
This is a post-peer-review, pre-copyedit version of an article published in the Journal of the

Operational Research Society. The definitive publisher-authenticated version:

Ruxandra Stoean, Mike Preuss, Catalin Stoean, Elia El-Darzi, D. Dumitrescu Support Vector

Machine Learning with an Evolutionary Engine, Journal of the Operational Research Society

(ISI indexed, 2009 Impact Factor: 1.009), Palgrave Macmillan, Vol. 60, Issue 8 (August

2009), Special Issue: Data Mining and Operational Research: Techniques and Applications,

Kweku-Muata Osei-Bryson and Vic J Rayward-Smith (Guest Editors), pp. 1116-1122, ISSN

0160-5682, 2009.

is available online at:

http://www.palgrave-journals.com/jors/journal/v60/n8/full/jors2008124a.html

http://www.palgrave-journals.com/jors/journal/v60/n8/full/jors2008124a.html

Journal of the Operational Research Society (2008), 1 --7 © 2008 Operational Research Society Ltd. All rights reserved. 0160-5682/08

www.palgrave-journals.com/jors

Support vector machine learning with an
evolutionary engine
R Stoean1∗, M Preuss2, C Stoean1, E El-Darzi3 and D Dumitrescu4

1University of Craiova, Craiova, Romania; 2University of Dortmund, Dortmund, Germany;
3University of Westminster, London, UK; and 4University of Cluj-Napoca, Cluj, Romania

The paper presents a novel evolutionary technique constructed as an alternative of the standard support vector
machines architecture. The approach adopts the learning strategy of the latter but aims to simplify and generalize
its training, by offering a transparent substitute to the initial black-box. Contrary to the canonical technique,
the evolutionary approach can at all times explicitly acquire the coefficients of the decision function, without
any further constraints. Moreover, in order to converge, the evolutionary method does not require the positive
(semi-)definition properties for kernels within nonlinear learning. Several potential structures, enhancements
and additions are proposed, tested and confirmed using available benchmarking test problems. Computational
results show the validity of the new approach in terms of runtime, prediction accuracy and flexibility.
Journal of the Operational Research Society advance online publication, 19 November 2008
doi:10.1057/jors.2008.124

Keywords: evolutionary algorithms; support vector machines; classification; regression

Introduction

Support vector machines (SVMs) have proven to be a
powerful tool for classification and regression (Vapnik, 1998;
Hsu and Lin, 2002; Mierswa, 2006). Despite the originality
and performance of the learning vision, the inner training
engine appears as intricate, constrained, rarely transparent and
able to converge only for certain particular decision functions.
This has motivated us to investigate an alternative training
approach, based on evolutionary algorithms (EAs) (Eiben
and Smith, 2003), which are known to be flexible and robust.

There have been numerous attempts to combine SVMs
and EAs; however, the proposed technique differs from the
reported ones. Within the evolutionary approach to support
vector machines (EASVMs), the learning path remains
unchanged, but the coefficients of the decision function can
now be evolved with respect to the optimization objectives
regarding accuracy and generalization. The aim of this paper
is to overcome the above-stated SVM drawbacks. Apart from
the theoretical reasons, EASVMs offer a straightforward and
efficient tool for solving practical problems (Stoean et al,
2006, 2007).

The paper is structured as follows. The next section presents
the ideas and mechanisms of canonical SVMs for classifi-
cation and regression. This is followed by an outline of our
approach including the various interpretations and settings
of the parameters. Two alternative EA constructions for the

∗Correspondence: R Stoean, University of Craiova, A.I. Cuza, No 13,
200585, Craiova, Romania.
E-mail: ruxandra.stoean@inf.ucv.ro

EASVMs are presented and results are compared to those of
SVMs. Conclusions are drawn in the final section.

Support vector machines

SVMs are well suited for classification and regression. Given
{(xi , yi)}i=1,2,...,m a training set, where every xi ∈ Rn is a data
sample and each yi is a target, a learning task, in general,
is concerned with the discovery of the optimal function that
minimizes the discrepancy between the given targets of data
samples and the predicted ones.

