for the adversary. Two general requirements
arethat the output sequences of a PRBG should be statistically indistinguishablefrom truly
random sequences, and the output bits should be unpredictableto an adversary with limited
computational resources; these requirements are captured in Definitions 5.5 and 5.6.

5.5 Definition A pseudorandom bit generator is said to pass all polynomial-time? statistical
testsif no polynomial-timeal gorithm can correctly distinguish between an output sequence
of the generator and a truly random sequence of the same length with probability signifi-
cantly greater that 3.

5.6 Definition A pseudorandom bit generator is said to pass the next-bit test if there is no
polynomial-time agorithm which, on input of the first [bits of an output sequence s, can
predict the (I + 1) bit of s with probability significantly greater than 3.

Although Definition 5.5 appears to impose a more stringent security requirement on
pseudorandom bit generators than Definition 5.6 does, the next result asserts that they are,
in fact, equivalent.

5.7 Fact (universality of the next-bit test) A pseudorandom bit generator passes the next-bit
test if and only if it passes all polynomial-time statistical tests.

5.8 Definition A PRBG that passes the next-bit test (possibly under some plausible but un-
proved mathematical assumption such asthe intractability of factoring integers) iscalled a
cryptographically secure pseudorandom bit generator (CSPRBG).

5.9 Remark (asymptotic nature of Definitions 5.5, 5.6, and 5.8) Each of the three definitions
above are given in complexity-theoretic terms and are asymptotic in nature because the no-
tion of “polynomial-time” is meaningful for asymptotically large inputs only; the resulting
notionsof security arerelativein the same sense. To be more precisein Definitions5.5, 5.6,
5.8, and Fact 5.7, a pseudorandom bit generator is actually a family of such PRBGs. Thus
the theoretical security results for afamily of PRBGs are only an indirect indication about
the security of individual members.

Two cryptographically secure pseudorandom bit generators are presented in §5.5.

5.2 Random bit generation

A (true) random bit generator requires a naturally occurring source of randomness. De-
signing a hardware device or software program to exploit this randomness and produce a
bit sequencethat is free of biases and correlationsis a difficult task. Additionally, for most
cryptographic applications, the generator must not be subject to observation or manipula-
tion by an adversary. This section surveys some potential sources of random bits.

Random bit generators based on natural sources of randomness are subject to influence
by external factors, and also to malfunction. It is imperative that such devices be tested
periodicaly, for example by using the statistical tests of §5.4.

2The running time of the test is bounded by a polynomial in the length I of the output sequence.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

172

Ch.5 Pseudorandom Bits and Sequences

() Hardware-based generators

Hardware-based random bit generators expl oit the randomnesswhich occursin some phys-
ical phenomena. Such physical processes may produce bits that are biased or correlated, in
which case they should be subjected to de-skewing techniques mentioned in (iii) below.
Examples of such physical phenomenainclude:

1. elapsed time between emission of particles during radioactive decay;

2. thermal noise from a semiconductor diode or resistor;

3. thefrequency instability of afreerunning oscillator;

4. theamountametal insulator semiconductor capacitor ischarged during afixed period
of time;

5. air turbulence within a sealed disk drive which causes random fluctuations in disk
drive sector read latency times; and

6. sound from amicrophone or video input from a camera.

Generators based on the first two phenomenawould, in general, have to be built externally
to the device using the random bits, and hence may be subject to observation or manipula-
tion by an adversary. Generators based on oscillators and capacitors can be built on VLSI
devices; they can be enclosed in tamper-resistant hardware, and hence shielded from active
adversaries.

(i) Software-based generators

Designing arandom bit generator in software is even more difficult than doing so in hard-
ware. Processes upon which software random bit generators may be based include:

the system clock;

elapsed time between keystrokes or mouse movement;

content of input/output buffers;

user input; and

5. operating system values such as system load and network statistics.

The behavior of such processes can vary considerably depending on various factors, such
asthe computer platform. It may also bedifficult to prevent an adversary from observing or
mani pul ating these processes. For instance, if the adversary hasarough ideaof when aran-
dom sequencewas generated, she can guessthe content of the system clock at that timewith
ahigh degree of accuracy. A well-designed software random bit generator should utilize as
many good sources of randomness as are available. Using many sources guards against the
possibility of afew of the sources failing, or being observed or manipulated by an adver-
sary. Each source should be sampled, and the sampl ed sequences should be combined using
acomplex mixing function; one recommended technique for accomplishing thisisto apply
acryptographic hash function such as SHA-1 (Algorithm 9.53) or MD5 (Algorithm 9.51) to
a concatenation of the sampled sequences. The purpose of the mixing function is to distill
the (true) random bits from the sampled sequences.

AwWDdPE

(iii) De-skewing

A natural source of random bits may be defective in that the output bits may be biased (the
probability of the source emitting a1 is not equal to %) or correlated (the probability of
the source emitting a1 depends on previousbits emitted). There are various techniquesfor
generating truly random bit sequences from the output bits of such a defective generator;
such techniques are called de-skewing techniques.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.3 Pseudorandom bit generation 173

5.10 Example (removing biasesin output bits) Suppose that a generator produces biased but
uncorrelated bits. Supposethat the probability of al isp, and the probability of a0 is1 —p,
where p is unknown but fixed, 0 < p < 1. If the output sequence of such a generator is
groupedinto pairsof bits, witha10 pair transformedtoal, a01 pair transformedto a0, and
00 and 11 pairs discarded, then the resulting sequenceis both unbiased and uncorrelated. [

A practical (although not provable) de-skewing technique is to pass sequences whose
bits are biased or correlated through a cryptographic hash function such as SHA-1 or MD5.

5.3 Pseudorandom bit generation

A one-way function f (Definition 1.12) can be utilized to generate pseudorandom bit se-
guences (Definition 5.3) by first selecting arandom seed s, and then applying thefunctionto
the sequenceof valuess, s+1, s+2, . . . ; theoutput sequenceis f(s), f(s+1), f(s+2),
Depending on the properties of the one-way function used, it may be necessary to only keep
afew bits of the output values f(s + ¢) in order to remove possible correlations between
successive values. Examples of suitable one-way functions f include a cryptographic hash
function such as SHA-1 (Algorithm 9.53), or ablock cipher such as DES (§7.4) with secret
key k.

Although such ad-hoc methods have not been proven to be cryptographically secure,
they appear sufficient for most applications. Two such methods for pseudorandom bit and
number generation which have been standardized are presentedin §5.3.1 and §5.3.2. Tech-
niquesfor the cryptographically secure generation of pseudorandom bits are givenin §5.5.

5.3.1 ANSI X9.17 generator

Algorithm5.11isaU.S. Federal Information Processing Standard (FI PS) approved method
from the ANSI X9.17 standard for the purpose of pseudorandomly generating keys and
initialization vectors for use with DES. E;, denotes DES E-D-E two-key triple-encryption
(Definition 7.32) under a key k; the key k should be reserved exclusively for use in this
algorithm.

