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Gummersbach, Germany bartz@gm.fh-koeln.de

Summary. Solving multimodal optimization tasks (problems with multiple glo-
bal/local optimal solutions) by the state-of-the-art evolutionary algorithms (EAs)
presumes separation of a population of individuals into subpopulations, each con-
nected to a different optimum, with the aim of maintaining diversity for a longer
period of time. Instead of using the typical separation that uses depends on a ra-
dius, present work proposes the employment of a clustering technique in order to
distribute the candidate solutions to different species. Additionally, the proposed
method corrects the separation by means of a mechanism that verifies the topo-
logical placement of the individuals in the fitness landscape with the purpose of
connecting each species to a different optimum. The best individuals from each
subpopulation are preserved from one generation to another in order to assure the
conservation of the species. The method is applied on a set of benchmark functions
that exhibit various properties, under multiple parameter settings, and the results
demonstrate its great potential, especially of coping with relatively difficult problems
under a limited budget of fitness evaluations.

1 Introduction

It is not unusual for an evolutionary heuristic to encounter difficulties when
dealing with a multimodal problem: On the one hand, it might not detect the
best solution because it got stuck into a local one and, on the other hand, it
does not provide a set of the most important optima. The loss of diversity
(genetic drift) represents the main issue when dealing with problems that
exhibit a high number of optima. This is the reason why diversity has to be
maintained for a longer period of time during evolution and that is achieved
through the population separation into species.
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Usually, the individuals that are closer than a given radius with respect to a
specific metric are gathered within the same species (or subpopulation). In the
best case scenario, each subpopulation is connected to a different peak in the
problem landscape. However, that is impossible for a radius-based method,
unless the attraction basins of the different peaks in the fitness landscape
of the problem to be solved are equally sized and equidistant. It is hard to
imagine that a real-world application would possess such properties. Moreover,
a radius for separating the population also means that a user has to find a
proper value for it, fact that is not straightforward and it greatly depends on
the problem to be answered.

Within current work, a clustering technique is employed with the aim of
gaining a good separation of the individuals into subpopulations. It uses dis-
tances and the fitness of the points to be clustered, but no radius parameter is
involved. In order to correct the separation provided by the clustering method,
an additional helping mechanism is used for determining whether the various
species are connected to different hills in the landscape or not.

Next section presents a brief survey of other evolutionary methods for
multimodal real-valued optimization problems, while the third outlines the
proposed technique. Section four describes the experimental analysis on the
application of the proposed technique for the optimization of a set of bench-
mark functions and the paper encloses with the concluding ideas.

2 Previous Approaches for Multimodal Optimization

Avoiding premature convergence (blocking into a local optimum) represents
the key to developing a powerful EA for dealing with multimodal problems.
This task is achieved by allowing diversity within the population for extended
epochs and thus keeping contact with the promising regions within the land-
scape.

Many techniques have been proposed for improving performance when
tackling multimodal problems. One of the most used (radius-based) evolu-
tionary heuristics for multimodal optimization is the fitness sharing [5]. The
preservation of diversity is conducted through the separation of the popu-
lation according to niches. These are formed by joining individuals that lie
closer than a given radius to one another. The main drawback of this method
is represented by the existence of the threshold whose value very much relates
to the specific problem. In this respect, Deb and Goldberg proposed a manner
of computing the value for the radius that leads to the formation of subpop-
ulations [2]. It is regularly embraced in most experimental designs for such
EA methodologies. It uses the radius of the smallest hypersphere containing
feasible space, which is given by (1).
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as (2).
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Note, however, that the employment of equation (2) for computing the
value of the radius presumes that one must know in advance how many optima
there exist within the fitness landscape.

Other methods like the island or diffusion models [4] that confine the
way individuals interact have been imagined for the same purpose of keeping
diversity more and better within the population. Although they do not have
a radius threshold, these do not focus on the particularities of the landscape,
but rather on the restrictions upon individuals when recombination is applied.

The crowding technique [3] was also developed as a method of maintaining
diversity. New obtained individuals replace only similar ones in the population.
However, there are some issues that have arisen around this methodology,
as it suits only a limited set of multimodal problems and the value for the
population size parameter very much depends on the considered task and the
number of attraction basins that exist.