The task for classification is to achieve an optimal separa-
tion of given data into classes. SVMs regard learning in this
situation from a geometrical point of view: They assume the
existence of a separating surface between every two classes
labelled as −1 and 1. If training data were linearly separable,
then there would exist a linear hyperplane, 〈w, x〉 − b = 0,
which partitions the samples according to classes. Separation
is achieved if each positive/negative sample lies on the corre-
sponding side of a matching supporting hyperplane for the
respective class (1) (Bosch and Smith, 1998).

yi (〈w, xi 〉 − b) > 1, i = 1, 2, . . . ,m (1)

Hence, SVMs must determine the optimal values for the coef-
ficients of the decision hyperplane such that a good training
separation and a high generalization ability, that is, maximal
margin between classes (minimal ‖w‖2) (Vapnik, 1998), are
achieved.

The relative position of samples is not usually suitable
for a linear separation; however, training error may be mini-
mized through the introduction of slack variables within the

2 Journal of the Operational Research Society

separability statement (1). This relaxation can be achieved
by observing the deviation of every data sample from the
corresponding supporting hyperplane, which corresponds to
a value of ±�i/‖w‖, �i �0; a �i higher than unity signals
an error (Cortes and Vapnik, 1995). The standard algorithm
of acquiring the optimal hyperplane relies on an extension of
the Lagrange multipliers technique. A dual formulation of the
learning task is derived and the optimal Lagrange multipliers
are considered as the solutions of the system by setting the
gradient of the new objective function to 0.

If a linear separation does not provide acceptable results
for classification, then a nonlinear decision surface can be
employed by mapping the initial input space into a higher
dimensional feature space, � : Rn → H , where a linear
hyperplane can be subsequently derived with the same
requirements as before. As in the standard SVM training
algorithm, vectors appear only as part of scalar products;
the issue can be further simplified by substituting the scalar
product by a kernel, which is a function with the property
that K (xi , x j) = 〈(�xi),�(x j)〉, xi , x j ∈ Rn; this can be
perceived as to express the similarity between samples. SVMs
require the kernel to be a positive (semi-)definite function
in order for the standard approach to find a solution to the
optimization problem (Mercer’s theorem). The problem with
this restriction is twofold: First, it is very difficult to check
for a newly constructed function and, second, kernels that
fail the theorem could otherwise prove to achieve a better
separation of the training samples (Mierswa, 2006). Hence,
SVMs consequently use a couple of classical kernels that
had been demonstrated to meet this prerequisite: The poly-
nomial K (x, y) = 〈x, y〉p and the radial K (x, y) = e‖x−y‖2/�.
However, as a substitute for the original solving, a direct
search algorithm does not depend on the condition whether
the kernel is positive (semi-)definite or not. Having solved
the optimization problem, the side of the decision boundary
(the class) on which every new data sample lies can now
be determined from the derived hyperplane. As it is not
always possible to know the map � and, as a consequence
of the standard methodology, neither to explicitly obtain the
coefficients, the class may result from further artifices.

On the other hand, SVMs for regression must find a func-
tion, f (x)=〈w, x〉−b, that leads to at most � deviation from
the actual targets of data samples (2).

yi − 〈w, xi 〉 + b�� and 〈w, xi 〉 − b − yi ��,

i = 1, 2, . . . ,m (2)

Also, f (x) must be as flat as possible (Smola and Scholkopf,
1998) (minimal ‖w‖2), since the resulting values of the regres-
sion coefficients may affect the model in the sense that it fits
current training data but has low generalization ability. The
procedure to determine the optimal coefficients of the regres-
sion hyperplane follows the same steps as in the SVMs for
classification, with an added extra variable �∗

i in the condi-
tion for approximation of training data. Finally, the predicted
target for a test sample is computed following the derived

function; the regression coefficients are again rarely trans-
parent and the predicted target is commonly derived from
supplementary computations.

An evolutionary alternative training

Evolutionary optimization allows the adaptation of the deci-
sion hyperplane to the available training data, which there-
fore can be treated directly as the (primal) optimization
problem. Basic geometric idea of SVMs is considered, but
the proposed approach deviates from the standard mathemat-
ical treatment. Additionally, the evolutionary technique opens
the way for generalizations involving nonlinear, nonstandard
decision surfaces. We thus propose a new approach where
learning follows the standard SVMs, while the optimal
values for the coefficients of the hyperplane (w and b) are
directly determined by an EA with respect to the equilibrium
between accuracy and generalization ability (Stoean et al,
2006, 2007). Although the suggested representation appears
to be straightforward, determining other algorithm details,
such as interpretation, operators and parameters, is not.

