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ABSTRACT
In the current study, parameter tuning is performed for
two evolutionary optimization techniques, Covariance Ma-
trix Adaptation Evolution Strategy and Topological Species
Conservation. They are applied for three multimodal bench-
mark functions with various properties and several outputs
are considered. A data set with input parameters and meta-
heuristic outcomes is used for training four surrogate models.
They are then each used by a genetic algorithm that is em-
ployed for searching the best parameter settings for the ini-
tial approaches. The genetic algorithm uses the model out-
puts as the direct fitness evaluation and only the best found
parameter setting is tested within the original metaheuris-
tics. Each model quality is priory evaluated, but they are all
subsequently used in the search process to observe how the
(in)accuracy influences the final result. Additionally, the ge-
netic algorithm is used for tuning these approaches directly
to test if the search conducts to the same parameter set, or
at least close to it.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—
Global Optimization, Unconstrained Optimization;
I.2.6 [Artificial Intelligence]: Learning—Knowledge Ac-
quisition; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Heuristic methods

General Terms
Experimentation, Measurement, Performance

Keywords
parameter tuning, surrogate modeling, function optimiza-
tion, evolutionary algorithms
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Although evolutionary algorithms (EAs) have become wi-
dely acknowledged tools for solving real-world optimization
problems, a step back still exists from some specialists in
industry who claim that they need too many objective func-
tion evaluations to reach acceptable results. In industry,
many evaluations often mean expensive simulations with re-
spect to money and/or time. Usually, the acceptable solu-
tion is to employ a meta-model that learns from a set of
parameter values used in previous simulations together with
their results and is able to predict the output for new set-
tings in order to provide an anticipated fitness evaluation
for the EA optimizer.

But how good are such surrogate models, especially when
their output cannot be checked during the evolutionary pro-
cess, how good is the re-created landscape? It often happens
that the meta-model possesses optima that do not coincide
with those of the original fitness function. There are sev-
eral possibilities that can be explored in order to establish a
model management, as referred to in conventional optimiza-
tion [13], or evolution control, as in the evolutionary com-
putation (EC) community [15]. However, in this work we
focus on the simple but frequently used in practice models
that learn from history data, their predicted output being
used directly as fitness evaluation in the optimizer, with only
the final best solution being validated on the original opti-
mization function (recommendation systems where the best
solution on the model is returned as recommendation).

The overall task of this work is to detect which measures
are to be used in a tuning process based on landscape models
if we want to attain good performance in multimodal opti-
mization, and to evaluate the suitability of different types

landscape model
linear krigingSVM r-trees

optimization
problem

validation
sample

sa
mple

measure 
model quality

sample

CMA-ES 
parameters

TSC 
parameters

GA 

optimize

 best solutions
(parameters)

tune

Figure 1: A GA tunes the two optimization algo-
rithms on a landscape model build from samples of
the original function, employing different models.



of models for this process. The employed algorithms can be
rather considered examples, others could be used instead.
The ‘big picture’ is also documented in Fig. 1.

The approaches we will tune here are the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [11] in its
IPOP variant and Topological Species Conservation (TSC2)
[24], we address different numbers of tuned parameters, while
four different meta-models will be employed, and their re-
sults will be compared to the ones of the original function
used as fitness criterion. While TSC2 was especially de-
signed for tackling multimodal problems and does so in a
parallel fashion (population is spread over the interesting
regions), the IPOP CMA-ES approaches such problems by
population size adaptation and frequent restarts. In order to
be comparable to TSC2, the best attained solutions through-
out a run are collected and the result used for measuring.

The paper is organized as follows: Next section briefly
presents a survey on using surrogate models in EC, section
3 points out some generalities within parameter tuning and
describes the mechanics behind the approaches that will be
furthered experimentally compared in section 4. Section 5
provides some conclusions and ideas to be further investi-
gated.

2. SURROGATE MODELS IN EC
Naturally, the most accurate manner to observe the be-

havior of a model under different settings is to actually test
that model under the desired scenarios. However, as that
is not always possible (expensive simulations may be nec-
essary), approximations of the model outcome are used in-
stead. These approximations are obtained by replacing the
actual model with a surrogate one that can be fed with the
same initial settings and, hopefully, leads to similar out-
comes as the original.