There have been previous attempts to use clustering in conjunction with
EAs with the aim of targeting multimodal optimization. In [11] an adaptive
clustering algorithm is introduced, meant to avoid the a priori estimation of
the species separation radius. However, although the radius value does not
appear anymore, it is necessary to define the minimum and the maximum
radii of a cluster. A multi-population approach that also uses clustering for
species separation is introduced in [8]. The main drawback is that the clus-
tering technique brings two more parameters and one of them is a radius that
separates the clusters.

The technique that is currently introduced partitions the population into
species and it does not employ a radius parameter for that, instead, more
efficiently, it connects each species to a different optimum by taking advantage
of the fitness landscape and vicinity.

3 Nearest-Better Algorithm for Multimodal
Optimization

Proposed nearest better separation evolutionary algorithm (NBSEA) has as its
main engine a canonical EA that is endowed with a clustering technique. The



4 C. Stoean, M. Preuss, T. Bartz-Beielstein, R. Stoean

latter has the goal of separating the population into species. Moreover, in order
to maintain the contact with the promising regions from the search space, the
conservation of the most prolific individual (which will be further on referred
as seed) within each subpopulation is ensured. Additionally, a mechanism that
verifies whether two candidate solutions lie within the same attraction basin
or not is used in order to shape the subpopulations according to the fitness
landscape of the problem to be solved. Both the clustering technique and the
mechanism used for the verification of whether two solutions follow the same
peak are heuristics, therefore they are combined in order to complement each
other. In order to clarify each step, the following subsections will present every
separate tool and finally the entire NBSEA is assembled in 3.3.

3.1 Nearest-Better Clustering

The clustering mechanism does not use any radius for separating the species,
but it is based on the idea that the best individuals in different basins of
attraction are more distant from each other as compared to the double of the
mean distance of all individuals to their nearest better neighbors. The name
of the technique is derived from this nearest neighbor principle it is based on.
For each point, it searches for the closest neighbor, in terms of (Euclidean) dis-
tance, that is better in terms of fitness. The longest edges – those higher than
φ·mean(lengths of all edges) – are removed and the prototypes for each cluster
are represented by those individuals that do not connect to others. Clusters
are thus formed around these (dominating) individuals. The approach has
only one additional parameter to be tuned, with 2 being a good default value
[10]. The nearest-better clustering (NBC) technique is thoroughly described
in Algorithm 1.

The NBC algorithm is applied on the population of the EA after each
generation in order to detect the dominating individual from each cluster
(that corresponds further on to the species). The separation is not always
optimal and, in order to detect whether there exist more than one cluster
that lies within the same attraction basin, the seeds of the detected clusters
are next verified two by two with the topological method that is further on
described.

3.2 Detect Multimodal Mechanism

A mechanism to verify if two points lie within the same attraction basin or
not was introduced within the multinational algorithm in [6]. It generates a
number of equally distant interior points (this positive integer being the only
parameter of the mechanism) between the two candidates it is applied for and,
if there exists any interior point with the fitness smaller than the worse of the
two initial ones, it is concluded that they follow different peaks. Otherwise,
they are said to be situated on the same hill.
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Algorithm 1 The Nearest-Better Clustering Algorithm
Require: A population of individuals x.
Ensure: Clusters of individuals: number, grouping, prototypes.

for i = 1 to pop size do
compute distances from x[i] to all individuals

end for
for i = 1 to pop size do

find nearest individual that is fitter than x[i], i.e. x[j];
if found then

edge[i] = j;
else

edge[i] = 0;
end if

end for
m = avgpop size

i=1 (distance(x[i], x[edge[i]]));
for i = 1 to pop size do

if edge[i] 6= 0 and distance(x[i], x[edge[i]]) > φ·m then
edge[i] = 0;

end if
end for
return the prototypes – x[i], where edge[i] = 0 – and membership to clus-
ters – x[i] ∈ cluster[j], where edgen[i] = prototype[j], i = 1, 2, ..., pop size,
j = 1, 2, ..., noOfClusters;

Algorithm 2 The Detect Multimodal mechanism for two individuals x and
y

Require: Two individuals x and y.
Ensure: TRUE if x and y track different optima and FALSE otherwise.

i = 1;
found = FALSE;
while i < number of gradations and not found do

for j = 1 to number of dimensions do
interiorj = xj + (yj − xj) · gradationi;

end for
if f(interior) < min(f(x), f(y)) then

found = TRUE;
end if

end while
return found;
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The method is described in detail in Algorithm 2. The number of grada-
tions coincides with the number of interior points and gradationi, i ∈ {1, 2, ...,
number of gradations}, are equidistantly generated within [0, 1]. In a nutshell,
the algorithm returns true if the two points follow different optima and false
if they lie within the same attraction basins.