There are other reported attempts to hybridize SVMs and
EAs. For example, model selection concerning the adjust-
ment of SVM hyperparameters (free parameters), that is, the
penalty for errors and parameters of the kernel, is standardly
performed through grid search or gradient descent methods.
However, evolution of hyperparameters can be instead
achieved through evolution strategies (Friedrichs and Igel,
2004). Evolution of kernel functions to model training data
can be performed by means of genetic programming (Howley
and Madden, 2005). Finally, the Lagrange multipliers of the
dual problem can be evolved by means of evolution strategies
and particle swarm optimization (Mierswa, 2006). Inspired
by the geometrical SVM learning, Jun and Oh (2006) report
the evolution of w and C while using erroneous learning ratio
and lift values as the objective function. This paper, however,
focuses on the evolution of the coefficients of the decision
function within the geometrical learning concept of SVMs.

The EASVM algorithm

The general primal problem of finding the decision hyper-
plane is consequently solved using an EA. The evolutionary
elements (Eiben and Smith, 2003) are set out below.

Representation: The coefficients of the hyperplane are
encoded in the structure of an individual: c=(w1, . . . , wn, b).
Individuals are initially randomly generated such that wi ∈
[−1, 1], i = 1, 2, . . . , n, b ∈ [−1, 1].

Fitness assignment: The fitness assignment derives from
the objective function and is subject to the constraints of the
optimization problem. By departing from the standard SVMs,
a different nonlinear formulation is derived. The parameter w

is mapped through� intoH. As a result, the squared norm that
is involved in the generalization condition becomes ‖�(w)‖2
and the equation of the hyper-plane is 〈�(w),�(xi)〉−b=0.
The form 〈u, w〉 = uTw is used and the kernel is employed

R Stoean et al—SVM learning with an EA engine 3

to transform the norm in its simplistic equivalence to a scalar
product. The fitness formulation (to be minimised) embodies
the objective function and the constraints are handled by
penalizing the infeasible individuals through a function t that
returns the value of the argument, if negative, and 0 other-
wise. Its expression for classification is (3):

f (w, b) = K (w, w) + C
m∑
i=1

�i

+
m∑
i=1

[t (yi (K (w, xi) − b) − 1 + �i)]2 (3)

while is defined for regression as (4):

f (w, b) = K (w, w) + C
m∑
i=1

(�i + �∗
i)

+
m∑
i=1

[t (� + �i − yi + K (w, xi) − b)]2

+
m∑
i=1

[t (� + �∗
i + yi − K (w, xi) + b)]2 (4)

Selection and variation operators: Widely used schemes
for real encoding were applied. These are: tournament selec-
tion, intermediate crossover and mutation with normal pertur-
bation.

Stop condition: The algorithm stops after a predefined
number of generations. Once the near optimal values for the
coefficients of the decision hyperplane are found, the target
for a new, unseen test data sample can be determined directly
by the following equations: (5) for classification or (6) for
regression.

class(xi) = sgn(K (w, xi) − b) (5)

yi = K (w, xi) − b (6)

The classification accuracy is defined as the number of
correctly labelled cases over the total number of test samples,
while regression performance is verified by computing the
root mean squared error on the p examples in the test set (7).

RMSE =
√√√√ 1

P

p∑
i=1

(y(pred)
i − yi)

2 (7)

A naı̈ve construction

We want to evaluate whether the EASVM algorithm can
produce good results when compared to the standard SVM
approach. However, first we need to determine appropriate
parameters for the algorithm. Also, since indicators for
errors, �i , i =1, 2, . . . ,m, appear in the conditions for hyper-
plane optimality, the issue of their treatment still remains
to be addressed. One may depart from the SVM geomet-
rical strict meaning of a deviation and simply evolve the
factors of indicators for errors. Hence, EASVMs can handle

them through inclusion in the structure of an individual,
that is, c = (wl , . . . , wn, b, �1, . . . , �m), where � j ∈ [0, 1],
j = 1, 2, . . . ,m.
Five real-world test problems from the UCI Repository of

Machine Learning Databases are used in our experiments.
These are diabetes mellitus diagnosis, spam detection, iris
recognition, soybean disease diagnosis and Boston housing.
The motivation for our choices of test cases was manifold.
Diabetes and spam are two-class problems, while soybean
and iris are multi-class. Differentiating diabetes diagnosis is
a well-known problem; however, spam filtering is a current
issue of major concern. Moreover, the latter has a lot more
features and samples, which makes a huge difference for clas-
sification as well as optimization. Conversely, while soybean
has a high number of attributes, iris has only four, but a larger
number of samples. Finally, Boston housing is well suited for
the regression task. The selected tasks contain all the neces-
sary conditions for the purpose of validating the EASVM
approach. Rows 2–5 of Table 1 summarize the test problems.

