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ABSTRACT
The present paper investigates the hybridization of two well-
known multimodal optimization methods, i.e. species con-
servation and multinational algorithms. The topological
species conservation algorithm embraces the vision of the
existence of subpopulations around seeds (the best local in-
dividuals) and the preservation of these dominating indi-
viduals from one generation to another, but detects multi-
modality by means of the hill-valley mechanism employed by
multinational algorithms. The aim is to inherit the strengths
of both parent techniques and at the same time overcome
their flaws. The species conservation algorithm efficiently
keeps track of several good search space regions at once, but
is difficult to parametrize without prior problem knowledge.
Conversely, the multinational algorithms use many function
evaluations to establish subpopulations, but do not depend
on provided radius parameter values. Experiments with all
three algorithms are made on a wide range of test problems
in order to investigate their advantages and shortcomings.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms
Algorithms, Experimentation

Keywords
Detect-multimodal mechanism, hybridization, multimodal
evolutionary algorithms, species conservation
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1. INTRODUCTION
The species conservation technique [4] is a recent radii-

based multimodal evolutionary algorithm that preserves the
best individual in each subpopulation (or species) from one
generation to another. In order to differentiate among the
species, a radius parameter is introduced that is employed
to calculate the similarity of every two individuals. If their
distance is smaller than the given radius threshold, the two
individuals are assigned to the same subpopulation. Al-
though very efficient in conducted experiments, the method
still falls under the unanimously accepted fact that there
are difficulties stemming from the necessary distance mea-
suring, especially in high dimensional search spaces. Besides
adding a parameter to the algorithm that is hard to set ac-
curately, it is well-known that contrast in distance values
drops rapidly for more than 10 dimensions [2].

Shir and Bäck [7] tackle this problem by adapting the radii
within their niching evolutionary algorithm. Conversely, we
chose the alternative and aim to overcome this disadvantage
by removing the radii and introducing an existing promising
alternative method of subpopulation differentiation instead.
The approach is topological instead of radii-based and has
been proposed within the complex model of multinational
evolutionary algorithms in [8], [9]. It detects whether two
individuals track the same optimum by considering a set of
additional candidate solutions between them and testing if
one of these is weaker than both. If this is the case, they are
assumed to track different optima and shall be distributed
to different subpopulations.

Herein, we investigate a hybridization: Topological species
conservation (TSC). It is hoped to combine the strengths of
both techniques, while avoiding their weaknesses. On the
one hand, the species conservation algorithm is simpler and
more efficient than the multinational paradigm; on the other
hand, the latter comes with a more natural decomposition of
the population into species. By combining species conserva-
tion with an alternative mechanism for subpopulation deter-
mination we strive for simultaneously achieving two goals:
Preservation of the best local individuals during runtime and
natural differentiation between the multiple final solutions
of the multimodal problem. In order to objectively validate



the new hybrid method, all considered test cases are also
solved by the parent algorithms. Note that we deliberately
abstain from using any stepsize adaptation mechanism as
this would further complicate experimental analysis.

The paper is structured as follows. Sections two and three
outline the concepts of species conservation and multina-
tional algorithms. Section four describes TSC and section
five presents the chosen test problems and experiments.

2. SPECIES CONSERVATION
The species conservation algorithm concentrates on two

aspects [4]: The determination of species based on similarity
criteria, where each subpopulation is dominated by a locally
best individual, and the preservation of these individuals to
the following generation of the evolutionary cycle.

2.1 Subpopulation Differentiation
A species is defined as a subset of individuals where the

distance between every two members is less than the diame-
ter given by a user-defined species radius. Each subpopula-
tion is built around the best local individual, called species
seed. A species is centred on its seed if for its every mem-
ber the distance to it is less than the species radius. At the
beginning of every generation, the mechanism that differen-
tiates the species collects seeds by taking into account each
individual of the population, in decreasing order of fitness,
and testing whether it belongs to any species centred on the
already found seeds (i.e. its distance to a certain known seed
is less than the species radius) or is a new seed. The way
of finding the seeds of each subpopulation is described by
Algorithm 1. Population size is denoted by n.