5.11 Algorithm ANSI X9.17 pseudorandom bit generator

INPUT: arandom (and secret) 64-hit seed s, integer m, and DES E-D-E encryption key k.
OUTPUT: m pseudorandom 64-bit strings z1, x>, ... , Ty,
1. Compute the intermediate value I = E (D), where D is a 64-bit representation of
the date/time to asfine aresolution asis available.
2. For i from 1 to m do the following:
2.2 s« FEp(x; @ I).
3. Return(z1,x2,... , Tm).

Each output bitstring z; may be used asaninitialization vector (1V) for one of the DES
modes of operation (§7.2.2). To obtainaDES key from z;, every eighth bit of z; should be
reset to odd parity (cf. §7.4.2).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

174

Ch.5 Pseudorandom Bits and Sequences

5.3.2 FIPS 186 generator

5.12

5.13

5.14

Thealgorithmspresented in this subsection are FI PS-approved methodsfor pseudorandom-
ly generating the secret parametersfor the DSA (§11.5.1). Algorithm 5.12 generates DSA
privatekeysa, while Algorithm 5.14 generates the per-message secrets k to beused in sign-
ing messages. Both algorithmsuse asecret seed s which should berandomly generated, and
utilize aone-way function constructed by using either SHA-1 (Algorithm 9.53) or DES (Al-
gorithm 7.82), respectively described in Algorithms 5.15 and 5.16.

Algorithm FIPS 186 pseudorandom number generator for DSA private keys

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbersay, as, . .. , a,, intheinterval [0, ¢ — 1] which may
be used as DSA private keys.
1. If Algorithm 5.15is to be used in step 4.3 then select an arbitrary integer b, 160 <
b < 512; if Algorithm 5.16 isto be used then set b<160.
2. Generate arandom (and secret) b-bit seed s.
3. Definethe 160-bit stringt = 67452301 efcdab89 98badcfe 10325476
c3d2e1£0 (in hexadecimal).
4. For 4 from 1 to m do the following:
4.1 (optional user input) Either select a b-bit string y;, or set y;<0.
4.2 z;+(s +y;) mod 2°.
4.3 a;+G(t, z;) mod q. (G iseither that defined in Algorithm 5.15 or 5.16.)
4.4 s<(1+ s+ a;) mod 2°.

5. Return(ay, as, ... , amy).

Note (optional user input) Algorithm 5.12 permits a user to augment the seed s with ran-
dom or pseudorandom strings derived from alternate sources. The user may desire to do
thisif she does not trust the quality or integrity of the random bit generator which may be
built into a cryptographic module implementing the algorithm.

Algorithm FIPS 186 pseudorandom number generator for DSA per-message secrets

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbers ky, kz, . . . , kn, intheinterval [0, ¢ — 1] which may
be used as the per-message secret numbers k inthe DSA.
1. If Algorithm 5.15 isto be used in step 4.1 then select an integer b, 160 < b < 512;
if Algorithm 5.16 isto be used then set b+160.
2. Generate arandom (and secret) b-bit seed s.
3. Definethe 160-bit stringt = efcdab89 98badcfe 10325476 c3d2elf0
67452301 (in hexadecimal).
4. For 4 from 1 to m do the following:
4.1 k;<G(t,s) mod q. (G iseither that defined in Algorithm 5.15 or 5.16.)
4.2 s<+(1+ s+ k;) mod 2°.

5. Return(ky, ks, - . . , km).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 175

5.15 Algorithm FIPS 186 one-way function using SHA-1

INPUT: a160-bit string ¢ and a b-bit string ¢, 160 < b < 512.
OUTPUT: a 160-hit string denoted G (¢, ¢).
1. Break up t into five 32-hit blocks: ¢ = Hy || Ha||Hs||Ha||Hs.
2. Pad c with 0’sto obtain a 512-bit message block: X <—c[|0512~?.
3. Divide X into 16 32-bit words: zgx ... x15, and set m<1.
4. Execute step 4 of SHA-1 (Algorithm 9.53). (Thisaltersthe H;'s.)
5. Theoutput is the concatenation: G(t,c) = H1||Hz|| Hs|| Ha| Hs.

5.16 Algorithm FIPS 186 one-way function using DES

INPUT: two 160-bit stringst and c.
OUTPUT: a 160-hit string denoted G (¢, ¢).
1. Break up t into five 32-bit blocks: ¢ = o ||ty ||t2]|t3]|t4-
2. Bresk up c into five 32-bit blocks: ¢ = ¢gl|c1]|c2||cs|ca-
3. For i from 0 to 4 do thefollowing: z;<t; ® c;.
4. For 4 from 0 to 4 do the following:
4.1 b14—C(i+a)modss b24=C(i1+3)mods5-
4.2 a14¢-i, A24T(i11)mod5 D T(it4)mods-
4.3 A«ayl|az, B<+-b]|bs, whered! denotesthe 24 least significant bits of b;.
4.4 Use DESwith key B to encrypt A: y,<DESg(A).
4.5 Break up y; into two 32-bit blocks: y; = L;||R;.
. Fori from0 to 4 do thefollowing: z;<—L; @ R(i+2)mods ® L(i+3)mods-
. The output is the concatenation: G(t,c) = 2ol 21122/ 23| 24-

[e20N¢)]

5.4 Statistical tests

This section presents some tests designed to measure the quality of a generator purported
to bearandom bit generator (Definition 5.1). Whileit isimpossibleto give a mathematical
proof that a generator is indeed a random bit generator, the tests described here help detect
certain kinds of weaknesses the generator may have. Thisisaccomplished by taking asam-
ple output sequence of the generator and subjecting it to various statistical tests. Each statis-
tical test determines whether the sequence possesses a certain attribute that atruly random
seguence would be likely to exhibit; the conclusion of each test is not definite, but rather
probabilistic. An example of such an attribute is that the sequence should have roughly the
samenumber of 0'sas 1's. If the sequenceis deemed to havefailed any oneof the statistica
tests, the generator may be rejected as being non-random; alternatively, the generator may
be subjected to further testing. On the other hand, if the sequence passes all of the statisti-
cal tests, the generator is accepted as being random. More precisely, the term “accepted”
should be replaced by “not rejected”, since passing the tests merely provides probabilistic
evidence that the generator produces sequences which have certain characteristics of ran-
dom sequences.

§5.4.1 and §5.4.2 provide some relevant background in statistics. §5.4.3 establishes
some notation and lists Golomb'’s randomness postulates. Specific statistical tests for ran-
domness are described in §5.4.4 and §5.4.5.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

176

Ch.5 Pseudorandom Bits and Sequences

5.4.1 The normal and chi-square distributions

5.17

5.18

5.19

The normal and x2 distributions are widely used in statistical applications.

Definition If theresult X of an experiment can be any real number, then X is said to be
a continuous random variable.

Definition A probability density function of acontinuousrandomvariable X isafunction
f(x) which can be integrated and satisfies:

(i) f(z)>0fordlz e R;
@iy /7 f(z)dz =1; and
(i) forala,be R, Pla < X <b) = [’ f(z)dz.
() The normal distribution

Thenormal distribution arisesin practice when alarge number of independent random vari-
ables having the same mean and variance are summed.

Definition A (continuous) random variable X hasanormal distributionwith mean p and
variance o2 if its probability density function is defined by

flx) = - 127Texp{_(x2;2'u)2}, —00 < x < 00.