In EC, the output of the surrogate model is usually con-
sidered as the direct fitness evaluation of the individual that
encompasses characteristics of the initial model; other ap-
proaches, like using it only for migration in island architec-
tures, or for mutation and recombination, have also been
proposed, but we will focus herein only on the direct evalua-
tion situation - for more details about the other approaches,
please see [13]. For a surrogate model to have the results
close to that of the original, there are several control tech-
niques that can be applied:

Individual-based : In each generation, some individuals
obtain the approximated evaluations, while for the rest
original ones are generated. Surely, the aim is to re-
duce as much as possible the number of individual eval-
uations using the original model in order to limit the
cost, but at the same time have an accurate model.
The question that arises is how to efficiently choose
the individuals to be evaluated by the original model:
the fittest ones, and the higher the approximation ac-
curacy, the more often approximations are used instead
[15], or the prototypes from the population separated
into clusters [16], or simply pick some random individ-
uals [14].

Generation-based : Once in a fixed number of genera-
tions, the entire population is evaluated using the orig-
inal function or only the population from the final gen-
eration [20].

No evolution control : Most of the time, there is no con-
trol at all, meaning that only the approximation of the
function is used as individual fitness during the entire
evolution process.

Among the surrogate models that are usually employed
for approximating the functions, there are the polynomial
ones, also known as response surface models, Gaussian, also
known as Kriging in traditional design optimization, support
vector machines (SVMs) or neural networks. For further
reading about them, please see [13].

There are several papers that compare the performance of
different approximation models [4], [5], [10], [12], [22], [23].
Usually the benchmark problems are represented by func-
tions and some of these papers do not employ an EA to
test where the model might converge, but only compute the
accuracies of the surrogate models for a number of confirma-
tion points, as the sum of absolute differences between the
approximated and the original evaluations. Among them,
there are also many interesting studies that are focused on
various effects of evolution control and on the behavior of
neural networks as models.

In these circumstances, our aim is to conduct a compar-
ative study over several surrogate models for the hot prob-
lem of tuning the parameters of two approaches that are
applied for function optimization. So, the challenge comes
from the fact that we do not try to reconstruct the landscape
of the function to be optimized, but we intend to mimic the
parameter behavior of two evolutionary methods (that are
stochastic and provide noisy outcomes) when they deal with
several intricate, low and high-dimensional, multimodal op-
timization functions.

3. TUNING METAHEURISTICS
Traditionally, parameter setting has been performed man-

ually, although ways for automatic regulation have been re-
ported since the 1980s. Nevertheless, recent years have de-
manded an aggressive shift from the time-wasting, precision-
susceptible human adjustment of parameters to computa-
tionally sustained, rapid estimation of their appropriate val-
ues for success. Usually, parameter adjustment is performed
using a direct evaluation for the threshold variable values
within the tuned model.

3.1 State of the Art
Parameter setting within any metaheuristic is an issue

of essential importance that significantly accounts for the
performance of the respective algorithm. Finding the proper
values for the involved parameters in order to make a method
perform well is imperative from several perspectives:

• The inner-workings of any technique depend on an ap-
propriate choice for its intrinsic variables.

• Metaheuristics usually exhibit an intricate design and/or
a large number of parameters. Both target a great
computational effort in adjusting many variables pos-
sibly within a complex working scheme.

• There is a big number of options for the value of each
possible variable and generally little knowledge on the
effect these values have on the maintenance of equi-
librium between exploration and exploitation of the
search space, which ultimately lead to the ability of



the metaheuristic to converge to the (near) optimal
solution.

• The parameters strongly depend on each problem in-
stance that is currently at hand.

• The use of rough estimations for some parameter val-
ues that are given by different theoretically proven for-
mulas do not always lead to the (near) optimum or
have all the necessary knowledge on the problem to be
accurate enough.

There have been numerous attempts to tackle the auto-
mated setting of parameters that control the behavior of
a metaheuristic. These can fall into two categories of ap-
proaches for selecting parameter values [8]:

• Parameter control (or online), where the values are
changed during the run of the algorithm. It has been
applied for various metaheuristics like Evolution Strate-
gies [17], Genetic Algorithms (GA) [9], Particle Swarm
Optimization [3], Differential Evolution [19], Ant Colony
Optimization [18].