Algorithm 1 Seeds selection within the canonical species
conservation algorithm

Seeds = Φ;
Sort population P decreasingly according to fitness;
for i = 1 to n do

found = FALSE;
for every s in Seeds do

if d(Pi, s) ≤ radius then
found = TRUE;

end if
end for
if not found then

Seeds = Seeds ∪ Pi;
end if

end for

2.2 Subpopulation Conservation
The method that is responsible for conserving the dom-

inating individuals acts on the population after applying
variation operators. For every seed s in turn, the worst fit
individual w that belongs to the species centered on s (i.e.
its distance to s is less than the species radius) is considered.
If this individual exists and is less fit than s, then the former
is replaced by the latter. Otherwise, if the species of s does
not contain any individual at all (as they may have disap-
peared because of selection or variation operators), then the
worst individual from the entire population w is replaced
by s. The individual s that enters the population is pre-
vented from further substitution during the current genera-
tion. Apart from conserving the fittest individuals from the
entire population, this mechanism allows the preservation

of even less fit individuals, different enough from the global
best ones, that could be at that moment positioned at the
basis of an empty peak and thus become useful in future
iterations. Subpopulation conservation is thus carried out
through the conservation of the seeds of each species; the
process is illustrated by Algorithm 2.

Algorithm 2 Seeds conservation within the canonical
species conservation algorithm

Mark all individuals in P as unprocessed;
for every s in Seeds do

Take worst unprocessed w, such that d(w, s) ≤ radius;
if w exists then

if f(w) < f(s) then
w = s;

end if
else

Take worst unprocessed w in P ;
w = s;

end if
Mark w as processed;

end for

An important remark that concerns the evolutionary al-
gorithm as a whole is that selection and recombination of
individuals are both performed globally, irrespective of the
different species they belong to. This may be counterproduc-
tive and resembles one of the critical parts of the algorithm.
We can hope to improve its overall behavior by inserting an
alternative approach.

At the end of the algorithm, the optima are selected from
the seeds that were lastly chosen. This Seeds set will not
contain only the desired optima, but also low fitness indi-
viduals that were stored because they were sufficiently dif-
ferent from all the other individuals. Therefore, another
parameter, solution acceptance threshold rf (0 < rf ≤ 1), is
introduced so that all solutions that have high enough fit-
ness to be selected: x ∈ Seeds is selected if the inequality
f(x) ≥ (fmax − fmin) · rf is satisfied, where f(x) denotes
the fitness of x, while fmax and fmin represent the maximum
and minimum fitness in the final population.

3. MULTINATIONAL ALGORITHMS
The technique [8], [9] has a very interesting working meta-

phor: The whole population represents a world and each
subpopulation is called a nation; each nation has a govern-
ment which contains its fittest individuals, referred to as
politicians. They define the policy of the nation, which is
in fact the centroid of these individuals. Initially, the world
consists a single nation. Then, the governments and, as a
consequence, the policies are useful for the differentiation
and the dynamics of subpopulations.

3.1 The Multinational Engine
The multinational idea is achieved through two mecha-

nisms: Migration and merging. Within every generation,
each individual is compared to the policy of its nation. If
the two follow different optima, then the former migrates to
a nation whose policy is tracking the same peak as itself.
If there exist no such nation, then the individual forms a
new nation, corresponding to a potentially new peak. Con-
versely, also at every generation, the policies of each nation
are checked two by two to ensure that they do not track the



same optimum; if this is the case, then the two subpopula-
tions are merged.

Selection can be performed on two levels: Either within
each subpopulation or in a global but weighted fashion, i.e.
the fitness of an individual is divided by the number of mem-
bers in its corresponding nation, in a fashion that resembles
sharing [3]. Finally, crossover is performed only between
individuals of the same nation, as the combination of the
genetic material of points that track different optima may
lead to the appearance of offspring that are less fit than
the parents. We assumed that mutation is also restricted to
each nation, i.e. the offspring is accepted only if it remains
within the premises.

3.2 The Detect-Multimodal Method
The verification of the relationship of two points in the

search space, i.e. of the assumption that they track the
same optimum, is performed through an approach originally
called the hill-valley mechanism, but which is renamed here
to detect-multimodal for reasons of simplicity. The func-
tion takes two individuals (points) as arguments and returns
whether or not there is a valley between them in the fitness
landscape, i.e. they track different optima. In order to reach
that decision, a set of interior points between the two, based
on user-defined gradations in the [0,1] interval, is generated.
If the fitness of all interior points is higher than the minimal
fitness of the two tested individuals, then it is concluded
that they track the same optimum. Contrarily, if there exist
such a point whose fitness is smaller than the minimal fit-
ness of the two, then it is assessed that they follow different
peaks. To conclude, detect-multimodal returns true if the
two points follow different optima and false if they follow
the same peak. The mechanism is described in Algorithm 3.