Notation: X is said to be N(u,0?). If X is N(0,1), then X is said to have a standard
normal distribution.

A graph of the N (0, 1) distribution is given in Figure 5.1. The graph is symmetric

0.45 T T T T

Figure 5.1: Thenormal distribution N (0, 1).

about the vertical axis, and hence P(X > z) = P(X < —x) for any z. Table 5.1 gives
some percentiles for the standard normal distribution. For example, the entry (« = 0.05,
x = 1.6449) meansthat if X is N(0, 1), then X exceeds 1.6449 about 5% of the time.

Fact 5.20 can be used to reduce questionsabout anormal distribution to questionsabout
the standard normal distribution.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 177

5.20

5.21

a 0.1 0.05 0.025 0.01 0.005 | 0.0025 0.001 | 0.0005
x || 1.2816 | 1.6449 | 1.9600 | 2.3263 | 2.5758 | 2.8070 | 3.0902 | 3.2905

Table 5.1: Selected percentiles of the standard normal distribution. If X isarandomvariable having
a standard normal distribution, then P(X > z) = a.

Fact If therandom variable X is N (u, %), then the random variable Z = (X — u) /o is
N(0,1).

(ii) The x2 distribution

The 2 distribution can be used to compare the goodness-of-fit of the observed frequencies
of eventsto their expected frequencies under a hypothesized distribution. The x 2 distribu-
tion with v degreesof freedom arisesin practice when the squares of v independent random
variables having standard normal distributions are summed.

Definition Letv>1 beaninteger. A (continuous) random variable X hasay? (chi-squ-
are) distribution with v degrees of freedomif its probability density function is defined by
L

f(z) =1 T(v/2)2°/2

0, z <0,

zW/2-le=2/2 0 < g < o0,

where I is the gamma function.> The mean and variance of this distribution are i = v,
and o2 = 2v.

A graph of the x2 distribution with v = 7 degrees of freedom is given in Figure 5.2.
Table 5.2 gives some percentiles of the y 2 distribution for various degrees of freedom. For

0.1 |

0.08

O 1 1 1

0 5 10 15 20
X

Figure 5.2: The x? (chi-square) distribution with v = 7 degrees of freedom.

example, theentry inrow v = 5 and column o = 0.05 isxz = 11.0705; this meansthat if
X has ay? distribution with 5 degrees of freedom, then X exceeds 11.0705 about 5% of
thetime.

3The gamma function is defined by I'(¢) = [;° '~ e dx, for t > 0.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

178 Ch.5 Pseudorandom Bits and Sequences

«
v 0100 0050 0025 0010] 0005] 0001
1 2.7055 38415 5.0239 6.6349 78794 10.8276
2 4.6052 5.9915 7.3778 9.2103 | 105066 | 13.8155
3 6.2514 7.8147 93484 | 113449 | 128382 | 162662
4 7.7794 94877 | 111433 | 132767 | 14.8603 | 18.4668
5 9.2364 | 110705 | 128325 | 150863 | 16.7496| 205150
6| 106446 | 125016 | 14.4494 | 168119 | 185476 | 22.4577
7| 120170 | 140671 | 160128 | 184753 | 202777 | 24.3219
8| 133616 | 155073 | 17.5345| 20.0902 | 219550 | 26.1245
9| 146837 | 169190 | 190228 | 216660 | 235894 | 27.8772
10 || 159872 | 183070 | 204832 | 232093 | 251882 | 29.5883
11 || 172750 | 19.6751 | 219200 | 247250 | 267568 | 312641
12 | 185493 | 210261 | 233367 | 262170 | 282995 329095
13 || 198119 | 223620 | 247356 | 27.6882| 29.8195| 345282
14 || 210641 | 236848 | 261189 | 291412 | 313193 | 361233
15 || 223071 | 24.9958 | 27.4884 | 305779 | 328013 | 37.6973
16 || 235418 | 262962 | 288454 | 319999 | 34.2672| 39.2524
17 || 247690 | 275871 | 301910 | 334087 | 357185 | 407902
18 || 259804 | 288693 | 315264 | 34.8053 | 37.1565| 423124
19 || 272036 | 30.1435 | 328523 | 361909 | 385823 | 43.8202
20 || 284120 | 314104 | 341696 | 37.5662 | 39.9968 | 45.3147
21| 2906151 | 326706 | 354789 | 389322 | 414011 | 46.7970
22 || 308133 | 339244 | 367807 | 402894 | 427957 | 48.2679
23 || 320060 | 351725 | 380756 | 416384 | 44.1813| 49.7282
24 || 331962 | 364150 | 393641 | 429798 | 455585| 51.1786
25 || 343816 | 37.6525 | 406465 | 443141 | 469279 | 52.6197
26 | 355632 | 388851 | 419232 | 456417 | 482899 | 54.0520
27 || 367412 | 401133 | 431945 | 469629 | 49.6449 | 55.4760
28 || 37.9150 | 413371 | 444608 | 482782 | 50.9934 | 56.8923
29 || 300875 | 425570 | 457223 | 495879 | 523356 | 583012
30 || 402560 | 437730 | 469792 | 50.8922 | 536720 | 59.7031
31 || 414217 | 449853 | 482319 | 521914 | 550027 | 61.0983
63 || 77.7454 | 825287 | 868296 | 920100 | 956493 | 103.4424
127 || 147.8048 | 154.3015 | 160.0858 | 1669874 | 171.7961| 181.9930
255 || 284.3359 | 2932478 | 3011250 | 3104574 | 3169194 | 3305197
511 || 5523730 | 564.6961 | 5755298 | 5882978 | 597.0978 | 6155149
1023 || 1081.3794 | 1098.5208 | 1113.5334 | 11311587 | 1143.2653 | 11684972

Table 5.2: Sdected percentiles of the x* (chi-square) distribution. A (v, a)-entry of z in the table
has the following meaning: if X is a random variable having a »* distribution with v degrees of
freedom, then P(X > z) = a.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 179

5.22

Fact 5.22 relates the normal distribution to the x? distribution.

Fact If therandom variable X is N(u,0?), 02 > 0, then the random variable Z = (X —
w)?/o? hasax? distribution with 1 degree of freedom. In particular, if X is N (0, 1), then
Z = X? hasa? distribution with 1 degree of freedom.

5.4.2 Hypothesis testing

5.23

A statistical hypothesis, denoted Hy, is an assertion about a distribution of one or moreran-
domvariables. A test of astatistical hypothesisisaprocedure, based upon observed values
of the random variabl es, that |eads to the acceptance or rejection of the hypothesis Hy. The
test only provides a measure of the strength of the evidence provided by the data against
the hypothesis; hence, the conclusion of thetest is not definite, but rather probabilistic.

Definition The significancelevel o of the test of a statistical hypothesis Hy is the proba-
bility of rgjecting Hy when it is true.