• Parameter tuning (offline), where the values for the
parameters are chosen a priori and do not suffer changes
during the run. These methods can be non-iterative,
where the various values are generated only once for
the parameters to be set, and iterative, where there
is a small initial set of obtained configurations and
then, based on the results following these configura-
tions, some iterative steps are followed to exploit the
previous findings and explore the more promising re-
gions of the search space.

Interestingly, there are border situations where tuning can
be realized within one run of an optimization algorithm and
effectively is then a parameter control method [26].

We focus on the iterative methods within parameter tun-
ing and, more precisely, on using surrogate models for pa-
rameter tuning. A previous such approach is introduced by
[6], where a linear regression model is learned in a first stage
from a set of configurations generated over the parameter
domains and then, in a second stage, a local search pro-
cedure is used to generate new vectors based only on the
model approximation. A well-known framework, sequential
parameter optimization (SPO) [1], also contains a multi-
stage procedure that involves models: It starts with a set
of configurations generated over the search space, they are
evaluated using the original approach to be tuned and a
model (Kriging, in this case) is used to generate new config-
urations with a high utility that are then reevaluated using
the original algorithm to be tuned.

3.2 Parameter Tuning via Fitness Approxima-
tion

We follow the direction opened by Coy [6], but employ
several models (four, plus the original method to be tuned)
and combine them with a simple GA as tuning method.
We tune two algorithms, each with a different number of
parameters to be set, in order to optimize three functions
with various characteristics.

The tuning process follows the steps in Algorithm 1. The
metaheuristics that are selected to be tuned are the CMA-
ES [11] and TSC2 [24]. While for the first we choose three

parameters for tuning, for the latter we select five. As the
evolution process is based only on the outputs of the learned
model, it is important to measure how accurate that model is
on a test set that is completely different from the collection
used for training (line 4). For further reading regarding
the importance of the meta-model validation, please see [2].
More details regarding the settings of the algorithm in our
implementation are discussed in the next section.

Algorithm 1 Parameter tuning via a surrogate model

Require: Metaheuristic, definition intervals for the parameters
to be tuned and a model to resemble the original algorithm
behavior

Ensure: Specific values for the parameters
1: (Randomly) generate a set of vectors with input values inside

the definition intervals for the parameters to be tuned
2: Apply the metaheuristic on the samples and provide one out-

put for each configuration
3: Apply a regression model to learn from this formed training

set the correspondence between the input values and meta-
heuristic output

4: Validate the model on a set of test samples
5: Run a GA to find the best configuration using as fitness the

outputs of the model on the individual values

The following models are selected as surrogates for the
metaheuristics: linear regression, in order to have the same
model as in the article that opened this research direction
[6], SVMs with a radial kernel, Kriging and regression trees
as models that are widely used for regression. Besides these
models, we also used the actual metaheuristic to be tuned
by the GA to check if the found configuration is similar to
(any of) those found by the models on the one hand, and
on the other, if the configurations are different, to see if the
output also differs by a high amount. While we only have
three functions for optimization, there are several outputs
that are checked for these problems:

• Number of peaks found represents the number of de-
tected peaks; a peak is considered found when an in-
dividual has the fitness distance to that of the desired
optimum below 10−1.

• Peak accuracy for one optimum is computed as the ab-
solute difference in fitness value between the peak and
the nearest individual in the population. When the
function has several optima, these absolute difference
values are summed.

• Distance accuracy refers to the dissimilarity in the
genotypic space between each peak and its closest in-
dividual. It is computed in the same manner as peak
accuracy, with the only change that the difference be-
tween fitness values is substituted by the Euclidean
distance between the two individuals. It is very valu-
able when the test function possesses several optima
with the same fitness value, as the peak accuracy can
lead to inaccurate results.

• Best fitness represents the best fitness value found for
an individual. It is used only in the case when there are
several global optima, to eliminate erroneous results
from the peak accuracy. Best fitness is computed from
the population only, it is not related to the desired
peaks at all.



