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Summary. The paper presents a novel, combined methodology to target parameter
tuning. It uses Latin hypercube sampling to generate a diverse, large set of config-
urations for the variables to be set. These serve as input for the metaheuristic to
be tuned and an extensive data set, with the parameter values and the success rate
obtained by the algorithm, is formed. The collection is next subject to regression
by means of a recent evolutionary engine for support vector machine learning. The
investigations on tuning an evolutionary algorithm for function optimization led to
interesting insights on a simple, unconstrained evolution of the structure and coeffi-
cients of the underlying regression function. The approach can be further improved
in prediction accuracy, while also enhanced to target multiobjectivity and discovery
of the best set of performing parameters for the metaheuristic to be tuned.

1 Introduction

Parameter tuning within any metaheuristic is an issue of essential importance
that significantly accounts for the performance of the respective algorithm.
Finding the proper values for the involved parameters in order to make a
method perform well is imperative from several perspectives:

• The inner-workings of any technique depend on an appropriate choice for
its intrinsic variables.

• Metaheuristics usually exhibit an intricate design and/or a large number
of parameters. Both target a great computational effort in adjusting many
variables possibly within a complex working scheme.
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• There is a big number of options for the value of each possible variable
and generally little knowledge on the effect these values have on the main-
tenance of equilibrium between exploration and exploitation of the search
space which ultimately lead to the ability of the metaheuristic to converge
to the (near) optimal solution.

• The parameters strongly depend on each problem instance that is currently
at hand.

• The use of rough estimations for some parameter values that are given by
different theoretically proven formulas do not always lead to the (near)
optimal performance or have all the necessary knowledge on the problem
to be accurate enough.

Traditionally, parameter tuning has been performed manually, although
ways for automatic regulation had been reported since the 1980s. Neverthe-
less, recent years have demanded an aggressive shift from the time-wasting,
precision-susceptible human adjustment of parameters to computationally
sustained, rapid estimation of their appropriate values for success.

Distinguishing itself from the many current techniques, a novel method-
ology to estimate the direction of the relationship between the different pa-
rameters on the one hand and the algorithm response variable on the other
hand is presented in this paper. Values for the parameters to be tuned are
uniformly generated by Latin hypercube sampling in order to obtain a fair
sample within the space of possible configurations. The response of the algo-
rithm is computed by running it with the produced variables. The achieved
regression data set is next subject to evolutionary support vector learning,
whose result is the underlying decision function. The simple and proficient
instrument is additionally able to provide a priori, instant information on
the expected success rate when different configurations of parameters are ap-
pointed. Thus, valuable time that would have otherwise been spent on running
the metaheuristic is furthermore saved. It eventually has to present itself as a
low computational means, since runtime is especially important when tuning
a metaheuristic in application to a real-world complex problem.

The paper is structured as follows. Section 2 briefly outlines the current
status of research in the field of parameter tuning. Section 3 explains the
rationale behind the new technique and details every step and meaning of
its components. Experimental results are given in section 4 and the advan-
tages offered by the approach are discussed. Finally, conclusions and future
enhancements are presented in the enclosing section.

2 State-of-the-Art in Parameter Tuning

There have been numerous attempts to tackle the automatic setting of param-
eters that control the behavior of a metaheuristic. The appointment of values
for the implicated variables can be performed a priori (offline) or during the
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run (online) of the particular algorithm. Since the task of proposed algorithm
refers to the former situation, it is further focused only on the actual stage of
knowledge and research that deals with the correspondingly called parameter
tuning. The number of approaches in this field is vast; as a result, attention
is directed to the main classes of tuning methods and several representatives
for each of those. Typically it is the area of Evolutionary Algorithms (EAs)
that is the ’Swiss army knife’ of metaheuristics, and, subsequently, many pa-
rameter tuning techniques generally address this type of algorithms. What is
more, EAs exhibit many performance-powering parameters, which make them
a suitable candidate for application of such techniques. The major categories
of research in tuning metaheuristics can be appointed as follows:

• Parameter sweeping across the search space [11].
• Statistical analysis of parameters: The employment of response curves for

the estimation of confidence intervals for parameter values [3], [4] or logistic
regression [10].

• Meta-algorithms for calibrating algorithms, which range from the early
meta genetic algorithm in [6] to the more contemporary work of [5],
where parameter values result from optimization by evolutionary compu-
tation, and the recent relevance estimation and value calibration (REVAC)
method that constructs a distribution over the range of each parameter
that gives high probability to best values [7], [8].