Algorithm 3 The detect-multimodal mechanism between
two individuals x and y

i = 1;
found = FALSE;
while i < number of gradations and not found do

for j = 1 to number of dimensions do
interiorj = xj + (yj − xj) · gradationj ;

end for
if f(interior) < min(f(x), f(y)) then

found = TRUE;
end if

end while
return found;

An important advantage of this manner of detecting mul-
timodality is that a certain optimum is tracked by only
one subpopulation, whereas the radii-based mechanism of
species conservation allows the existence of several subpop-
ulations that follow the same peak.

4. THE TOPOLOGICAL SPECIES CONSER-
VATION ALGORITHM

The novel proposed algorithm inherits the notion of a seed
(dominating individual) of a subpopulation and the idea of
seeds conservation. Simultaneously, the new approach de-
termines subpopulations through the detect-multimodal pro-
cedure and uses a weighted selection with the employment
of global recombination, on the one hand, and local selection
accompanied by local recombination, on the other hand.

4.1 Motivation
Hybridization of the two parent algorithms may have sev-

eral advantages. Firstly, the efficiency of the species con-
servation method lies in the conservation of several locally
fittest individuals (seeds): Thus, subpopulations are not lost
completely, even if selection may skip all individuals within
one population or they may disappear because of recom-
bination and mutation. Conservation of the seeds of the
found subpopulations prevents them from getting extinct.
Secondly, replacing the radius-dependent method to differ-
entiate subpopulations in favor of one that employs fitness
discrepancies as in multinational algorithms, may have two
advantages. On the one hand, one gets rid of a crucial pa-
rameter (for which it is very difficult to find a proper value,
especially in higher dimensional problems) and, on the other
hand, less fit individuals that are actually not promising,
but merely different enough from the others, are rapidly
detected. This is obvious especially for large plateaus con-
tained in the fitness landscape: While the species conserva-
tion method would form a great number of subpopulations,
multinational algorithms detect only one peak to follow.

Thirdly, in the TSC variant, when weighted selection is
used and recombination is performed globally, seeds are con-
served and subpopulations consequently cannot disappear.
Although recombination between individuals from different
subpopulations usually produces weaker individuals that do
not belong to any of the subpopulations of their parents,
more exploration of the search space is gained by its means.
Finally, we managed to avoid the expensive behavior of the
original multinational algorithm that, due to its subpopu-
lations dynamics, that is achieved through migration and
merging, uses a high number of fitness evaluations in a very
small number of generations. By incorporating the preser-
vation of multimodality through seed conservation and effi-
ciently keeping track of each individual’s subpopulation dur-
ing evolution, we overcame this great disadvantage.

4.2 The Mechanics
An important improvement over the multinational algo-

rithms stems from the reduced number of calls of the detect-
multimodal procedure. This is achieved by a subpopulation
dynamic similar to the one in species conservation and is
amplified by a good tracking of each individual during the
evolutionary cycle. Consequently, the seed selection proce-
dure (Algorithm 4) fulfills a two-fold purpose: At the same
time, seeds are detected and corresponding subpopulations
built, and all individuals are distributed over these estab-
lished subpopulations.

In the first generation of the TSC algorithm, as we do
not have any a priori knowledge about the population, all
individuals are considered to be in the same subpopulation.
All individuals that belong to the same species have the
same value for the ID variable, so, before evolution starts,
they are all in the subpopulation labelled with ID = -1.
Moreover, when the seed selection procedure is called for
the first time, then the detect-multimodal mechanism has
to be applied as a tool for distinguishing individuals from
different subpopulations. In the next generations, they are
differentiated only through their IDs.

The population is sorted decreasingly, according to the
fitness evaluations, so that species are formed around the
current fittest seeds. In each call of the procedure, the IDs
are reordered according to the the fitter individuals in the



population. We denoted by n the size of the population, Pi

represents the i-th individual, while PiID
stands for its ID.

Algorithm 4 Seeds selection procedure within TSC

if first generation then
for i = 1 to n do

PiID
= -1;

end for
end if
Seeds = Φ;
count = 1;
Sort population P decreasingly according to the fitness;
for i = 1 to n do

found = FALSE;
for every s in Seeds do

if first generation then
if not(detect-multimodal(Pi , s)) then

found = TRUE;
PiID

= sID;
end if

else
if PiID

= sID then
found = TRUE;

end if
end if

end for
if not found then

PiID
= count;

Seeds = Seeds ∪ Pi;
count = count + 1;

end if
end for

After seeds selection and labelling of each individual with
the corresponding ID, the usual steps of an evolutionary al-
gorithm follow. For both selection and recombination, where
there is the need for recognizing subpopulations, the IDs of
the involved individuals are recalled. However, when an
offspring is obtained after recombination or mutation, its
ID is set to -1. The only exception was considered in case
of recombination when both parents (or all parents in case
a multi-parent recombination is considered) belong to the
same subpopulation, in which case the offspring inherits the
ID from them.