In this section, Hy will be the hypothesis that a given binary sequence was produced
by arandom bit generator. If the significancelevel o of atest of H istoo high, then thetest
may reject sequences that were, in fact, produced by a random bit generator (such an error
iscaled aType| error). On the other hand, if the significance level of atest of Hy istoo
low, then there is the danger that the test may accept sequences even though they were not
produced by arandom bit generator (such anerroriscalled aTypell error). Itis, therefore,
important that the test be carefully designed to have a significance level that is appropriate
for the purpose at hand; a significancelevel « between 0.001 and 0.05 might be employed
in practice.

A statistical test isimplemented by specifying astatistic on therandomsample.® Statis-
ticsare generally chosen so that they can be efficiently computed, and so that they (approxi-
mately) follow an N (0, 1) or ax? distribution (see §5.4.1). Thevalue of the statistic for the
sample output sequence is computed and compared with the value expected for a random
seguence as described below.

1. Suppose that a statistic X for a random sequence follows a x? distribution with v
degrees of freedom, and suppose that the statistic can be expected to take on larger
values for nonrandom sequences. To achieve a significance level of «, a threshold
vaue z, ischosen (using Table5.2) sothat P(X > z,) = «. If thevaue X5 of the
statistic for the sample output sequencesatisfies Xs > x, thenthesequencefailsthe
test; otherwise, it passesthetest. Such atest is called aone-sided test. For example,
if v =>5and a = 0.025, then x, = 12.8325, and one expects a random sequence to
fail thetest only 2.5% of the time.

2. Supposethat astatistic X for arandom sequencefollowsan N (0, 1) distribution, and
supposethat the statistic can be expected to take on both larger and smaller valuesfor
nonrandom sequences. To achieve a significance level of «, athreshold value z, is
chosen (using Table 5.1) so that P(X > z,) = P(X < —z4) = /2. If thevalue

4Actualy, the probability 3 of a Type Il error may be completely independent of . If the generator is not a
random bit generator, the probability 3 depends on the nature of the defects of the generator, and isusually difficult
to determine in practice. For this reason, assuming that the probability of a Type Il error is proportional to «isa
useful intuitive guide when selecting an appropriate significance level for atest.

5A statistic is afunction of the elements of a random sample; for example, the number of 0’sin a binary se-
quence isa statistic.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

180 Ch.5 Pseudorandom Bits and Sequences

X5 of the statistic for the sample output sequence satisfies Xg > z, or X5 < —z,
then the sequence fails the test; otherwise, it passes the test. Such atestiscalled a
two-sided test. For example, if « = 0.05, then z,, = 1.96, and one expectsarandom
sequenceto fail thetest only 5% of thetime.

5.4.3 Golomb’s randomness postulates

Golomb'’srandomness postul ates (Definition 5.28) are presented here for historical reasons
—they were one of the first attempts to establish some necessary conditions for a periodic
pseudorandom sequenceto ook random. It is emphasized that these conditionsarefar from
being sufficient for such sequences to be considered random. Unless otherwise stated, all
seguences are binary sequences.

5.24 Definition Lets = sg, s1, s2, ... beaninfinite sequence. The subsequence consisting of
thefirst n terms of s isdenoted by s™ = sg, 81,... ,8,_1.

5.25 Definition The sequence s = sg, s1, S2,... iSsaid to be N-periodic if s; = s, for
al i > 0. The sequence s isperiodic if it is N-periodic for some positive integer N. The
period of aperiodic sequence s isthe smallest positiveinteger V for which s is N-periodic.
If s isaperiodic sequence of period N, then the cycle of s isthe subsequence s¥.

5.26 Definition Letsbeasequence. A runof s isasubsequenceof s consisting of consecutive
0’sor consecutive 1'swhich is neither preceded nor succeeded by the same symbol. A run
of 0'siscalled agap, whilearun of 1'sis called ablock.

5.27 Definition Let s = s, s1, s2, ... beaperiodic sequence of period N. The autocorrela-
tion function of s is the integer-valued function C(¢) defined as

N-1
1
Clt) =+ ;(2& —1)-(2si4¢ — 1), foro<t< N -—1.

The autocorrelation function C'(¢) measures the amount of similarity between the se-
guence s and a shift of s by ¢ positions. If s isarandom periodic sequence of period NV,
then |V - C(t)| can be expected to be quite small for al valuesof ¢,0 < ¢t < N.

5.28 Definition Let s be a periodic sequence of period N. Golomb’s randomness postul ates
are thefollowing.

R1: Inthecycle sV of s, the number of 1's differs from the number of 0’s by at most 1.

R2: Inthecycle sV, at least half the runs have length 1, at least one-fourth have length
2, at least one-eighth have length 3, etc., as long as the number of runs so indicated
exceeds 1. Moreover, for each of theselengths, there are (almost) equally many gaps
and blocks.%

R3: The autocorrelation function C(t) istwo-valued. That is for someinteger K,

ift =0,

N-1 N
N-CO(t) = Z(25i_1)'(25i+t_1):{ K, ifl<t<N-1
1=0 ’ o .

SPostulate R2 implies postulate R1.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 181

5.29 Definition A binary sequence which satisfies Golomb’s randomness postul ates is called
a pseudo-noise sequence or a pn-sequence.

Pseudo-noi se sequences arise in practice as output sequences of maximum-length lin-
ear feedback shift registers (cf. Fact 6.14).

5.30 Example (pn-sequence) Consider the periodic sequence s of period N = 15 with cycle
s =0,1,1,0,0,1,0,0,0,1,1,1,1,0, 1.

The following shows that the sequence s satisfies Golomb's randomness postul ates.

R1: Thenumber of 0’sin s'% is 7, while the number of 1'sis8.

R2: s'5 has8 runs. Thereare4 runsof length 1 (2 gaps and 2 blocks), 2 runs of length 2
(1 gap and 1 block), 1 run of length 3 (1 gap), and 1 run of length 4 (1 block).

R3: The autocorrelation function C/(t) takes on two values: C(0) = 1 and C(t) = T2
forl <t <14.

Hence, s is a pn-sequence. d

5.4.4 Five basic tests

Lets = sg,s1,892,...,8,—1 beabinary sequence of length n. This subsection presents
five statistical tests that are commonly used for determining whether the binary sequence
s possesses some specific characteristics that a truly random sequence would be likely to
exhibit. It isemphasized again that the outcome of each test is not definite, but rather prob-
abilistic. If asequence passesall fivetests, thereis no guaranteethat it wasindeed produced
by arandom bit generator (cf. Example 5.4).

(i) Frequency test (monobit test)

The purpose of thistest isto determine whether the number of 0’sand 1'sin s are approxi-
mately the same, as would be expected for arandom sequence. Let ng, n; denote the num-
ber of 0’'sand 1'sin s, respectively. The statistic used is

(no — m1)?

n
which approximately follows a x? distribution with 1 degree of freedomif n > 10. 7

X, = (5.1

(ii) Serial test (two-bit test)

The purpose of this test is to determine whether the number of occurrences of 00, 01, 10,
and 11 as subsegquencesof s are approximately the same, aswould be expected for arandom
sequence. Let ng, ny denote the number of 0’sand 1'sin s, respectively, and let ngg, no1,
n19, n11 denote the number of occurrences of 00, 01, 10, 11 in s, respectively. Note that
ngo + no1 + n1o + n11 = (n — 1) since the subsequences are allowed to overlap. The
statistic used is

4 2
Xy = — (ngo +ndy +nio +niy) — - (ng+ni)+1 (5.2)

which approximately follows a x 2 distribution with 2 degrees of freedom if n > 21.