• Combinations of methods: design of experiments (DOE), together with
classification and regression trees (CART) and design and analysis of com-
puter experiments (DACE) that led to the sequential parameter optimiza-
tion (SPO) [1], [9].

A recent book [2] summarizes state-of-the-art approaches to parameter tuning.

3 Evolutionary Detection of a Regression Hyperplane
for Variable Setting

The suggested technique lies on the border between statistics and meta-
algorithms for the parameter tuning of algorithms. It addresses regression,
where the explanatory variables correspond to the parameters to be tuned,
while the response variable is the percentage of runs when the solution is
attained. Regression is tackled by a recently elaborated combined approach
which embraces the geometrical consideration of automatic, intelligent learn-
ing within the state-of-the-art technique of support vector machines (SVMs),
while it considers the estimation of the coefficients of the decision surface
through the direct search capabilities of the flexible and efficient framework
of EAs. To the best of our present knowledge, there has been no similar at-
tempt in addressing the issue of parameter tuning.
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3.1 Motivation and Aims

Given the multitude of powerful existing methods in the area of automatic
parameter tuning, here are the purposes that trigger the particular importance
and contributions of the new technique:

• The fresh evolutionary approach to support vector machine training
(ESVM) has been proven to be a competent, yet easily implementable
and tunable metaheuristic for regression [13], [14], [15].

• The ESVM technique is unconstrained and can employ nonstandard deci-
sion functions. As a result and aiming for a better, unrestrained learning,
the structure of the decision function is evolved alongside its coefficients.

• The prediction for a new test case can be done in a separate module from
the training part.

• The outcome of the technique consists not only of test predictions but also
provides insight into the relationships between investigated parameters
and the success rate of the algorithm. This is possible since the ESVM is
able to also output the form of the decision function.

As opposed to its most related technique for parameter tuning, i.e. the
logistic regression tool in [10], the novel approach is substantially different
through the following:

• The present method is driven by a new, competitive approach to regression.
• It is able to adjust as many parameters as needed, contrary to [10] where

only two parameters specific to a given metaheuristic are addressed.
• It is intended to be a general tool, rather than one specialized to a certain

algorithm. Hence, its mechanisms are independent of the chosen variables,
which are generated by an autonomous sampling and given to the ESVM
regression engine.

• The numerical collection of parameter values to which regression is applied
is the result of a Latin hypercube sampling on every specific problem and
not universally appointed. Moreover, it comprises of sufficient samples to
draw an accurate model upon, as compared to the related instrument.

Present method thus aspires to approximate the correlation between the
different parameters of a metaheuristic and its performance by a meta-
algorithm that is able to resolve the complexity of the obtained regression
problem through a direct and unconfined way.

3.2 Construction of the Data Set for Regression

The parameters involved in the mechanics of a metaheuristic denote the ex-
planatory variables of the regression task, while the response variable of the
given system addresses performance in terms of percentage of runs when the
algorithm attains the solution.
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The values for each parameter may be provided in a manner which is
empirical and dependant on the actual metaheuristic/problem, just as it hap-
pens in [10]. However, this way is neither automatic nor very broad-spectrum.
Moreover, the resulting data set is not significantly large and points are not
equally distributed within the search space.

In contrast to this mode, the proposed technique incorporates a generat-
ing engine that automatically provides a set (as large as necessary) of dif-
ferent configurations using Latin hypercube sampling (LHS). This statistical
method is employed to generate a space-filling (fair) sample of the algorithm
parameters. For small sample sizes, it is well-known to generate more even
distributions than random sampling. For this reason, it is also the first step
in the tuning algorithm SPO [1]. For each considered parameter setting, 30
repeated runs of the current metaheuristic are performed and the average
computed result represents the value for the response variable.

The response variable (target) is appointed as the success rate of the al-
gorithm, i.e. the percentage of runs out of the 30 ones in which the solution
to a given problem is discovered. The metaheuristic terminates when an ap-
propriate number of evaluations of the objective function is spent.

3.3 Evolution of the Regression Surface

The resulting data set, denoted by {(xi, yi)}, i = 1, 2, ...,m, where xi ∈ Rn

represents a tuple of parameters and yi the response for each configuration
are next subject to regression through the ESVM technique.

Optimization Statement

Drawing its scheme from the standard SVMs, the ESVM for regression at-
tempts to find a function, fw,b(x) = 〈w, x〉 − b, w ∈ Rn and b ∈ R, that has
at most ε deviation from the actual targets of training samples and, simulta-
neously, is as flat as possible [12], i.e. it exhibits a minimal ‖w‖.