After the selection and variation operators are applied,
the conservation of the seeds takes place (Algorithm 5), in
a similar manner as in the case of the species conservation
algorithm. In comparison to the procedure in the original
algorithm, besides the fact that we do not make use of any
distance, here we have to treat the cases of the free individu-
als obtained after the application of the variation operators,
i.e. individuals with ID = -1. f denotes the fitness function.

As mentioned before, we propose two versions for the
novel technique, judging from the way selection and recom-
bination are performed, i.e either globally or locally. How-
ever, the general lines followed by both versions of the hy-
bridized technique are the same and depicted in Algorithm 6.

In the case weighted selection is applied, the fitness of
each individual is divided by the number of members in its
subpopulation. This also encourages the exploration of the
search space, as less fit individuals that are situated alone
in weaker regions still have a good chance of being selected.
In this case, the recombination takes place globally.

At the end of the algorithm, the Seeds set will contain
only the found optima as there is not the case that low fitness
individuals, that follow the same optimum as others from the
Seeds set, are kept simply because they were sufficiently

Algorithm 5 Seeds conservation procedure within TSC

Mark all individuals in P as unprocessed;
for every s in Seeds do

for i = 1 to n do
if PiID

= -1 then
if not(detect-multimodal(Pi , s)) then

PiID
= sID;

end if
end if

end for
Take worst unprocessed w from P, such that sID = wID;
if w exists then

if f(w) < f(s) then
w = s;

end if
else

Take worst unprocessed w in P ;
w = s;

end if
Mark w as processed;

end for

different from the other individuals. To conclude, this is
another advantage over the species conservation algorithm
as herein there is no need of another additional parameter
i.e. solution acceptance threshold.

Algorithm 6 TSC algorithm

t = 0;
Initialize P (t);
Evaluate P (t);
while not termination condition do

t = t + 1
Seeds selection;
Selection of P (t) from P (t − 1);
Recombination on P (t);
Mutation on P (t);
Evaluate P (t);
Seeds conservation;

end while
Identify species seeds in Seeds

An interesting event happens from time to time after the
seeds conservation procedure, as some individuals created
during recombination and/or mutation remain without as-
signed population. This happens if detect-multimodal ap-
plied between them and any of the existing seeds returns
true every time. After the seeds conservation procedure, all
these individuals remain with ID = -1, and consequently
they enter the new generation as a subpopulation of its
own. From the undertaken experiments, we noticed that
the number of these individuals does not exceed 10 (with
a population size of 200) and they only appear during the
initial 10 up to 50 generations, depending on the considered
problem. Nevertheless, these individuals are very impor-
tant in the evolution as they provide and maintain diversity
in the population. When they enter in the seed selection
procedure, they suffer a change in this ID and they form a
subpopulation like any other.

5. EXPERIMENTS
The test problems employed in the following experiments

are F1 (Waves) from [8] and F2 (Six-hump Camel Back)
from [4], [8], while we added F3 (De Jong), F4 (Rastrigin)
and F5 (SKEWBI) to fill all cells of a table made of the
different modality conditions, one, few, and many optima,



Table 1: Utilized benchmark functions

Function Optima
F1(x, y) = (0.3x)3 − (y2

− 4.5y2)xy− 10
4.7cos(3x − y2(2 + x))sin(2.5Πx))
−0.9 ≤ x ≤ 1.2,−1.2 ≤ y ≤ 1.2

F2(x, y) = −((4 − 2.1x2 + x4

3
)x2+ 6

xy + (−4 + 4y2)y2)
−1.9 ≤ x ≤ 1.0,−1.1 ≤ y ≤ 1.1

F3(−→x ) =
∑n

i=1
(−x2

i ) 1
−5.12 ≤ xi ≤ 5.12

F4(−→x ) = −20 −
∑n

i=1
(−x2

i + 10cos(2Πxi)) 1/many
−5.12 ≤ xi ≤ 5.12

F5(−→x ) = −
∑

i<n,i odd
(x4

i + x4
i+1 − x2

i + x2
i+1− 2

n

2

10xixi+1 + 0.25xi + 20)
−5 ≤ xi ≤ 5

and of the different search space sizes, low and high di-
mensional. Recent simulation model based investigations [5]
lead to the conjecture that complex multimodal optimiza-
tion algorithms may perform better than simple multistart
methods only if the number of optima is relatively low. F3
is tested to show that even in case of only one optimum,
the considered methods still perform sufficiently well. The
SKEWBI (skewed bimodal) problem is an extension of the
biquadratic polynomial defined as f1 in [6] into a higher
(even sized) dimensional search space. In each pair of di-
mensions, an optimization algorithm has to locate the better
one of two evenly sized basins of attraction. The problem
is thus partly separable with a slowly growing number of
optima of which one is the global one and 2

n

2 − 1 are local
ones. The problems with the number of known peaks are
depicted in Table 1.