7In practice, it is recommended that the length n of the sample output sequence be much larger (for example,
n > 10000) than the minimum specified for each test in this subsection.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

182 Ch.5 Pseudorandom Bits and Sequences

(iil) Poker test

Letm beapositiveinteger suchthat | - | > 5-(2™), andletk = | > |. Dividethe sequence
s into k non-overlapping parts each of length m, and let n; be the number of occurrences of
the i*? type of sequence of length m, 1 < i < 2™. The poker test determines whether the
seguences of length m each appear approximately the same number of timesin s, aswould
be expected for arandom sequence. The statistic used is

-
_ 2" 2
X = & (;n> k (5.3)

which approximately follows a x? distribution with 2™ — 1 degrees of freedom. Note that
the poker test isageneralization of the frequency test: settingm = 1 inthe poker test yields
the frequency test.

(iv) Runs test
The purpose of the runs test is to determine whether the number of runs (of either zeros or
ones; see Definition 5.26) of variouslengthsin the sequence s is as expected for arandom
sequence. The expected number of gaps (or blocks) of length 7 in a random sequence of
lengthnise; = (n—i+3)/2+2. Letk beequal tothelargestinteger i for whiche; > 5. Let
B;, G; bethe number of blocksand gaps, respectively, of lengthiinsforeachi, 1 < i < k.
The statistic used is
k k
(Bi —e:)? (Gi —e)?
X, = = v A7 4
4 ; o + ; o (5.4

which approximately follows a x? distribution with 2k — 2 degrees of freedom.

(v) Autocorrelation test

The purpose of thistest isto check for correlations between the sequence s and (non-cyclic)
shifted versions of it. Let d beafixedinteger, 1 < d < |n/2]. The number of bitsin s not
equal to their d-shiftsis A(d) = S 7—"~" s;®s,,4, where @ denotes the XOR operator.
The statistic used is

X5 = 2 (A(d) I > d) /vn—d (5.5)
which approximately follows an N (0, 1) distribution if n — d > 10. Since small va ues of
A(d) are as unexpected as large values of A(d), atwo-sided test should be used.

5.31 Example (basic statistical tests) Consider the (non-random) sequence s of lengthn =
160 obtained by replicating the following sequence four times:

11100 01100 01000 10100 11101 11100 10010 01001.

(i) (frequencytest) ng = 84, ny = 76, and the value of the statistic X is0.4.

(II) (serlal test) ngo = 44, ng1 = 40, n1g = 40, n11 = 35, and the value of the statistic
X5 1i50.6252.

(iii) (poker test) Herem = 3 and k = 53. The blocks 000, 001, 010, 011, 100, 101, 110,
111 appear 5, 10, 6, 4, 12, 3, 6, and 7 times, respectively, and thevalue of the statistic
X3159.6415.

(iv) (runstest) Heree; = 20.25, e2 = 10.0625,e3 = 5, and k = 3. Thereare 25,4, 5
blocks of lengths 1, 2, 3, respectively, and 8, 20, 12 gaps of lengths 1, 2, 3, respec-
tively. The value of the statistic X4 is31.7913.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.4 Statistical tests 183

(v) (autocorrelationtest) If d = 8, then A(8) = 100. The value of the statistic X5 is
3.8933.

For asignificancelevel of o = 0.05, thethreshold valuesfor X, X2, X3, X4, and X5 are
3.8415, 5.9915, 14.0671, 9.4877, and 1.96, respectively (see Tables 5.1 and 5.2). Hence,
the given sequence s passes the frequency, serial, and poker tests, but fails the runs and
autocorrelation tests. |

5.32 Note (FIPS 140-1 statistical tests for randomness) FIPS 140-1 specifies four statistical
tests for randomness. Instead of making the user select appropriate significance levels for
these tests, explicit bounds are provided that the computed value of a statistic must satisfy.
A singlebitstring s of length 20000 bits, output from agenerator, is subjected to each of the
following tests. If any of the tests fail, then the generator fails the test.

(i) monobit test. The number ny of 1'sin s should satisfy 9654 < ny < 10346.
(if) poker test. The statistic X3 defined by equation (5.3) is computed for m = 4. The
poker test is passed if 1.03 < X3 < 57.4.

(iii) runstest. Thenumber B; and G; of blocks and gaps, respectively, of lengthi in s are
counted for each i, 1 < ¢ < 6. (For the purpose of this test, runs of length greater
than 6 are considered to be of length 6.) Therunstest is passed if the 12 counts B;,
G;, 1 <1 < 6, are each within the corresponding interval specified by the following

table.
| Length of run | Requiredinterval |
1 2267 — 2733
2 1079 — 1421
3 502 — 748
4 223 — 402
5 90 — 223
6 90 — 223

(iv) longruntest. Thelong runtest is passed if there are no runs of length 34 or more.

For high security applications, FIPS 140-1 mandates that the four tests be performed each
timetherandom bit generator is powered up. FIPS 140-1 allowstheseteststo be substituted
by alternative tests which provide equivalent or superior randomness checking.

5.4.5 Maurer’s universal statistical test

The basic idea behind Maurer’s universal statistical test isthat it should not be possible to
significantly compress (without loss of information) the output sequence of a random bit
generator. Thus, if asample output sequence s of abit generator can be significantly com-
pressed, the generator should be rejected as being defective. Instead of actually compress-
ing the sequence s, the universal statistical test computes a quantity that is related to the
length of the compressed sequence.

The universality of Maurer'suniversal statistical test arises becauseit is able to detect
any one of avery general class of possible defects a bit generator might have. This class
includes the five defects that are detectable by the basic tests of §5.4.4. A drawback of the
universal statistical test over the five basic tests is that it requires a much longer sample
output sequencein order to be effective. Provided that the required output sequence can be
efficiently generated, this drawback is not a practical concern since the universal statistical
test itself is very efficient.

Algorithm 5.33 computesthe statistic X, for asampleoutput sequences = sg, s1, - - - ,
sn—1 to be used in the universal statistical test. The parameter L is first chosen from the

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

184

Ch.5 Pseudorandom Bits and Sequences

(2] w [t] L] wn | o |
1 | 0.7326495 | 0.690 9 | 8.1764248 | 3.311
2 | 1.5374383 | 1.338 10 | 9.1723243 | 3.356
3 | 2.4016068 | 1.901 11 | 10.170032 | 3.384
4 | 3.3112247 | 2.358 12 | 11.168765 | 3.401
5 | 4.2534266 | 2.705 13 | 12.168070 | 3.410
6 | 5.2177052 | 2.954 14 | 13.167693 | 3.416
7 | 6.1962507 | 3.125 15 | 14.167488 | 3.419
8 | 7.1836656 | 3.238 16 | 15.167379 | 3.421

Table 5.3: Mean p and variance o of the statistic X, for random sequences, with parameters L,
K asQ — oo. Thevariance of X, isc® = ¢(L, K)? - 03 /K, where ¢(L, K) ~ 0.7 — (0.8/L) +
(1.6 4+ (12.8/L)) - K~*F for K > 2~.