The experimental design is set as follows. Holdout cross-
validation is performed for each data set: 30 runs of the
EASVM were generated and, in every run, approximately
70% random cases were assigned to the training set and the
remaining 30% went into the test set. Experiments showed
the necessity for data normalization in diabetes, spam and iris.
SVM hyperparameters are manually chosen and can be found
in row 6 of Table 1. The error penalty C was invariably set to 1.
For certain (eg radial, polynomial) kernels, the optimization
problem shall be relatively simple, due to Mercer’s theorem,
and is implicitly solved by SVMs. Note that EASVMs are
not restricted to using these traditional kernels, but we solely
employ them to enable us to compare our algorithm with
the classical SVMs. For the iris data set, a radial kernel was
used; for diabetes, a polynomial one was employed, while for
spam, soybean and Boston, we applied a linear surface. For
the multi-class case of iris, the transformed commonly used
1–a–1 method (Hsu and Lin, 2002) was utilized. In the regres-
sion case, � was set to 0. Manually determined EA param-
eter values are given within the naı̈ve section in rows 8–15
of Table 1. In order to validate the found values for the EA
parameters, the semi-automated tuning method of sequential
parameter optimization (SPO) (Beielstein, 2006) was applied.
The SPO builds on a quadratic regression model, supported
by a Latin hypercube sampling (LHS) methodology and noise
reduction, by incrementally increased repetition of runs. The
best parameter configurations derived by the SPO are depicted
in Table 1, under the naı̈ve section, rows 23–30. Test accu-
racies obtained by both manual (rows 2–7) and SPO tunings
(rows 15–20) are presented in Table 2 and the best results are
indicated in bold. The automated tuning section shows perfor-
mances and standard deviations generated by 30 validation
runs for the best found configurations of an initial LHS and
of the SPO.

The SPO indicates for all the test problems, except
for the soybean data set, that crossover probabilities were

4 Journal of the Operational Research Society

Table 1 Data sets properties; manually and SPO tuned parameter values

Diabetes Iris Soybean Spam Boston

Data
Number of samples 768 150 47 4601 506
Number of attributes 8 4 35 57 13
Number of classes 2 3 4 2 –
p or � p = 2 � = 1 p = 1 p = 1 p = 1

Manual tuning
Naı̈ve representation

Population size 100 100 100 100 200
Generations 250 100 100 250 2000
Crossover prob. 0.40 0.30 0.30 0.30 0.50
Mutation prob. 0.40 0.50 0.50 0.50 0.50
� mutation prob. 0.50 0.50 0.50 0.50 0.50
Mutation strength 0.10 0.10 0.10 0.10 0.10
� mutation strength 0.10 0.10 0.10 0.10 0.10

Pruned representation
Population size 100 100 100 150 200
Generations 250 100 100 300 2000
Crossover prob. 0.4 0.30 0.30 0.80 0.50
Mutation prob. 0.4 0.50 0.50 0.50 0.50
Mutation strength 0.1 4 0.1 3.5 0.1

SPO tuning
Naı̈ve representation

Population size 198 46 162 154 89
Generations 296 220 293 287 1755
Crossover prob. 0.87 0.77 0.04 0.84 0.36
Mutation prob. 0.21 0.57 0.39 0.20 0.5
� mutation prob. 0.20 0.02 0.09 0.07 0.47
Mutation strength 4.11 4.04 0.16 3.32 0.51
� mutation strength 0.02 3.11 3.80 0.01 0.12

Pruned representation
Population size 190 17 86 11 100
Generations 238 190 118 254 1454
Crossover prob. 0.13 0.99 0.26 0.06 0.88
Mutation prob. 0.58 0.89 0.97 0.03 0.39
Mutation strength 0.15 3.97 0.08 2.58 1.36

dramatically increased, while mutation probabilities were
often reduced, especially for errors. However, the relative
quality of SPO’s final best configurations against the ones
found during the initial LHS phase increases with problem
size. It must be stated that, in most cases, results achieved
with the manually determined parameter values can be
improved by SPO—if at all—only by increasing effort, that
is, by raising the population size or the number of gener-
ations. This brings another benefit for the direct EASVM
training: The parameters of the EA can be easily tuned,
which is an important aspect when suggesting an alternative
solution by means of such algorithms.