Experiment 1: Direct performance comparison.

Pre-experimental planning: In our initial version of the
algorithm, in each generation, when seeds were selected, we
applied detect-multimodal procedure in order to establish
the subpopulations. From our early experiments, we ob-
served that this was too expensive with regard to the number
of fitness evaluations, although the results were very accu-
rate if we had a termination condition that measured only
the number of generations. This is what convinced us to
determine the subpopulations in the initial generation and
then track each individual’s species as much as possible by
using only the IDs. This substantially reduced the number
of fitness evaluations.

Task: The first task of the experiment was twofold. First of
all, we wanted to measure the ability of all three techniques
to find all the peaks, in low and high dimensions; for this
reason, we chose F1, F2 and F5 (for higher dimensions).
Second of all, we desired to measure the global optimization
capabilities with F3, F4 and F5 in low and high dimen-
sions. The second task envisaged the setting of an objective
termination condition, i.e. a fixed number of fitness evalua-
tions, and the performing of manual parameter tuning not
only with the aim of giving an unbiased comparison between
the final results, but also of showing the simplicity (or con-
versely, the intricacy) of choosing the parameters.

Setup: We established a fixed number of fitness evalua-
tions of 105 for all considered techniques and kept the po-

pulation size up to 200 for all conducted tests within this
experiment. For the current experiment, all parameter tun-
ings were manually made; for each parameter setting, we
performed 30 runs and outlined the average results. When
comparing these parameter sets to the ones achieved by a
semi-automated tuning method (SPO, see [1]), it turned out
that the manually achieved values generally range near the
median of the configurations tested by the tuning method,
with a considerable distance to the top performance. That
is, they are neither particularly bad nor good. This indicates
that finding the best parameter settings for all three algo-
rithms is at least not straightforward. The tuning results
are omitted here due to lack of space.

For the first class of functions, where we verify the ability
of the techniques to locate all the peaks, we use two mea-
sures: One refers the percentage of runs out of the maximum
number when all peaks are detected (i.e. all peaks found)
and the other one gives an average of the number of peaks
found in all 30 runs (i.e. average number of peaks). A value
of 0% for the former is not an indication of the fact that
the algorithm completely failed, but merely that it was not
able to detect all optima in any run as several found peaks
out of the known number does not count as successful. We
consider that a peak is found when there is at least one indi-
vidual that has the fitness closer to it than a certain ε. We
chose ε = 0.1 for all considered test problems. Regarding
the second class of functions, where the aim is to locate the
global optimum, besides the above measurements, we also
computed the average of the best fitness found in each of
the 30 runs (i.e. average best fitness).

For all considered approaches, we employed tournament
selection of size 2, intermediary recombination (two-parent
(for global), multi-parent (for local) and one offspring) and
mutation with normal perturbation. The offspring replaces
the weaker parent only if it is fitter. The values for the
parameters used for each version of the three techniques are
depicted in Table 2. Vector size refers to the number of
interior points for the detect-multimodal procedure.

Results/Visualization: The obtained results of each ap-
proach are outlined in Table 3. For F1 and F2 results seem
to be slightly better for the two variants of the TSC algo-
rithm. For F5 with 4 variables the best results were obtained
by the canonical species conservation algorithm followed by
the multinational algorithm using local selection, with some
competitive values, closely tracked by TSC with local se-
lection. Nevertheless, for 10 and 20 dimensions, the best
results are achieved by TSC with local selection.

All used algorithms proved that they still have the capa-
bility to properly solve unimodal functions like F3, despite
the fact that we used up to 10 variables for the function.
Regarding the average best fitness values, one can observe
that the TSC and canonical species conservation algorithm
proved to be slightly more precise than the multinational.

As concerns F4, results are balanced between both vari-
ants of TSC and the canonical species conservation algo-
rithm. However, for 10 dimensions, the average best fitness
values for both TSCs overpass the value for the same pa-
rameter obtained for species conservation. As the question
of tracking the global optimum for the F5 function arises,
obtained values for the average best fitness in Table 3 show
that in higher dimensions (10 or 20) TSC goes side by side
with the species conservation algorithm and performs much
better than the multinational algorithm.