3.3 Nearest-Better Separation Evolutionary Algorithm

The general outline of the currently proposed approach is presented in Algo-
rithm 3. After the initialization of the population, the evolution progresses
within a repetitive process. The NBC method (described in Algorithm 1) is
applied in order to separate the population into species. Before moving for-
ward, the detect − multimodal mechanism is applied for the found cluster
prototypes (that correspond to the species seeds). If there exist two (or more)
seeds that follow the same peak, then their species are unified into one and
the fittest of the seeds is kept as its representative. Early experimentation
demonstrated the need to set an upper limit for the number of seeds as for
test cases that are highly multimodal all the population risks to be blocked
from the early generations into prototypes and therefore no exploration would
be further achieved. In all our experimentation, the limit was set to 20% of
the population size. Therefore, within Algorithm 1 the number of seeds, and
species respectively, cannot be higher than the previously mentioned value.

Next, in the first generation, the selection operator is applied to the entire
population and it is afterwards followed by the variation operators, recom-
bination and mutation. If two individuals from the same species recombine,
the offspring is considered to belong to the same group. In other recombina-
tion cases and in the situation when an individual is obtained via mutation,
the offspring are considered free, meaning that they are not attached to any
subpopulation.

As the selection and variation operators may omit and/or alter the master
individuals of some species, a process of integration of the seeds that were
previously detected occurs at this stage. Before inserting an individual, it is
checked whether it already exists in the population, as it is introduced only
in the case when there is no other copy of it. When such a seed is reinserted,
it replaces the worst individual in its species or, in case its subpopulation
was eliminated, it substitutes the worst member of the population that is not
a master individual. The steps are described in Algorithm 4. The marking
process takes place in order to avoid the deletion of previously inserted seeds.

The free individuals are then integrated to the existing species. The seeds
are taken ascendingly according to the (Euclidean) distance to each free in-
dividual and it is tried, using the detect −multimodal mechanism, to see if
they follow the same peak or not. In the affirmative case, a free individual is
assigned to the species, whose seed targets the same optimum as itself. When
a free individual does not follow the same peak as any of the existing seeds,
it is set as a new master individual and it creates its new own species.
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Algorithm 3 Structure of the NBSEA
Require: A search/optimization problem
Ensure: The set of seeds
1: begin
2: Initialize population;
3: t = 0;
4: while stop condition is not met do
5: Identify species seeds using Algorithm 1;
6: Correct species through the use of Algorithm 2;
7: if t > 0 then
8: Reconsider old seeds;
9: end if

10: Apply mating selection;
11: Apply recombination;
12: Apply mutation;
13: Integrate the seeds into resulting population;
14: Assimilate the free individuals to the species;
15: t = t + 1;
16: end while
17: return the set of seeds
18: end

Algorithm 4 Seeds conservation procedure within NBSEA
Require: The current population P
Ensure: The population that contains the seeds
1: begin
2: Mark all individuals in P as unprocessed;
3: for every s in Seeds do
4: if s does not already exist in P then
5: Take worst unprocessed w from P, such that sID = wID;
6: if w exists then
7: if f(w) < f(s) then
8: w = s;
9: end if

10: else
11: Take worst unprocessed w in P ;
12: w = s;
13: end if
14: Mark w as processed;
15: end if
16: end for
17: return the population with the integrated seeds
18: end
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Starting from the second generation, the previous findings are securely kept
and the new gained information is updated. Right after seeds determination,
the masters from the previous generation are checked against the newly found
ones, once again in ascending order according to the distance, as the ones
that are closer to each other are more likely to follow the same optimum.
If there are seeds from the previous generation that follow different peaks
(detect−multimodal = true), they are added to the current population and
further set as seeds. They replace the worst individuals in the population that
are not seeds.