The naı̈ve construction produces equally good results
when comparing with the canonical SVMs (Table 2, rows
27–32). However, the smaller standard deviations prove the
higher stability of the EASVM approach. It must also be
remarked that, for the standard kernels, one cannot expect
EASVMs to be considerably better than the standard SVMs,

since the kernel transformation that induces learning is
the same. However, the flexibility of the EAs as optimiza-
tion tools make EASVMs an attractive choice from the
performance perspective, due to their prospective ability
to additionally evolve problem-tailored kernels, regardless
of whether they are positive (semi-)definite or not, which
is impossible within SVMs. However, for large data sets,
such as spam filtering, the amount of runtime needed for
training is very large. This stems from the large employed
genomes, as indicators for errors of every sample in the
training set are included in the representation. This problem
is resolved by a chunking procedure and resulted in the
algorithm running eight times faster than the previous one,
at a cost of a small loss in accuracy. Besides solving the EA
genome length problem, the proposed mechanism reduces
the large number of computations required for referencing
the many training samples in the expression of the fitness
function.

R Stoean et al—SVM learning with an EA engine 5

Table 2 Accuracy/RMSE of EASVMs and SVMs

Manual tuning Average Worst Best StD

Naı̈ve representation
Diabetes 76.30 71.35 80.73 2.24
Iris 95.18 91.11 100.0 2.48
Soybean 99.02 94.11 100.0 2.23
Spam 87.74 85.74 89.83 1.06
Boston 4.78 5.95 3.96 0.59

Pruned representation
Diabetes 74.60 70.31 82.81 2.98
Iris 95.11 73.33 100 4.83
Soybean 99.60 94.12 100 1.49
Spam (overall) 85.68 82 88.26 1.72
Boston 5.07 6.28 3.95 0.59

SPO tuning LHSbest StD SPO StD

Naı̈ve representation
Diabetes 75.82 3.27 77.31 2.45
Iris 95.11 2.95 95.11 2.95
Soybean 99.61 1.47 99.80 1.06
Spam 89.27 1.37 91.04 0.80
Boston 5.41 0.65 5.04 0.52

Pruned representation
Diabetes 72.50 2.64 73.39 2.82
Iris 95.41 2.36 95.41 2.43
Soybean 99.61 1.47 99.02 4.32
Spam 89.20 1.16 89.51 1.17
Boston 4.99 0.66 4.83 0.45

SVM results Average Worst Best StD

Diabetes 76.82 73.96 81.77 1.84
Iris 95.33 88 100 3.16
Soybean 92.22 60 100 9.60
Spam 92.67 91.56 93.91 0.64
Boston 3.82 5.6 2.53 0.7

A simplified EASVM

Although the EASVM provides a viable alternative to SVM,
it can still be improved regarding simplicity. The current opti-
mization problem requires to treat the error values, which
in the present EA variant are included in the representation.
These can severely complicate the problem by increasing the
genome length (variable count) by the number of training
samples. Moreover, such a methodology strongly drifts away
from the canonical SVM concept. In this section, we outline
a procedure to represent only the hyperplane coefficients and
compute the indicators for errors instead of evolving them,
while still maintaining performance.

A pruned construction

Since EASVMs directly and interactively provide hyperplane
coefficients at all times, we propose to drop the indicators for
errors from the EA representation and, instead, calculate their
values. Consequently, individual representation contains only
w and b. Additionally, all indicators �i , i = 1, 2, . . . ,m, will
have to be computed in order to be referred to in the fitness
function. For classification, the current individual (separating

hyperplane) is taken and supporting hyperplanes are deter-
mined through the mechanism in Bosch and Smith (1998).
We first compute m1 = min{K (w, xi)|yi = +1} and m2 =
max{K (w, xi)|yi =−1}, i=1, 2, . . . ,m. Subsequently, we get
p=|m1 −m2|, while w′ = (2/p)w and b′ = (1/p)(m1 +m2).
For every training sample xi , i =1, 2, . . . ,m, the deviation to
its corresponding supporting hyperplane is obtained as either
�(xi)=K (w′, xi)−b′−1, yi=+1 or �(xi)=K (w′, xi)−b′+1,
yi = −1. If the sign of deviation is equal to class, then the
corresponding �i = 0; otherwise, the (normalized) absolute
deviation is returned as the indicator for error. Experiments
showed the need for normalization of the computed devia-
tions in the cases of diabetes, spam and iris, as for a large
number of samples, the sum of indicators takes over the whole
fitness value. The form of the fitness function remains as in
(3), obviously without taking the �i s as arguments.