interval [6, 16]. The sequence s is then partitioned into non-overlapping L-bit blocks, with
any leftover bitsdiscarded; thetotal number of blocksis Q-+ K, where Q and K aredefined
below. Foreachi, 1 < i < Q+K, letb; betheinteger whose binary representationisthes
block. Theblocksare scannedin order. A table T’ ismaintained so that at each stage T'[5] is
the position of the last occurrence of the block correspondingtointeger 7,0 < j < 2% —1.
Thefirst Q blocksof s areused toinitializetable T"; @ should be chosento beat least 10-2~
in order to have a high likelihood that each of the 2% L-hit blocks occurs at least once in
thefirst Q blocks. The remaining K blocks are used to define the statistic X, as follows.
Foreachi,Q+1<i < Q+ K,let A, =i — T[b;]; A; isthe number of positions since
the last occurrence of block b;. Then

Q+K

1
Xu = 4 > IgAi

i=Q+1

(5.6)

K should beat least 1000 - 2% (and, hence, the sample sequence s should be at least (1010 -
2L . L) bitsin length). Table 5.3 lists the mean . and variance o2 of X, for random se-
guences for some sample choicesof L as Q — oo.

5.33 Algorithm Computing the statistic X, for Maurer’s universal statistical test

INPUT: abinary sequence s = sg, s1, . - -

1. ZerothetableT'. For j from 0 to 2% — 1 do thefollowing: T[]

2.
3. sum<«0.
4,

, $n—1 Of lengthn, and parameters L, Q, K.
OUTPUT: the value of the statistic X, for the sequence s.

For i from @ + 1 to Q + K do the following:
4.1 sums—sum + Ig(i — T'[b;]).

4.2 T[b;]+i.
5 X, <sum/K.
6. Return(X,).

0.
Initialize thetable T'. For i from 1 to @ do thefollowing: T'[b;]«.

Maurer’suniversal statistical test uses the computed value of X, for the sample output
seguence s in the manner prescribed by Fact 5.34. To test the sequence s, atwo-sided test

should be used with a significance level « between 0.001 and 0.01 (see §5.4.2).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.5 Cryptographically secure pseudorandom bit generation 185

5.34 Fact Let X, bethe statistic defined in (5.6) having mean . and variance o2 as given in
Table 5.3. Then, for random sequences, the statistic Z,, = (X, — u)/o approximately
followsan N (0, 1) distribution.

5.5 Cryptographically secure pseudorandom bit
generation

Two cryptographically secure pseudorandom bit generators (CSPRBG — see Definition 5.8)
are presented in this section. The security of each generator relies on the presumed in-
tractability of an underlying number-theoretic problem. The modular multiplications that
these generators use make them relatively slow compared to the (ad-hoc) pseudorandom
bit generators of §5.3. Nevertheless they may be useful in some circumstances, for exam-
ple, generating pseudorandom bits on hardware deviceswhich already havethecircuitry for
performing modular multiplications. Efficient techniques for implementing modular mul-
tiplication are presented in §14.3.

5.5.1 RSA pseudorandom bit generator

The RSA pseudorandom bit generator is a CSPRBG under the assumption that the RSA
problemisintractable (§3.3; see adso0 §3.9.2).

5.35 Algorithm RSA pseudorandom bit generator

SUMMARY: a pseudorandom hit sequence z1, 22, . . . , 2; of length [is generated.

1. Setup. Generatetwo secret RSA-like primesp and ¢ (cf. Note 8.8), and computen =
pgand ¢ = (p — 1)(q¢ — 1). Select arandomintegere, 1 < e < ¢, such that
ged(e, @) = 1.

2. Select arandom integer zq (the seed) in theinterval [1,n — 1].

3. For i from 1to [do the following:

3.1 z;2xf_; mod n.
3.2 z;< theleast significant bit of z;.

4. The output sequenceis z1, 23, .. . , 2;.

5.36 Note (efficiency of the RSA PRBG) If e = 3 is chosen (cf. Note 8.9(ii)), then generating
each pseudorandom bit z; requires one modular multiplication and one modular squaring.
The efficiency of the generator can be improved by extracting the ; least significant bits
of z; in step 3.2, where j = clglgn and ¢ is a constant. Provided that n is sufficiently
large, this modified generator is also cryptographically secure (cf. Fact 3.87). For a mod-
ulus n of afixed bitlength (e.g., 1024 bits), an explicit range of values of ¢ for which the
resulting generator remains cryptographically secure (cf. Remark 5.9) under theintractabil-
ity assumption of the RSA problem has not been determined.

The following modification improves the efficiency of the RSA PRBG.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

186 Ch.5 Pseudorandom Bits and Sequences

5.37 Algorithm Micali-Schnorr pseudorandom bit generator

SUMMARY: apseudorandom bit sequenceis generated.
1. Setup. Generatetwo secret RSA-like primesp and ¢ (cf. Note 8.8), and computen =
pgand¢ = (p—1)(¢—1). Let N = |lgn] + 1 (thebitlength of n). Select aninteger
e,1 < e < ¢ suchthat ged(e,¢) = 1and80e < N. Letk = [N(1 — 2)] and
r=N —k.
2. Select arandom sequence z (the seed) of bitlength r.
3. Generatea pseudorandomsequenceof length k- 1. For ¢ from 1to [dothe following:
3.1 yi+af_; mod n.
3.2 ;< ther most significant bits of ;.
3.3 z;< the k least significant bits of y;.

4. Theoutput sequenceiszy || z2|| - - || z1, where || denotes concatenation.

5.38 Note (efficiency of the Micali-Schnorr PRBG) Algorithm 5.37 is more efficient than the
RSA PRBG since | N(1 — %)j bits are generated per exponentiation by e. For example,
if e =3 and N = 1024, then k = 341 bits are generated per exponentiation. Moreover,
each exponentiation requiresonly one modular squaring of anr = 683-bit number, and one
modular multiplication.

5.39 Note (security of the Micali-Schnorr PRBG) Algorithm 5.37 is cryptographically secure
under the assumption that the following istrue: thedistribution ¢ mod n for random r-bit
sequences z is indistinguishable by all polynomial-time statistical tests from the uniform
distribution of integersin theinterval [0, n» — 1]. Thisassumption is stronger than requiring
that the RSA problem be intractable.

5.5.2 Blum-Blum-Shub pseudorandom bit generator

The Blum-Blum-Shub pseudorandom bit generator (also known as the 22 mod n genera-
tor or the BBS generator) is a CSPRBG under the assumption that integer factorization is
intractable (§3.2). It formsthe basis for the Blum-Goldwasser probabilistic public-key en-
cryption scheme (Algorithm 8.56).