Table 2: Parameter values for the TSC, the original species conservation and the multinational algorithms
range F1 F2 F3 F4 F5

problem dimension 2d 2d 2d 5d 10d 2d 5d 10d 2d 4d 10d 20d
TSC
Global selection
Population size 10-200 200 200 50 50 50 150 150 190 200 200 200 200
Crossover probability 0.0-1.0 0.50 0.6 0.40 0.40 0.40 0.70 0.70 0.90 0.90 0.90 0.90 0.90
Mutation probability 0.0-1.0 0.80 0.9 0.60 0.60 0.60 0.80 0.30 0.20 0.90 0.90 0.20 0.20
Mutation strength 0.01-20.0 0.60 0.8 0.40 0.40 0.40 0.70 1.6 0.60 0.50 0.50 0.20 1.20
Vector size 1-10 3 8 4 4 4 1 1 2 4 4 1 1
Local selection

Population size 10-200 200 200 50 50 50 150 140 200 200 200 200 200
Crossover probability 0.0-1.0 0.90 0.60 0.40 0.40 0.40 0.50 0.95 0.90 0.90 0.90 0.90 0.80
Mutation probability 0.0-1.0 0.90 0.90 0.60 0.60 0.60 0.60 0.3 0.20 0.90 0.30 0.30 0.20
Mutation strength 0.01-20.0 0.50 0.80 0.40 0.40 0.40 0.70 0.7 0.70 0.50 2 2 1
Vector size 1-10 4 8 4 4 4 1 1 2 4 2 2 2
Species conservation
Population size 10-200 200 200 100 100 100 200 200 200 200 200 200 200
Crossover probability 0.0-1.0 0.40 0.70 0.40 0.40 0.40 0.40 0.70 0.70 0.70 0.70 0.70 0.70
Mutation probability 0.0-1.0 0.60 0.20 0.60 0.60 0.60 0.80 0.50 0.40 0.40 0.40 0.40 0.20
Mutation strength 0.01-20.0 0.10 0.20 0.40 0.40 0.40 0.1 0.50 1.2 0.50 0.50 0.70 5
Radius 0.01-25.0 0.10 0.20 1 4 6 0.1 3 8 0.50 1.5 3 12
Multinational
Global selection
Population size 10-200 200 200 100 100 100 200 100 100 200 200 200 200
Crossover probability 0.0-1.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Mutation probability 0.0-1.0 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Mutation strength 0.01-20.0 0.60 0.20 0.10 0.10 0.30 4 20 30 5 1 0.20 0.50
Vector size 1-10 3 10 3 3 3 1 1 1 3 3 3 3
Government size 1-10 2 5 2 2 2 10 8 8 2 2 2 2
Local selection

Population size 10-200 200 200 100 100 100 100 100 100 200 200 200 200
Crossover probability 0.0-1.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Mutation probability 0.0-1.0 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Mutation strength 0.01-20.0 0.20 0.20 0.10 0.10 0.10 2 20 30 1 1 0.20 0.50
Vector size 1-10 3 10 3 3 3 1 1 1 3 3 3 3
Government size 1-10 2 5 2 2 2 10 10 8 2 2 2 2

Observations: Despite the fact that F1 and F2 also ap-
pear in [8], we did not use the provided results as we wanted
to make a fair comparison. Therefore, the fixed number of
fitness evaluations brings changes in the final results as it
makes both versions of the multinational algorithm run for
about 23 generations for F1 and 58 for F2. Results obtained
in our paper overpass the original results for F1, but con-
ducts to poorer results for F2 than the ones presented in [8].
It has to be also outlined that the canonical species conser-
vation algorithm reaches about 370 generations for F1 and
415 for F2, while TSC with global selection reaches around
180 generations for each of the two functions while the one
with local selection leads to about 430. To conclude, due to
the limit of fitness evaluations, the multinational undergoes
a much smaller number of generations, which is most likely
not enough to properly locate the desired optima.