In the case of regression, for every training sample, we
calculate the difference between the actual target and the
predicted value following the coefficients of the current indi-
vidual (regression hyperplane), �i = |K (w, xi) − b − yi |,
i = 1, 2, . . . ,m. The position against the � threshold is tested
following the condition: If �i < �, then �i = 0, else �i =

6 Journal of the Operational Research Society

�i − �, i = 1, 2, . . . ,m. The indicators for errors can now be
employed in the fitness evaluation of the corresponding indi-
vidual, which, due to previous computations, changes from
(4) to f (w, b) = K (w, w) + C

∑m
i=1�i .

Experiments had suggested that the specific method for
computing the deviations does not require an additional
normalization. The problem settings and SVM parameters
are kept the same as in the naı̈ve approach, except for � which
is now set to 5. The manual (rows 16–21) and resulting SPO
parameter values (rows 31–36) of the pruned variant are
shown in the appropriate section of Table 1, while compu-
tational results are depicted in the pruned section of Table
2 (rows 8–13 deriving from manual and rows 21–26 from
SPO). Parameter tuning beyond a large initial design appears
to be infeasible, as performance is not significantly improved
in most cases. This indicates the easiness of parameter
setting for the EASVM, because there is a large set of good
performing configurations. Nevertheless, there seems to be
a slight tendency towards fewer good configurations (harder
tuning) for the large problems.

It is interesting to observe that the pruned representation is
not that much faster. Although the genome length is drasti-
cally reduced, the gained runtime is however partly lost when
computing the values for the slack variables, when referring
the whole training set once again. The pruned representa-
tion, however, has its advantages. Besides featuring smaller
genomes, it requires fewer parameters. Since the errors are
not evolved anymore, two variables are eliminated. Conse-
quently, this representation is easier to tune. The results of the
best configurations for the pruned representation are slightly
worse as compared to those recorded for the naı̈ve represen-
tation (Table 2). It is noticed that the independent evolution
of the slack variables resulted in a better adjustment of the
hyperplane as opposed to their strict computation.

For practical consideration, we included a procedure for
a dynamic choice of model hyperparameters within the
pruned construction. Experiments showed that the parameter
expressing the penalty for errors seems of no significance
within the EASVM technique. Hence, it is dropped from the
parameters pool. Furthermore, by simply inserting one more
variable to the genome, the kernel parameter (p or �) can be
evolved. In this way, besides benefiting from the evolutionary
approach for solving the primal problem, we are, at the same
time, performing model selection. Computational results of
the all-inclusive algorithm are similar in accuracy/RMSE to
the prior ones, with the exception of an increase in accuracy
to 96.45%, in the case of the iris data set. These results are
obtained at no additional cost and point to the next extension,
the coevolution of non-standard kernels.

Evolutionary engine versus canonical support vector
training

In order for a direct comparison to be made, we used the
R environment (e1071, mlbench and kernlab packages) for

applying SVMs to all data sets. The results, obtained after
30 runs, are illustrated in rows 27–32 of Table 2. After
performing manual tuning for the SVM hyperparameters,
the best results were obtained for C = 1 and p = 1, in the
cases of diabetes, spam and soybean, and the e1071 default
value for � = 1/m, for iris and Boston. It is worth noting the
difference between the EASVM and the SVM implementa-
tions regarding the best performing kernels for the diabetes
and Boston problems. The results for each problem were
compared via a Wilcoxon rank-sum test. The P-values are
as follows: 0.36 for diabetes, 0.84 for iris, 3.98 × 10−5 for
soybean, 0.09 for spam and 1.86 × 10−6 for Boston. There
are significant differences in the cases of soybean and Boston
data sets. However, the absolute difference is not that large
for the Boston problem, which indicates that SVM performs
slightly better. However, the EASVM outperforms the SVM
for the soybean data set.