In other words, the aim is to estimate the regression coefficients w and b of
f(x) with these requirements. Errors are therefore allowed as long as they are
less than ε. Also, resulting values of the regression coefficients may affect the
model in the sense that it fits current training data but has low generalization
ability, which would contradict the principle of structural risk minimization
of statistical learning theory [16]. In order to overcome this limitation, it is
required to choose the flattest function in the definition space. Another way
to interpret the task for regression is that training data are constrained to lie
on a hyperplane that allows for some error and, at the same time, has high
generalization capacity.

Within the particular environment of ESVMs [13], [14], [15] the conditions
for the flattest function (smallest slope) that approximates training data with
ε precision can be translated into the general nonlinear optimization task (1).
The kernel K translates the scalar product to a higher dimension where a
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linear model fits the transposed data and the ξi’s stand for allowance to some
deviation of samples from the regression hyperplane.





find w and b as to minimize K(w, w) + C
∑m

i=1(ξi + ξ∗i )

subject to





yi −K(w, xi)− b ≤ ε + ξi

K(w, xi) + b− yi ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0

i = 1, 2, ..., m.
(1)

The ESVM then considers the adaptation of a flexible hyperplane to the
given training data through the evolution of the optimal coefficients for its
equation.

Evolutionary Components

An individual of the population (2) encodes the coefficients of the hyperplane,
w and b.

x = (w1, w2, ..., wn, b) (2)

The fitness assignment f of an individual (3) derives from the objective
function of the optimization problem and has to be minimized.

f(w, b) = K(w,w) + C

m∑

i=1

ξi (3)

The function to be fitted to the data is thus still required to be as flat
as possible and to minimize the errors of regression that are higher than
the permitted ε. The kernel K may be either SVM-standard (restricted to
obey Mercer’s theorem for convergence), e.g. polynomial or radial, or may
take any form whatsoever, as training is now performed under the adaptable,
unconstrained EAs.

The minimization of the errors is resolved under the loss function [12]. It
may take any formulation suitable for the problem at hand, from the straight
expression to a least mean squares mode or more complex functions.

The errors are given by providing the difference between the actual tar-
get and the predicted value that is obtained following the coefficients of the
current individual (regression hyperplane) (4).

δi = |K(w, xi) + b− yi|, i = 1, 2, ...,m. (4)

The difference against the ε threshold may be subsequently tested through
(5).

{
if δi < ε then ξi = 0
else ξi = δi − ε,

i = 1, 2, ...,m. (5)
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The efficient tournament selection and the common genetic operators for
real encoding, i.e. intermediate crossover and mutation with normal pertur-
bation, are applied.

The EA stops after a predefined, appropriate number of fitness evaluations
and outputs the optimal coefficients w∗ and b∗ for the estimated model for
the data, which is given by expression (6).

f(x) = K(w∗, x) + b∗. (6)

Choosing a Kernel

Since employing SVM kernels had proven unsuccessful in early experimenta-
tion, the use of a nonstandard decision function that is possible under ESVMs
may conduct to a better fit to the data.

Therefore, a more complex individual is considered in the form (7).

x = (w1, w2, ..., wn, w′1, w
′
2, ..., w

′
n, b). (7)

The expression of the kernel is experimentally chosen to a sum of weighted
radials after every parameter to be tuned (8).

K(w, x) =
n∑

i=1

(w′i · e−2·(wi−xi)
2
). (8)

3.4 Structural and Parameter Evolution

The ESVM can further profit from the flexibility of the EA in additionally
generating the structure of a nonstandard kernel. This allows for learning with
one kernel that does not necessarily obey Mercer’s theorem and thus proves
another advantage over SVMs that cannot converge with otherwise possibly
well-performing decision functions. Moreover, such a broad evolution is able
to independently adapt to the shape of each problem or algorithm.

The approach attempts a two-step evolutionary process. A hill-climber
(HC) encodes a combination of different simple functions (9), i.e. linear,
squared, exponential, logarithmic, square root, trigonometric etc. It moves
through the search space of possible arrangements driven by small perturba-
tions that are better than the current state.

x = (f1, f2, ..., fn). (9)

The coefficients of each hill-climbing kernel are again generated by the
same inner EA in a fixed number of fitness evaluations. Both the fitness of
the individuals carrying the weights of regression and that of the hill-climber
address the training error rate. After a fixed number of repeats, the hill-
climber stops and provides the kernel and its best found coefficients. The
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form of the regression function is thus finally output in the form (10). For a
quick reference, we will further abbreviate this approach as HC-ESVM.

f(x) =
n∑

i=1

(w∗i · fi(x)) + b∗. (10)

3.5 Interpreting the Resulting Function

Once the decision function is found, it can be used twofold:

• To interpret the direction of the relationship between the parameters and
the response variable, the signs of the determined regression coefficients
giving the information of whether the value of each parameter should be
greater, lower or it is insignificant.