However, not all outputs are considered for all problems be-
cause of two possible situations: In the initial configurations,
for some outputs the metaheuristics always fail, while for
others they always succeed, so the models could not learn
any useful behavior from such results.

4. EXPERIMENTAL COMPARISON

4.1 Test Functions
We consider 2 functions with 2 variables, i.e. Six-hump

camel back (F1) and Waves (F2): The former has 6 op-
tima (2 global), equal two by two, that reside on a very
smooth surface, while the latter has 10 optima (1 global) to
be found, is asymmetric and some peaks are difficult to find
as they lie on the border or on flat hills. The last function is
considered for 10 variables: it is very rugged and is obtained
as the result of the combination of several functions (F3), it
contains 8 global optima and many local ones. Its definition
is too large to be included here, however it is part of the
collection of test cases that are used as benchmarks for the
Congress on Evolutionary Computation 2013 Competition
on Niching Methods and more information about it, includ-
ing encoding, can be found in [27]. The definitions for the
described functions are listed below.

• F1(x, y) = −((4− 2.1x2 + x4

3
)x2 +xy+ (−4 + 4y2)y2),

−1.9 ≤ x ≤ 1.9,−1.1 ≤ y ≤ 1.1

• F2(x, y) = (0.3x)3−(y2−4.5y2)xy−4.7cos(3x−y2(2+
x))sin(2.5Πx)), −0.9 ≤ x ≤ 1.2,−1.2 ≤ y ≤ 1.2

• F3 corresponds to CF4 in [27], −5 ≤ xi ≤ 5

4.2 Task
Employ various surrogate models to learn the behavior of

two different metaheuristics (CMA-ES and TSC2), one at a
time, from a small amount of data that contains input pa-
rameters for CMA-ES and TSC2 and their original outputs,
then use them to predict the outcome for other parameter
settings evolved via a GA.

4.3 Experimental Setup
The parameters for CMA-ES and the considered intervals

where threshold values are searched for are the following:

• The factor for increasing the population after a restart
is considered for all functions in the interval [1, 2].

• The initial standard deviation is considered for F1 and
F2 in the interval [0, 3], while for F3 in [0, 10].

• Population size (λ) is taken from [3, 100] in all cases.

For TSC2, we consider the following 5 parameters:

• Population size within the interval [2, 200].

• Recombination and mutation probabilities, each within
the interval [0, 1].

• Mutation strength is considered for F1 and F2 in the
interval [0, 3], while for F3 it is taken from [0, 30].

• The number of gradations, taken from [1, 15].

There are some significant differences between the inter-
vals considered for drawing parameters of the two meta-
heuristics and they are further explained. The upper limit
for the population size for CMA-ES is set to 100, while for
TSC2 to 200, because within the former the factor increases
the number of candidate solutions with each restart and in
some late evolution steps the actual population size can have
a value much higher than 200. The intervals for the stan-
dard deviation within CMA-ES and mutation strength for
TSC2 differ for the last function: While for the CMA-ES,
high values conduct the search outside of the feasible solu-
tions interval and the run stagnates, for TSC2 these large
values enable escaping from local optima.

While for the readers not familiar with TSC2 the meaning
of the first 4 parameters considered for tuning is quite obvi-
ous, the last one needs some explanations: It is used to check
whether two different candidate solutions follow the same
peak or not, by creating as many intermediary points be-
tween them as gradations are appointed and by evaluating
all these points to check if the fitness is also between those
of the initial two points. When a generated solution does
not have the fitness between the initial two, it is concluded
that they lie in different basins of attracdtion. In conclusion,
the higher the number of gradations, the more accurate the
multimodality detection method is, but at a higher cost as
concerns the number of consumed fitness evaluations.

For each metaheuristic and for each benchmark function,
we established the same limit as concerns the number of
samples used to train the models. We constructed a data set
with 100 samples where each contains values for the enumer-
ated parameters that are randomly generated in the given
intervals. Each such sample of parameter values is conse-
quently fed to the metaheuristic and all outputs mentioned
in subsection 3.2 are computed and averaged over 10 re-
peats. Another similar data set with 50 randomly generated
samples is created and kept only for model validation. The
models are then learnt from the training set containing the
100 samples and used for predicting further outputs for new
settings.