5.40 Algorithm Blum-Blum-Shub pseudorandom bit generator

SUMMARY: a pseudorandom hit sequence z1, 22, . . . , 2; of length [is generated.
1. Setup. Generatetwo large secret random (and distinct) primesp and ¢ (cf. Note 8.8),
each congruent to 3 modulo 4, and computen = pq.
2. Select arandominteger s (theseed) intheinterval [1,n — 1] such that ged(s, n) = 1,
and compute z¢<+s? mod n.
3. For i from 1to [do the following:
3.1 z;<z? | mod n.
3.2 z;< theleast significant bit of z;.
4. The output sequenceis z1, za, - - . , 2.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.6 Notes and further references 187

5.41 Note (efficiency of the Blum-Blum-Shub PRBG) Generating each pseudorandom bit z; re-

quiresone modular squaring. Theéefficiency of the generator can beimproved by extracting
the j least significant bits of x; in step 3.2, where j = clglgn and c isaconstant. Provided
that n is sufficiently large, this modified generator is also cryptographically secure. For a
modulus n. of a fixed hitlength (eg. 1024 bits), an explicit range of values of ¢ for which
the resulting generator is cryptographically secure (cf. Remark 5.9) under the intractability
assumption of the integer factorization problem has not been determined.

5.6 Notes and further references

§5.1

Chapter 3 of Knuth[692] isthe definitivereferencefor the classic (non-cryptographic) gen-
eration of pseudorandom numbers. Knuth [692, pp.142-166] contains an extensive discus-
sion of what it means for a sequence to be random. Lagarias[724] gives a survey of theo-
retical results on pseudorandom number generators. Luby [774] provides acomprehensive
and rigorous overview of pseudorandom generators.

For a study of linear congruential generators (Example 5.4), see Knuth [692, pp.9-25].
Plumstead/Boyar [979, 980] showed how to predict the output of alinear congruential gen-
erator given only a few elements of the output sequence, and when the parameters a, b,
and m of the generator are unknown. Boyar [180] extended her method and showed that
linear multivariate congruential generators (having recurrence equation z,, = a1z,_1 +
a2Tn_o+ - -+ ayx,—; + b mod m), and quadratic congruential generators (having recur-
renceequation z,, = az?_; + bx,_1 + c mod m) are cryptographicaly insecure. Finaly,
Krawczyk [713] generalized these results and showed how the output of any multivariate
polynomial congruential generator can be efficiently predicted. A truncated linear congru-
ential generator is one where afraction of the least significant bits of the x; are discarded.
Frieze et al. [427] showed that these generators can be efficiently predicted if the genera
tor parametersa, b, and m areknown. Stern [1173] extended this method to the case where
only m isknown. Boyar [179] presented an efficient al gorithm for predicting linear congru-
ential generatorswhen O(log log m) bits are discarded, and when the parameters a, b, and
m are unknown. No efficient prediction algorithms are known for truncated multivariate
polynomial congruential generators. For a summary of cryptanalytic attacks on congruen-
tial generators, see Brickell and Odlyzko [209, pp.523-526].

For a formal definition of a statistical test (Definition 5.5), see Yao [1258]. Fact 5.7 on
the universality of the next-bit test is due to Yao [1258]. For a proof of Yao's result, see
Kranakis [710] and §12.2 of Stinson [1178]. A proof of a generalization of Yao's result
is given by Goldreich, Goldwasser, and Micali [468]. The notion of a cryptographically
secure pseudorandom bit generator (Definition 5.8) was introduced by Blum and Micali
[166]. Blum and Micali also gave aformal description of the next-bit test (Definition 5.6),
and presented thefirst cryptographically secure pseudorandom bit generator whose security
is based on the discrete logarithm problem (see page 189). Universal tests were presented
by Schrift and Shamir [1103] for verifying the assumed properties of a pseudorandom gen-
erator whose output sequences are not necessarily uniformly distributed.

Thefirst provably secure pseudorandom number generator was proposed by Shamir [1112].
Shamir proved that predicting the next number of an output sequence of this generator is
equivalent to inverting the RSA function. However, even though the numbers as awhole
may be unpredictable, certain parts of the number (for example, itsleast significant bit) may

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

188

Ch.5 Pseudorandom Bits and Sequences

§5.2

§5.3

§5.4

be biased or predictable. Hence, Shamir’s generator is not cryptographically securein the
sense of Definition 5.8.

Agnew [17] proposed a VLS| implementation of arandom bit generator consisting of two
identical metal insulator semiconductor capacitorscloseto each other. Thecellsarecharged
over the same period of time, and then a1 or 0 is assigned depending on which cell has
a greater charge. Fairfield, Mortenson, and Coulthart [382] described an LS| random bit
generator based on the frequency instability of afree running oscillator. Davis, Ihaka, and
Fenstermacher [309] used the unpredictability of air turbulence occurring in a sealed disk
drive as arandom bit generator. The bits are extracted by measuring the variationsin the
time to access disk blocks. Fast Fourier Transform (FFT) techniques are then used to re-
move possible biases and correlations. A sample implementation generated 100 random
bits per minute. For further guidance on hardware and software-based techniques for gen-
erating random bits, see RFC 1750 [1043].

The de-skewing technique of Example 5.10 is due to von Neumann [1223]. Elias [370]
generalized von Neumann's technique to a more efficient scheme (one where fewer bits
arediscarded). Fast Fourier Transform techniquesfor removing biases and correlationsare
described by Brillinger [213]. For further ways of removing correlations, see Blum [161],
Santhaand Vazirani [1091], Vazirani [1217], and Chor and Goldreich [258].

Theideaof usingaone-way function f for generating pseudorandom bit sequencesisdueto
Shamir [1112]. Shamir illustrated why it is difficult to provethat such ad-hoc generatorsare
cryptographically secure without imposing somefurther assumptionson f. Algorithm5.11
isfrom Appendix C of the ANSI X9.17 standard [37]; it is one of the approved methodsfor
pseudorandom hit generation listed in FIPS 186 [406]. Meyer and Matyas [859, pp.316-
317] describe another DES-based pseudorandom bit generator whose output isintended for
use as data-encrypting keys. The four algorithms of §5.3.2 for generating DSA parameters
arefrom FIPS 186.

Standard references on statistics include Hogg and Tanis[559] and Wackerly, Mendenhall,
and Scheaffer [1226]. Tables5.1 and 5.2 were generated using the Maple symbolic algebra
system [240]. Golomb's randomness postul ates (§5.4.3) were proposed by Golomb [498].

Thefive statistical tests for local randomness outlined in §5.4.4 are from Beker and Piper
[84]. Theserid test (§5.4.4(ii)) isdueto Good [508]. It was generalized to subsequences of
length greater than 2 by Marsaglia[782] who called it the overlapping m-tupletest, and later
by Kimberley [674] who called it the generalized serial test. The underlying distribution
theories of the serial test and the runs test (§5.4.4(iv)) were analyzed by Good [507] and
Mood [897], respectively. Gustafson [531] considered alternative statistics for the runstest
and the autocorrelation test (§5.4.4(v)).