• To obtain a rapid approximation of the behavior of the metaheuristic if
certain values are appointed for the involved parameters. This provides an
efficient means of saving computational time when a certain configuration
of parameters is tried.

4 Experimentation. Parameter Tuning of an
Evolutionary Algorithm for Function Optimization

As a test metaheuristic, it is chosen to take a canonical EA. The reasons
for this choice are the high number of parameters it makes use of and their
importance when no special mechanisms are employed for tackling hard opti-
mization problems.

4.1 Preexperimental Planning

The first runs of the algorithms had been conducted under the structure of
a Mercer kernel. The polynomial and the radial had been tried, with high
resulting errors of prediction. This did not come as a surprise, as the EA
optimization is significantly conceptually different than the SVM customary
training. A sum of weighted radials on every variable has been subsequently
tried, resulting in a better outcome, however one that could not be further en-
hanced. This led to the decision of a second complete structural and parameter
evolution.

4.2 Task

The aim of experimentation is to investigate whether prediction capability
remains at least competitive to the related SVM, while learning involving
non-standard kernels allows for further resulting information on parameters
relationship. We also address for comparison another traditional artificial in-
telligence paradigm, namely regression trees (RTs).
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4.3 Experimental Setup

The experiments involve arrangements on several stages:

1. The canonical EA to be parameterized is allowed 5000 fitness evalua-
tions to reach the solution. A solution is presumed to be reached if
|solutionknown − solutionfound| < ε, where the threshold is different for
every considered function (Table 1).

2. Three functions are taken for optimization via the EA, namely Schwefel
(F1), Ackley (F2) and Rastrigin (F3), each with two variables (Table 1).
They all exhibit one global optimum out of many local ones and its reach
is difficult for a canonical EA, as the local optima obstruct the search.
That is the reason for their selection, as herein the EA variables play a
crucial role for the detection of the optimum.

3. The parameters to be tuned are the population size (pop size), the
crossover probability (pc), the probability of mutation (pm) and the mu-
tation strength (ms).

4. 300 diverse configuration settings for these variables are generated by the
LHS.

5. 30 runs of the EA are performed and its success rate is computed and
given as the response variable.

6. ESVMs are applied to the obtained regression data set. For the straight
ESVM, 20 000 fitness evaluations are appointed for each run, while for
the HC-ESVM, the HC stops after 1000 steps and the ESVM after 1000
fitness evaluations.

7. The HC uses 12 simple functions for the combinatorial optimization.
8. 200 data are considered as training cases and the rest of 100 are appointed

to the test collection.
9. The root mean squared error (RMSE) on the test set gives the final pre-

diction ability (11). The prediction error is computed in mean after 30
runs of each algorithm.

RMSE =

√√√√1
p

p∑

i=1

(y(pred)
i − yi)2 (11)

10. Given the observed ease of parameterization and the actual task of ESVM,
only manual tuning is performed on its own parameters. For an objective
comparison, variables of SVMs and RTs are also manually chosen.

4.4 Results

The resulting prediction errors in mean after 30 repeats of the each algorithm
are outlined in Table 2.

The HC-ESVM also outputs the structure of the best-performing kernel.
For the three functions to be optimized, the mostly found decision function
(structure and parameters) proved to be:
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• fF1(x) = 0.58 · √pop size + 0.29 · √pc + 0.01 · ln(pm) + 0.48 · √ms− 0.41
• fF2(x) = 0.08 · ln(pop size)+0.09 · ln(pc)−0.29 ·pm2 +0.30 ·cos(ms)+0.73
• fF3(x) = 0.67 · √pop size + 0.18 · ln(pc)− 0.22 · pm2− 0.10 · ln(ms) + 0.34

Table 1. Functions optimized by the canonical EA to be tuned and the threshold
for the found solution claim.

Function Threshold

F1(a, b) = 418.9820 · 2− a sin(
√
|a|)− b sin(

√
|b|) ε = 10−1

−500 ≤ a, b ≤ 500

F2(a, b) = a2 + b2 − 10 · (cos(2Πa) + cos(2Πb)) + 20 ε = 10−5

−5.12 ≤ a, b ≤ 5.12

F3(a, b) = 20 + e− 20e−0.2

√
a2+b2

2 − e
cos(2πa)+cos(2πb)

2 ε = 10−4

−1 ≤ a, b ≤ 1

Table 2. Average prediction errors for ESVMs, HC-ESVMs, SVMs and RTs for
regression data sets connected to each function F1 - F3.