The stop condition is identical for CMA-ES and TSC2 ap-
plied to any function and refers to a budget of 104 fitness
evaluations. Our intention is to get parameter settings as
good as possible out of the two methods under the same lim-
itations. One could argue that CMA-ES has an advantage
over TSC2 since the former has only 3 parameters consid-
ered for tuning and the latter 5, while the same number of
training samples are considered, so the models for the for-
mer will be more accurate. To answer that, we claim that
the intention is not to compare the optimization power of
the two metaheuristics, but rather observe how surrogate
models used for the chosen task of parameter tuning act for
different number of parameters under the same restrictions.

A GA with individuals that encode parameter settings for
the current metaheuristic is evolved. The fitness evaluation
is always returned by the employed regression model. As
concerns the operators used within the GA, the choices are
the commonly employed binary tournament selection, mu-
tation with normal perturbation and intermediary recombi-
nation. The GA parameter values are a population size of
50, recombination probability of 0.4, mutation probability
of 0.3 and mutation strength is set at the 10th part of each
gene interval size. The intervals for the genes are bounded
in the same manner as for the model training data and the



stop condition is set to 2000 evaluations. Only the final
best individual is validated on the original metaheuristic by
actually running the approaches with the found parameter
values. No matter what the current outcome used by the
GA is, when using the final parameter set within the origi-
nal approach, all the performance criteria are computed and
are subsequently reported in the next subsection figures.

The encoding for the 4 models are used from the follow-
ing R functions and packages: SVMs from package e1071
[7], the linear model from the widely used lm from the stats
package, regression trees from package rpart [25] and Krig-
ing from package DiceKriging [21]. They are employed with
default values. A radial kernel is used for SVM (a linear one
proved to be less efficient in pre-experimental trials), while
for Kriging we considered Universal Kriging (”UK”).

We measure the quality of the models prior to using them
for providing fitness values to the GA. For that, the data
set with 50 samples is used and the following measures are
computed:

• The root mean square error (RMSE), computed as in
(1), where n is the number of samples (50 in our par-
ticular case), Pi is the predicted outcome for sample i
and Ai is its actual outcome.

RMSE =

√√√√ 1

n

n∑
i=1

(Pi −Ai)2 (1)

• Pearson correlation coefficient to measure how well
the exact output values between model and validation
match.

• Spearman’s rank correlation coefficient which is com-
puted as the Pearson correlation coefficient between
the ranked variables.

4.4 Results and Visualization
Table 1 shows the results obtained for the 4 models when

their prediction accuracy is tested against new data. For
each function, we consider all models and compute only
the outputs that are relevant. The last 5 lines contain the
summed values (normalized in the case of RMSE) for each
of the 4 models over all functions and measures. Figures 2
and 3 present the actual values of the obtained parameters
for the best configurations found by the GA. Note that they
are grouped by the performance criterion chosen for the tun-
ing process (rows) and the modeled test problem (columns).
The first row in each plot shows the model performance, that
is the best non-validated performance found within tuning,
measured with the chosen criterion. These values shall be
compared to the appropriate row further down. These rows
show the considered performance criteria (da = distance ac-
curacy, pa = peak accuracy, ap = average number of peaks,
bf = best fitness) and these results are obtained by appoint-
ing the found parameter set to the tuned approach, so they
are validated results; this in opposition to the model line
which, as previously stated, is the value returned by the
model for the parameter set. The last 3 rows in each plot
from Figure 2 and last 5 rows in each plot from Figure 3 rep-
resent the values for the parameters of the two approaches.

4.5 Observations and Discussion
In Table 1, for F1 and F2 outputs like the average number

of peaks detected, average peak accuracy and average dis-

tance accuracy are considered for both metaheuristics; best
fitness is not considered because both CMA-ES and TSC2
achieve very good results for this output for a very wide area
of parameter settings, and it cannot measure how well the
algorithms are suited to find multiple optima.

Concerning F3, peak accuracy is omitted for both meta-
heuristics because it is very misleading: the population for
each of the two methods gathers on a peak and, especially
if that optimum is a global one, the overall peak accuracy
(for all 8 global optima) will return a very good value in
this case. Even if an individual is marked as the one that
conquered the closest peak, a different one also has an eval-
uation that is very close to that of the first and so on, for all
the desired global peaks, peak accuracy becomes very good.
On the other hand, distance accuracy is a great alternative
to this measure and it is used for both metaheuristics.