As the detect − multimodal mechanism is expensive with regard to the
spent fitness evaluations, it is important to observe that it is always the NBC
that is first applied within NBSEA and is followed by the verification method,
as the latter is used only to correct the obtained separation.

The algorithm may stop after a fixed number of fitness evaluations is
consumed (this is the case used in the experiments of the current paper),
or after a fixed number of generations, or when the peaks are found with a
desired accuracy.

4 Experimental Results

The set of test cases includes one unimodal function for testing whether the
method can still cope with such simple tasks, two functions with many op-
tima, all to be detected, and three other instances with one global optimum
and many misleading local ones surrounding it. The aim of the tests is to ob-
serve how the proposed approach behaves under a very low budget of fitness
evaluations and how the results improve when the investment rises. The re-
sults regard the peaks accuracies, the number of found peaks and the number
of basins that are detected within the given landscape.

4.1 Test Functions

The simplest considered function is the Sphere (F1 in the enumeration be-
low), it possesses only one optimum and is employed for 10 variables. Six-hump
camel back (F2) is considered for 2 variables, and has 6 optima, equal two by
two, that reside on a very smooth surface. Waves function is also considered
for 2 variables and it has 10 optima (1 global) to be found, it is asymmet-
ric and some peaks are difficult to find as they lie on the border or on flat
hills. Keane’s Bump Problem (F4), taken for 20 variables, is one case that
has a strong relation to a real-world application from engineering design. It
has a very bumpy surface and the global optimum is given by the product
constraint. Shifted Rastrigin (F5) is taken for 2 and 10 variables, it has one
global optimum and many local ones around. Finally, rotated hybrid compo-
sition function (F6) will be considered for the same number of dimensions
as the latter, it is a very noisy case and it is obtained as the result of the
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combination of several functions: Its definition is too large to be included here
and it can be found in [7]. The last two functions are part of the collection
of test cases that were used as benchmarks for the Congress on Evolutionary
Computation 2005 and more information about them, including encodings,
can be found in [7]. The definitions for the described functions are itemized
below.

F1(x, y) = x2 + y2,−5.12 ≤ x, y ≤ 5.12.
F2(x, y) = −((4−2.1x2+ x4

3 )x2+xy+(−4+4y2)y2), −1.9 ≤ x ≤ 1.9,−1.1 ≤
y ≤ 1.1.

F3(x, y) = (0.3x)3 − (y2 − 4.5y2)xy − 4.7cos(3x − y2(2 + x))sin(2.5Πx)),
−0.9 ≤ x ≤ 1.2,−1.2 ≤ y ≤ 1.2.

F4(−→x ) =

|
D∑

i=1

cos4(xi)− 2 ∗
D∏

i=1

cos2(xi)|
√√√√

D∑

i=1

i ∗ xi
2

, 0 ≤ xi ≤ 10, subject to
D∏

i=1

xi >

0.75 and
D∑

i=1

xi <
15 ∗D

2
.

F5(−→x ) =
D∑

i=1

(x2
i − 10cos(2Πxi) + 10) + f bias, −5 ≤ xi ≤ 5.

F6 corresponds to function F21 in [7].

4.2 Task

Observe how NBSEA behaves for a number of fitness evaluations that is grad-
ually raised from 1000 up to 30000, when applied to the functions that were
introduced in the previous subsection.

4.3 Experimental Setup

An optimum is considered to be found if there exist at least one individual
that has the difference in fitness evaluation to the actual peak closer than
10−1. There are two measures considered for every function in the test suite
and each is computed as the average value over 30 repeated runs:

1. Peak ratio gives the ratio between the number of found peaks and the
actual number of existing peaks.

2. Peak accuracy refers to the summed difference in module between the
fitness values of the desired optima and of the individuals that are closest
to them (3).
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peak acc. =
#peaks∑

i=1

| f(peaki)− f(x) |. (3)

For each involved parameter, 30 Latin Hypercube Designs (LHDs) [1] are
considered for generating equally distant values within reasonable intervals.
Population size is taken between 10 and 200, mutation and recombination
probabilities in [0, 1], the number of interior points between 1 and 10, while
the mutation strength is dependant on the domains of definition, i.e. between
[0, 5] for F2 and F3, [0, 15] for F4 and F5 with 2 variables and [0, 30] for the
rest.