Although, in terms of accuracy, our approach has not
achieved better results for entirely all of the test problems, it
has many advantages: The decision surface is always trans-
parent even when working with kernels whose underlying
transformation to the feature space cannot be determined.
The simplicity of the EA makes the process of solving the
classification or regression problem easily explained, better
understood and possibly tuned for practical implementation.
Most importantly, any function can be used as a kernel and no
additional constraints or verifications are necessary. Results
show that an evolutionary approach can also be useful in
terms of deriving the form of the decision functions. From
the opposite perspective, the training is relatively slower than
that of SVM, as the evaluation always relates to the training
data. However, in practice, it is often the test reaction that
is more important. By observing the relationship between
each result and the corresponding size of the training data,
it is clear that SVM performs better than EASVM for larger
problems. This is probably due to the fact that, in these cases,
much more evolutionary effort would be necessary in order
to achieve a near optimal solution.

Conclusions and outlook

The proposed technique resembles the learning vision of
SVMs but has a great advantage in terms of transparency of
the training, as it addresses the inherent optimization problem
by means of an EA. As opposed to SVMs, EASVMs are
much easier to understand and use in practical applications.
The unrestricted EASVMs offer a straightforward EA repre-
sentation and fitness assignment, parameterized by easily
tunable values. Moreover, the evolutionary solution of the
optimization problem provides directly and within each run
all of the function coefficients. The performance of the algo-
rithm is comparable to that of canonical SVMs and in some
cases we obtained better results. Two EA representations are
used to determine the coefficients: One is simple but fast and
the other one is more complicated but more accurate. In order

R Stoean et al—SVM learning with an EA engine 7

to enhance the efficiency of this approach, a chunking mech-
anism for reducing the size of large problems is employed
and proved to work well. Finally, an all-inclusive EASVM
construction, from a practical perspective, is developed and
validated.

Although EASVM performs well, further enhancement can
still be investigated. As a better choice for treating the two
criteria (fit to training data but generalise well), a multicriterial
approach can be beneficial. Additionally, the simultaneous
evolution of the hyperplane and of nonstandard kernels can be
achieved. This approach is highly difficult by means of SVM
standard methods for hyperplane determination, whereas it is
straightforward for EASVMs.

References

Beielstein T (2006). Experimental Research in Evolutionary
Computation—The New Experimentalism. Natural Computing.
Springer-Verlag: Berlin.

Bosch RA and Smith JA (1998). Separating hyperplanes and the
authorship of the disputed federalist papers. Amer Math Month
105(7): 601–608.

Cortes C and Vapnik V (1995). Support vector networks. J Mach
Learn 20: 273–297.

Eiben AE and Smith JE (2003). Introduction to Evolutionary
Computing. Springer-Verlag: Berlin.

Friedrichs F and Igel C (2004). Evolutionary tuning of multiple
svm parameters. In: Verleysen M (ed). Proceedings of the 12th
ESANN, Bruges, Belgium. D-Side Publications: Evere, Belgium,
pp 519–524.

Howley T and Madden MG (2005). The genetic kernel support vector
machine: Description and evaluation. Artif Intell Rev 24(3–4):
379–395.

Hsu CW and Lin CJ (2002). A comparison of methods for multi-class
support vector machines. IEEE Trans NN 13(2): 415–425.

Jun SH and Oh KW (2006). An evolutionary statistical learning theory.
Comput Intell 3(3): 249–256.

Mierswa I (2006). Making indefinite kernel learning practical.
Technical Report, University of Dortmund.

Smola AJ and Scholkopf B (1998). A tutorial on support vector
regression. Technical Report, University of London.

Stoean R, Preuss M, Dumitrescu D and Stoean C (2006). Evolutionary
support vector regression machines. In: O’Conner L (ed). IEEE
Postproceedings of SYNASC, Timisoara, Romania. IEEE Press: Los
Alamitos, CA, pp 330–335.

Stoean R, Preuss M, Stoean C and Dumitrescu D (2007). Concerning
the potential of evolutionary support vector machines. In: Srinivasan
D and Wang L (eds). Proceedings of the IEEE CEC, Singapore.
IEEE Press: Piscataway, NJ, pp 1436–1443.

Vapnik V (1998). Statistical Learning Theory. Wiley: New York.

Received September 2007;
accepted September 2008 after one revision

	jors pag 1.pdf
	jors2009paper