From what we observed during the experiments, TSC2
is a method that requires more fitness evaluations to reach
any of the global optima of F3. On the other hand, CMA-
ES reaches exactly one peak for a wide range of parameter
settings. One could say that both methods are already very
good in the situations they have been designed for, TSC2
for detecting multiple peaks, and CMA-ES for reaching a
good peak very quickly. Hence, we decided to take different
outputs for the two metaheuristics on F3: while for CMA-
ES the interest is in the number of peaks found, for TSC2
the best fitness comes as a more appropriate choice.

It is interesting to observe in the same Table 1 that there
can be cases when the Pearson correlation coefficient is higher
than the Spearman one and vice versa. The explanation for
the first case is that the values for the model are very close
to the one of the original approach, but their ranking is not
the same, while the latter case occurs when the ranking is
more often similar, but the differences in values are higher.

In Table 1, while for RMSE lower values are better, for
the correlation coefficients values closer to 1 are preferred
(1 meaning direct correlation, 0 is no correlation and -1 in-
verse correlation). The last 5 lines in Table 1 contain the
summed values corresponding to each model. Since for the
RMSE, the intervals differ greatly from one function to an-
other and from one output to a different one, we decided
to first normalize the values to the interval [0, 1] for each
function and measurement and we only then summed these
obtained normalized values. The best values are written in
bold: the Kriging model appears to be the most accurate,
followed by SVMs and regression trees which are very close
to each other and, finally, linear regression.

There exist certain situations when some models perform
very poorly, while others are very accurate, e.g. see for num-
ber of peaks found for TSC2, both Spearman and Pearson
correlation coefficients for F1, where only the linear model is
very imprecise. However, the accuracy of the models is not
performed with the aim to decide which models are next
selected for tuning via GA; all models are used as fitness
providers for the GA as we intend to check how good the
final found parameter settings are, regardless of their accu-
racies.

Concerning the actually obtained parameter values and
the influence of the criteria chosen for tuning, we can state
that the results on the CMA-ES as depicted in Figure 2 are
obviously more consistent than the ones for TSC2 (Fig. 3), at
least for the problems F1 and F2. It seems that tuning the
CMA-ES on these 2 functions leads to very similar param-



Table 1: RMSE (lower is better), Pearson and Spearman correlation coefficients (closer to 1 are better) for
the considered metaheuristics, functions and outputs.

Model
CMA-ES TSC2

RMSE Pearson Spearman RMSE Pearson Spearman
F1, 2 global optima, 4 local ones

Number of peaks found
SVM 0.33 0.87 0.87 0.65 0.74 0.76
Linear 0.31 0.88 0.89 0.93 0.34 0.22
Regression trees 0.38 0.83 0.87 0.55 0.82 0.69
Kriging 0.31 0.88 0.89 0.36 0.92 0.89

Peak accuracy
SVM 0.8 0.87 0.85 1.12 0.84 0.88
Linear 0.94 0.82 0.8 1.5 0.66 0.67
Regression trees 0.88 0.83 0.82 0.67 0.94 0.9
Kriging 0.94 0.82 0.8 0.65 0.94 0.92

Distance accuracy
SVM 0.67 0.87 0.85 1.08 0.75 0.82
Linear 0.81 0.81 0.79 1.46 0.51 0.55
Regression trees 0.74 0.84 0.79 0.55 0.94 0.88
Kriging 0.81 0.81 0.79 0.54 0.95 0.88

F2, 1 global optimum, 9 local ones
Number of peaks found

SVM 0.24 0.65 0.63 1.46 0.84 0.88
Linear 0.23 0.65 0.6 2.21 0.52 0.53
Regression trees 0.23 0.63 0.65 1.46 0.82 0.66
Kriging 0.23 0.65 0.6 0.72 0.96 0.95

Peak accuracy
SVM 5.41 0.71 0.73 4.14 0.7 0.84
Linear 5.02 0.74 0.79 5.09 0.47 0.54
Regression trees 5.24 0.74 0.77 2.85 0.9 0.8
Kriging 3.93 0.85 0.88 1.51 0.97 0.91