Discussion: Although by tracking the subpopulation ID
for each individual we gain a large amount of fitness evalua-
tions, this also brings along a disadvantage. The algorithm
starts with the subpopulations that are found in the initial
generation and then continues with their preservation. The
drawback lies in the fact that the detect-multimodal mecha-
nism does not establish subpopulations in a completely ac-
curate manner: It may happen that the two individuals for
which the mechanism is applied follow two distant peaks
and the interior points may situate on other hills between
the ones of the initial individuals; if the interior points all
have the fitness evaluation higher than the minimum evalua-

tion of the two initial points, then these are said to be in the
same subpopulation. Thus, there may be the case that this
happens to some individuals in the first generation and con-
sequently they will bring noise to their subpopulations. In
trying to minimize the erroneously placed individuals, one
could apply detect−multimodal method each time the seeds
are selected, although at the cost of a raise in the number
of fitness evaluations.

To conclude, the TSC algorithm, in the way it is now,
clearly gives better results than the multinational algorithm,
as it has the advantage of much more generations for the
same number of evaluation calls; at the same time, results
obtained by the TSC algorithm are very competitive with
the results given by the competitive species conservation al-
gorithm, at the advantages of the elimination of the radius
parameter that is hard to set up and of the expensive nec-
essary runtime that is spent in distance measuring.

Experiment 2: Radius/vector size dependency.

Pre-experimental planning: In preliminary experiments,
we established test cases on which species conservation and
TSC were able to detect a larger number of optima. To
enhance measurable differences, the required accuracy had
to be lowered so that placing an individual inside the corre-
sponding basin in the final population suffices to indicate a
found optimum. As experiment 1 shows that the multina-
tional performance is not competitive to the two others, we
consider only species conservation and TSC. As first expe-



Table 3: Results for the TSC, original species conservation and the multinational algorithms
F1 F2 F3 F4 F5

problem dimension 2d 2d 2d 5d 10d 2d 5d 10d 2d 4d 10d 20d
TSC
Global selection
All peaks found (%) 100 96.67 100 100 100 100 100 100 100 0 0 0
Average number of peaks 10 5.97 1 1 1 1 1 1 2 1.50 1 1
Average best fitness - - -10−12 -10−10 -10−5 -10−9 -10−7 -10−5 0.001 -0.38 -1.93 -4.12
Local selection

All peaks found (%) 96.67 100 100 100 100 100 100 100 100 40 0 0
Average number of peaks 9.97 6 1 1 1 1 1 1 2 3.30 2.3 1.23
Average best fitness - - -10−13 -10−9 -10−5 -10−9 -10−7 -10−4 0.001 -0.11 -1.35 -3.32
Species conservation
All peaks found (%) 86.67 100 100 100 100 100 100 100 100 70 0 0
Average number of peaks 9.87 6 1 1 1 1 1 1 2 3.63 1.27 1
Average best fitness - - -10−13 -10−9 -10−5 -10−10 -10−6 -0.002 0.001 0.002 -1.58 -3.5
Multinational
Global selection
All peaks found (%) 6.66 0 100 100 100 56.66 10 0 13.33 0 0 0
Average number of peaks 7.57 3.3 1 1 1 0.57 0.1 0 1.13 1 0.03 0
Average best fitness - - -10−10 -10−6 -0.002 -0.3 -1.67 -9.46 -0.04 -0.68 -3.06 -11.45
Local selection

All peaks found (%) 30 96.66 100 100 100 83.33 0 0 100 43.33 0 0
Average number of peaks 9 5.97 1 1 1 0.83 0 0 2 3.37 0.07 0
Average best fitness - - -10−10 -10−6 -10−4 -0.17 -1.54 -11.50 -0.01 -0.04 -3.86 -12.78
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Figure 1: Parameter effect split plots, from top to bottom:
Species conservation on F1, 2 dimensions, and F5, 10 and 20
dimensions, TSC on the same three problems. Pc and pm stand
for crossover and mutation probability, respectively

Table 4: Peak detection (relaxed accuracy) in species conserva-
tion and TSC with local selection, values taken over 100 LHD
samples/30 replicates

non-uni mean max min std
F1 (2 d/10 peaks)
species conserv. 0.12 1.32 10.0 1.0 1.37
TSC 1.0 7.87 10.0 3.17 1.67
F5 (10 d/32 p)
species conserv. 0.42 7.20 32.0 1.0 11.33
TSC 1.0 2.72 5.67 1.07 1.06
F5 (20 d/1024 p)
species conserv. 0.6 23.97 186 1.0 45.99
TSC 0.91 2.68 5.8 1.0 1.08

riments had not proved great differences between the global
and local TSC variants, we concentrate on the local one.

Task: Detect how sensitive species conservation reacts to
radius parameter values, and if the vector size parameter of
TSC is similarly critical. We start with the hypothesis that
performance is highly dependent on an accurately chosen
radius value but abstain from the use of statistical tests due
to the exploratory character of this experiment.