Concerning the used operators, tournament selection, intermediate recom-
bination and mutation with normal perturbation are employed. The stop con-
ditions are considered as 103, 2 ·103, 5 ·103, 7 ·103, 104 fitness evaluation calls
and, from this point on, several steps obtained by adding 5000 evaluations up
to 30000.

4.4 Results and Visualization

Obtained results for the first three functions in the best parameter configura-
tion out of the 30 LHDs are illustrated in Figure 1.

F1 function is considered for 10 variables and the results prove that the
smallest budget is not enough to conquer the existing peak. However, starting
from 5000 evaluations, the peak is detected in all 30 repeats of the most prolific
LHD.

The results appear to be substantially better for F2 when the number of
fitness evaluations reaches 104 and beyond. The function possesses two local
optima that have very low values as compared to the rest. They lie on narrow
hills that are only slightly fitter than their surroundings and they are also
positioned at the margins of the intervals. Therefore, it is very important that
there are candidate solutions initialized in those regions in order to preserve
(and improve) them. In this respect, a large value for the population size
is necessary, even if that assumes the spending of a high number of fitness
evaluations. Moreover, the number of interior points also has to be relatively
high in order to detect the small differences in the fitness landscape.

For F3 the quality of the results progresses together with the increase in
the fitness evaluation calls. However, it is worth mentioning that almost a half
of the peaks are detected even for the lowest budget.

F4 is a very complex case, it is considered for 20 variables, and even the
highest considered budget of fitness evaluations is not high enough to expect
a very good performance. However, among the 30 LHDs, those that yield the
best results are the ones that have the smallest values for the population size,
in order to avoid spending evaluation calls and, at the same time, to prolong
the evolutionary cycle. In this respect, it is the same configuration that gave
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Fig. 1. Average results over 30 repeats of the best LHD configuration, obtained by
NBSEA for the benchmark functions. For each case, first graphic contains the peak
ratio (best value is 1), while the second illustrates the obtained peak accuracy (best
value is 0). Each plotted results are obtained for 1000 up to 30000 fitness evaluation
calls.



12 C. Stoean, M. Preuss, T. Bartz-Beielstein, R. Stoean

the best result for all stop conditions, one that has the population size 8, a
high number of interior points, 15, and a high mutation strength of 29.1.

For F5 with 2 variables the global peak is found with the desired ac-
curacy in all stop condition circumstances. For the same measurement, 104

evaluations were necessary for F5 with 10 variables for getting the best re-
sult. It is important to observe that relatively good results as concerns the
peak accuracy are achieved starting with 5000 evaluations for F5 with both
considered complexities. Afterwards, in both situations, there are only small
improvements in peak accuracy (of the order 10−2).

For F6 with 2 variables the results quality raises together with the evalu-
ation investment. As a result of the CEC 2005 competition for function opti-
mization, there no technique has been capable to detect the global optimum
when F6 was considered for 10 variables. The proposed technique was not
able to get too close to the global optimum, therefore the peak ratio graphic
is not informative, but the progress of the NBSEA can be observed for the
peak accuracy. As the function is very noisy, the method does not have a clear
way towards improvement in dependence to the investments. However, there
is some movement towards the peak when increasing the period of evolution.

The quality of the results could increase if more than 104 evaluation calls
are considered. In average, the runtime of NBSEA takes 0.04 seconds for 103

fitness evaluation calls on a computer with an Intel Core 2 Extreme, 2 x 2.80
GHz processor and a RAM memory of 4 GB.

5 Conclusions and Future Directions

A new evolutionary technique for multimodal real-valued optimization that
employs a clustering method for separating the population into species, near-
est better separation evolutionary algorithm, is herein proposed.

The NBSEA gives very promising results, also for very economic invest-
ments regarding the number of fitness evaluation calls. However, it can be
observed that, when more evaluations are used, the results improve accord-
ingly. When this is allowed, then both the population size and the number of
interior points can be taken higher; the highest the latter is, the more accurate
the separation between subpopulation is.

It would be interesting to further investigate how the φ parameter within
NBC influences the results and to compare them with other state-of-the-art
evolutionary techniques, all under the same constraints. A parameter analysis
would be also of great significance for the future work.
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