Distance accuracy
SVM 1.12 0.93 0.94 2.85 0.66 0.7
Linear 2.9 0.53 0.47 3.16 0.56 0.53
Regression trees 1 0.96 0.93 1.7 0.92 0.63
Kriging 0.74 0.97 0.97 0.5 0.99 0.77

F3, 8 global optima, many local ones (only global considered)
Number of peaks found

SVM 0.42 0.56 0.6 - - -
Linear 0.39 0.34 0.44 - - -
Regression trees 0.3 0.7 0.46 - - -
Kriging 0.39 0.34 0.44 - - -

Best fitness
SVM - - - 118.04 0.9 0.91
Linear - - - 167 0.81 0.83
Regression trees - - - 163.23 0.82 0.79
Kriging - - - 152.95 0.85 0.83

Distance accuracy
SVM 8.5 0.53 0.71 3.37 0.94 0.9
Linear 8.3 0.44 0.56 6.29 0.83 0.88
Regression trees 7.19 0.63 0.63 5.68 0.85 0.82
Kriging 4.86 0.86 0.8 2.3 0.98 0.95

Overall
SVM 4.46 5.99 6.18 4.03 6.37 6.69
Linear 5.43 5.21 5.34 8 4.7 4.75
Regression trees 3.72 6.16 5.92 3.46 7.01 6.17
Kriging 2.75 6.18 6.17 0.71 7.56 7.1

eter values, regardless of the chosen performance criterion
and employed surrogate models. For F3, this is similar, but
at least the parameter sets ‘suggested by’ the different mod-
els are a bit more similar for the distance accuracy criterion
than for the average number of peaks. Interestingly, the ac-
tually obtained parameters differ a bit between F1/F2 and
F3. For the former, large populations and increment factors
are chosen with small step sizes, for F3 (with some excep-
tions, e.g. SVM model for the ap criterion), all parameters
are set to medium to high values.

The results for TSC2 for F1 and F2 are overall better
than those obtained by the CMA-ES as concerns all 3 cri-
teria chosen for them. This is also reflected in a wide set of

parameter settings (especially for F1, which has a smooth
surface, perfect for TSC2 multimodality detection mecha-
nisms) that are proper for finding good results, hence the
apparent inconsistency of the results in the first two columns
from Figure 3. For F3, the situation changes, the number of
dimensions is high, TSC2 needs far more fitness evaluations
to reach an optimum than CMA-ES does, so the GA-based
tuning conducts, for most models, to very similar parameter
sets, consequently similar results and resembling trends in
column 3 of Figure 3.

5. CONCLUSIONS AND OUTLOOK
It is interesting to observe that for the parameter setting
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Figure 2: Parameter values and performances for different models, test problems, and performance criteria
for CMA-ES (da = distance accuracy, ap = average number of peaks, pa = peak accuracy)

found by the GA, the validation does not usually go very far
from the model prediction and, when it does, the differences
are quite similar for most models, including direct tuning.
Surely, there is a high amount of noise in the data, as the
approaches can in some cases block into local optima, while
other times they can be luckier. Further investigation re-
gards: The enhancement of the accuracy of the models by
including evolution control within the GA optimizer fitness
and the replacement of the GA with a multicriterial opti-
mization approach for searching for parameter sets that are
appropriate for conflicting objectives (see e.g. the obvious
difference in parameter sets for da and bf in F3, Figure 3).

Concerning model suitability for tuning the multimodal
optimization performance, we can state that on rather sim-
ple functions (F1 and F2), the influence of the chosen model
is not that large. SVM, regression trees and kriging all
work sufficiently, with an advantage for kriging. The lin-
ear model is seemingly not very well suited, as expected.
For the more difficult F3, the differences get even more em-
phasized. Considering the different performance criteria, the
distance accuracy can be recommended as it works well for
all situations. Overall, we can state that adjusting param-
eters for multimodal performance with such simple models
indeed makes sense, which is good news for real-world appli-
cations (however, in this case one will have to think of new
performance criteria as without knowledge of the optima,
distance accuracy is not computable). A GA as tuning tool
may not be the best choice, but is also sufficient in this case.
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