ESVMs HC-ESVMs SVMs RTs

F1 11.40 11.65 10.36 12.85

F2 18 19.03 13.59 18.74

F3 16.91 15.86 11.85 17.21

4.5 Observations

The ESVM technique performs worse than the traditional SVMs, while re-
mains close to the RTs. When comparing the two versions of the ESVM, i.e.
the one with a fixed nonstandard kernel and the other with a HC generated
underlying function, the prediction errors seem similar. However, the bias
may remain towards the structural and parameter evolution if an indepen-
dent adaptation to any problem/algorithm is considered as more important.
The importance of such obtained decision functions is twofold:

• They provide a final formula of parameter interactions. Therefore, when a
new set of parameters is tested, a simple computation takes place instead of
a complete run of the metaheuristic to be tuned. Once the desired variables
are introduced into the equation, the result is already the predicted success
rate of the technique.

• The importance of each variable and their relationship can be straightfor-
wardly seen. For example, it can be noticed that a high population size
(following a square root function) is needed for both F1 and F3, a large
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mutation strength is necessary for the discovery of the optimum in F1,
while the probability of mutation (pursuing a squared formulation) must
be small for F2 and F3.

4.6 Discussion

The analysis of the evolutionary process within ESVM raises the possibility
that search is hindered by local optima of the complex task of evolving both
the underlying function and its variables. A restart HC and/or a niching
EA instead of the canonical formulation may overcome this and allow the
convergence to the global optimum.

Although prediction power is not at its peak yet, several advantages al-
ready derive from current approach:

• The possibility to allow for any form of well-performing kernels, either
manually constructed or evolved.

• The evolved kernel is able to independently adapt to the provided data.
• A miscellaneous structure can be possible and self-discovered.
• All these are impossible under SVMs. All kernels must obey Mercer’s the-

orem in order for the technique to converge. While restricting the employ-
ment to only some kernels, the condition is additionally very difficult to
be checked.

• The form of the decision function allows for a separate, instant testing
of new possibilities of parameter configurations. At the same time, the
SVM methodology is not always able to also output the learning function
together with the target of new test samples after training is finished.
Thus, the hyperplane is usually not known and consequently unavailable
to be independently used in a distinct testing module.

• Having achieved the decision hyperplane, a new component can be further
added. A separate EA can evolve an optimal configuration of parameters
to maximize the obtained function.

The realism of proposed solution can be potentially questioned as regards
the criticism of using a metaheuristic like ESVM to tune parameters of another
metaheuristic [7], since the high level algorithm has parameters of its own
to be set. This can be replied by two arguments that are also true for the
evolutionary support vector training. Firstly, ESVM has been experimentally
seen to function well with many possible configurations of parameters on a
diverse set of problems, while the variables to be adjusted in the low level
metaheuristic can be of a completely different order or difficulty. Secondly,
even if at some point it will be arrived at the task of calibrating even ESVMs,
there is no obstacle in the way of the algorithm to parameterize itself.
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5 Conclusions and Outlook

The paper presents a novel approach for parameter tuning in metaheuris-
tics. This is constructed by combining an initial LHS for generating a diverse
collection of parameter values of an EA to be tuned with the recent ESVM
technique for regression on the obtained data set. After having compared the
regression power to that of classical methodologies, the ESVM is closer (but
better) in performance to RTs and still remotely accurate from the traditional
SVMs. However, a deeper investigation into the convergence issue, namely a
restart combined with a niching strategy, will most likely help surpass this
lower threshold. Also, the check the goodness of fit of the model and the
testing of the statistical significance of the estimated parameters must be
eventually conducted.

Furthermore, the potential of the novel technique can be enhanced through
some additions:

• Comparison and interaction to the results of the state-of-the-art in pa-
rameter tuning SPO [1] should be interesting and beneficial for both ap-
proaches.

• A most beneficial solution to the problem of tuning parameters of a meta-
heuristic would be achieved through the attendance of more than one re-
sponse variable. Success rate and the average number of evaluations of the
objective function are both very important to a certain technique, there-
fore, their inclusion in a transformed multivariate regression task would
be the next level of the proposed approach. The ESVM algorithm can
be easily adjusted to treat the new regression formulation through the
replacement of the canonical EA inside by a multiobjective alternative.
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