Setup: The investigated test problems are F1 in 2 dimen-
sions, and F5 in 10 and 20 dimensions. For each of the two
algorithms, we perform a LHD (Latin Hypersquare Design)
in the allowed parameter space given in table 2. Each of the
100 design points is replicated 30 times and the mean num-
ber of detected peaks is recorded. In addition to standard
measures, we also determine the non-unimodal end popu-
lation fraction, that is the ratio of design points for which
at least once out of the 30 replicates more than one peak is
detected. All runs stop at a maximum of 105 evaluations.

Results/Visualization: Table 4 presents the obtained data
for all functions and algorithms, including the non-unimodal
fraction (non-uni column). In fig. 1, the 6 tested cases are
depicted as effect split plots. The set of 100 design points
is split into 3 (nearly) equal groups according to the chosen



quality criterion1, and the single parameter values for these
groups are drawn separately. This enables recognizing a
concentration of certain parameter values that corresponds
to the quality value, even if the effect is not linear, e.g. if
best and worst performing design points share an extreme
(i.e. small) parameter range whether medium configurations
have this parameter set at opposite (i.e. large) values.

Observations: Interestingly, location of most peaks on the
waves test problem (F1) seems to be much easier with the
TSC than with the species conservation algorithm, as seen
in tab. 4. For most (88%) of the design points of the latter,
only one peak could be located. For the regularly spaced
F5 test cases with larger search spaces, TSC still mostly at-
tains more than one peak, but cannot be configured in a
way that a large number of peaks is found, as is obviously
possible for the species conservation algorithm. Concern-
ing the parameter effects documented in fig. 1, we can state
that the radius parameter becomes very important for high
dimensions, whether the other species conservation param-
eters do not exhibit a clear structure. For the TSC, the
parameter importance seems to depend on the problem at
stake. For F1 and F5 in 10 dimensions, the population size
is most relevant, while for F5 in 20 dimensions, the mutation
probability must be set to a small value for achieving good
performance. The vector size appears to be non-critical.

Discussion: At a first glance, it surprises to see the species
conservation algorithm failing so often on F1 with only 2
search space dimensions. However, it may be necessary to
consider the geometrical form of the basins of attraction
in addition to number of peaks and the search space size.
F1 possesses highly elliptical basins, so that obtaining an
optimal radius for a ’search spheroid’ is difficult if one cannot
chose different values in the different dimensions. Interes-
tingly, one may use this property to backwards deduce how
spheroidal the basins are: If no radius can be obtained that
delivers good performance, the basins may be formed too
irregularly. However, species conservation performs clearly
superior for the F5 test cases, if properly parameterized.

TSC has difficulties with keeping more than 5-10 separate
subpopulations, while large population sizes are generally
advisable. However, our parameter investigations indicate
that the vector size parameter may be set to a fixed value
(e.g. 1), so that only 4 parameters are left to consider in-
stead of 5. Although not tested in this experiment, it can
be expected that for non-spheroid and non-regularly spaced
basin sets, the topological approach is better suited than the
spheroidal distance-based approach. The results obtained
with TSC on F1 point in this direction.

6. CONCLUSIONS AND FUTURE WORK
This paper is not primarily about a new algorithm. It

is about comparing existing algorithms and the search for
a method that provides a useful combination of their ad-
vantages. We therefore reimplemented these, namely the
species conservation and the multinational (evolutionary)
algorithm. To our knowledge, such a direct comparison has
not been done before. From the obtained results, we can
conclude that the suggested hybrid algorithm performs bet-
ter than the original multinational approach in all test cases
and approximately on the same level as the species conser-
vation approach. For the irregularly formed basin struc-

1measured mean number of peaks in this case

ture of F1 (waves), the new approach is better while being
simpler to configure, as it has no radius parameter. On
problems with more regularly formed basin structures, the
species conservation algorithm is slightly better because it
is able to cover more basins if well parametrized.

A first step to extend the current work would be to con-
sider more irregularly formed and/or spaced test problems
in order to see where the turning point between the TSC
and the original species conservation algorithm is. It may
also be useful to drive the hybridization even further and
insert techniques based on relative (instead of absolute) dis-
tances into the TSC. Furthermore, the ability to keep more
subpopulations in different basins alive may be improved by
reconsidering the handling of non-assigned (the ’free’) indi-
viduals. Currently, only main parameter effects have been
investigated. Once the parameter interactions are under-
stood better, adding mutation stepsize adaptation mecha-
nisms will surely open a path leading to substantially in-
creased performance.
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