There are numerous other statistical tests of local randomness. Many of these tests, includ-
ing the gap test, coupon collector’stest, permutation test, run test, maximum-of-¢ test, col-
lision test, serial test, correlation test, and spectral test are described by Knuth [692]. The
poker test as formulated by Knuth [692, p.62] is quite different from that of §5.4.4(iii). In
the former, a sample sequenceis divided into m-bit blocks, each of which is further subdi-
vided into [-hit sub-blocks (for somedivisor I of m). The number of m-bit blocks having »
distinct I-bit sub-blocks (1 < r < m/!) is counted and compared to the corresponding ex-
pected numbersfor random sequences. Erdmann [372] gives adetailed exposition of many

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§5.6 Notes and further references 189

§5.5

of these tests, and appliesthem to sample output sequences of six pseudorandom bit gener-
ators. Gustafson et al. [533] describe acomputer package which implementsvarious statis-
tical tests for assessing the strength of a pseudorandom bit generator. Gustafson, Dawson,
and Goli¢ [532] proposed anew repetition test which measures the number of repetitions of
I-hit blocks. The test requires a count of the number of patterns repeated, but does not re-
quirethefrequency of each pattern. For thisreason, it isfeasibleto apply thistest for larger
valuesof (e.g. | = 64) than would be permissible by the poker test or Maurer’s universa
statistical test (Algorithm 5.33). Two spectral tests have been devel oped, one based on the
discrete Fourier transform by Gait [437], and one based on the Walsh transform by Yuen
[1260]. For extensions of these spectral tests, see Erdmann [372] and Feldman [389)].

FIPS 140-1 [401] specifies security requirements for the design and implementation of
cryptographic modules, including random and pseudorandom bit generators, for protecting
(U.S. government) unclassified information.

Theuniversal statistical test (Algorithm 5.33) isdueto Maurer [813] and was motivated by
source coding algorithms of Elias [371] and Willems [1245]. The class of defectsthat the
test is able to detect consists of those that can be modeled by an ergodic stationary source
with limited memory; Maurer arguesthat this class includes the possible defects that could
occur in apractical implementation of arandom bit generator. Table 5.3 is due to Maurer
[813], who provides derivations of formulae for the mean and variance of the statistic X ,,.

Blum and Micali [166] presented the following general construction for CSPRBGs. Let D
be afinite set, and let f: D — D be apermutation that can be efficiently computed. Let
B: D — {0,1} be aBoolean predicate with the property that B(z) is hard to compute
givenonly =z € D, however, B(x) can be efficiently computed giveny = f~!(z). The
output sequence z1, z3, . . . , z; corresponding to aseed xg € D is obtained by computing
z; = f(xi—1), zz = B(z;), for 1 < i < [. This generator can be shown to pass the
next-bit test (Definition 5.6). Blum and Micali [166] proposed the first concreteinstance of
aCSPRBG, called the Blum-Micali generator. Using the notation introduced above, their
method can be described asfollows. Let p bealargeprime, and « agenerator of Z,. Define
D =17, ={1,2,...,p—1}. Thefunction f : D — D isdefined by f(x) = a® mod p.
Thefunction B : D — {0,1} isdefinedby B(z) = 1if 0 < log,z < (p —1)/2,and
B(z) = 0iflog, = > (p—1)/2. Assuming theintractability of the discretelogarithm prob-
leminZ,; (§3.6; seeaso §3.9.1), the Blum-Micali generator was proven to satisfy the next-
bit test. Long and Wigderson [772] improved the efficiency of the Blum-Micali generator
by simultaneously extracting O(lg lg p) bits (cf. §3.9.1) from each z,. Kaliski [650, 651]
modified the Blum-Micali generator so that the security depends on the discrete logarithm
problem in the group of points on an elliptic curve defined over afinite field.

The RSA pseudorandom bit generator (Algorithm 5.35) and the improvement mentioned
in Note 5.36 are due to Alexi et al. [23]. The Micali-Schnorr improvement of the RSA
PRBG (Algorithm 5.37) is due to Micali and Schnorr [867], who al so described a method
that transforms any CSPRBG into one that can be accelerated by parallel evaluation. The
method of parallelization is perfect: m parallel processors speed the generation of pseudo-
random bits by afactor of m.

Algorithm 5.40 is due to Blum, Blum, and Shub [160], who showed that their pseudoran-
dom bit generator is cryptographically secure assuming the intractability of the quadratic
residuosity problem (§3.4). Vazirani and Vazirani [1218] established a stronger result re-
garding the security of this generator by proving it cryptographically secure under the
weaker assumption that integer factorization isintractable. Theimprovement mentionedin

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

190

Ch.5 Pseudorandom Bits and Sequences

Note 5.41 isdueto Vazirani and Vazirani. Alexi et a. [23] proved analogousresultsfor the
modified-Rabin generator, which differs as follows from the Blum-Blum-Shub generator:
in step 3.1 of Algorithm 5.40, let 7 = z? | mod n; if Z < n/2, thenz; = 7; otherwise,
T;i=mn—1x.

Impagliazzo and Naor [569] devised efficient constructionsfor aCSPRBG and for auniver-
sal one-way hash function which are provably as secure as the subset sum problem. Fischer
and Stern [411] presented a simple and efficient CSPRBG which is provably as secure as
the syndrome decoding problem.

Yao [1258] showed how to obtain a CSPRBG using any one-way permutation. Levin [761]
generalized this result and showed how to obtain a CSPRBG using any one-way function.
For further refinements, see Goldreich, Krawczyk, and Luby [470], Impagliazzo, Levin,
and Luby [568], and Hastad [545].

A randomfunction f: {0,1}" — {0, 1}™ isafunctionwhich assignsindependent and ran-
dom values f(z) € {0,1}™ to all argumentsz € {0,1}". Goldreich, Goldwasser, and
Micali [468] introduced a computational complexity measure of the randomness of func-
tions. They defined afunction to be poly-randomif no polynomial-time algorithm can dis-
tinguish between values of the function and true random strings, even when the algorithm
is permitted to select the arguments to the function. Goldreich, Goldwasser, and Micali
presented an algorithm for constructing poly-random functions assuming the existence of
one-way functions. This theory was applied by Goldreich, Goldwasser, and Micali [467]
to develop provably secure protocolsfor the (essentially) storagel ess distribution of secret
identification numbers, message authentication with timestamping, dynamic hashing, and
identify friend or foe systems. Luby and Rackoff [776] showed how poly-random permu-
tations can be efficiently constructed from poly-random functions. This result was used,
together with some of the design principles of DES, to show how any CSPRBG can be
used to construct a symmetric-key block cipher which is provably secure against chosen-
plaintext attack. A simplified and generalized treatment of L uby and Rackoff’sconstruction
was given by Maurer [816].

Schnorr [1096] used Luby and Rackoff’s poly-random permutation generator to construct
a pseudorandom bit generator that was claimed to pass all statistical tests depending only
on asmall fraction of the output sequence, even when infinite computational resources are
available. Rueppel [1079] showed that this claim is erroneous, and demonstrated that the
generator can be distinguished from a truly random bit generator using only a small num-
ber of output bits. Maurer and Massey [821] extended Schnorr’swork, and proved the ex-
istence of pseudorandom hit generators that pass all statistical tests depending only on a
small fraction of the output sequence, even wheninfinite computational resourcesare avail-
able. The security of the generators does not rely on any unproved hypothesis, but rather
on the assumption that the adversary can access only alimited number of bits of the gener-
ated sequence. Thiswork isprimarily of theoretical interest since no such polynomial-time
generators are known.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

