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1. INTRODUCTION 
 

The evolutionary computation (EC) community has approached classification, a field 
with important, and sometimes even vital, practical applications, not only from the side of 
hybridization with non-evolutionary classification techniques, e.g. fuzzy or neural 
network-based, but also from the part of standalone evolutionary algorithms (EAs) 
constructed especially for the particular task. An evolutionary classification technique is 
concerned with the discovery of IF-THEN rules that model the correspondence between 
given samples and corresponding classes. Given an initial set of training samples, the 
system learns the patterns, i.e. evolves the classification rules, which are then expected to 
predict the class of previously unseen examples. 

There are two classical approaches to evolutionary classification techniques. The first 
direction ([Mic96]) is represented by the Pittsburgh school that developed an 
evolutionary system that considers an individual to represent an entire set of rules. Rule 
sets are evolved using a canonical evolutionary algorithm and the best individual from all 
generations represents the solution of the classification problem. The opposite related 
approach is the work of the Michigan school ([Hol86], [Mic96]). Here, each individual 
encodes only one conjunctive rule in first-order logic and the entire population represents 
the rule set. Thus, detection and maintenance of multiple solutions (rules) in a multiple 
sub-populations environment is required. As a canonical EA cannot evolve non-
homogeneous individuals, the Michigan approach suggested doubling the EA by a credit 
assignment system that would assign positive credit to rules that cooperate and negative 
credit to the others.  

A third known approach would also be the one characterized by a genetic 
programming approach to rule discovery ([Frei02a], [Frei02b]). The internal nodes of the 
individual encode mathematical functions (e.g. AND, OR, +, -, *. <, =) while the leaf 
nodes encode the attributes. Given a certain individual, the output of the tree is computed 
and if it is greater than a given threshold, a certain class of the classification task is 
predicted.  

The existing evolutionary classification techniques have quite intricate engines and 
thus their application is not always straightforward: they use complex credit assignment 



systems that penalize or reward good rules, as well as very complicated schemas of the 
entire system. 

The purpose of this chapter is hence to put forward a novel evolutionary classification 
framework that has proven to be simpler and yet competitive. Discussion envisages two 
techniques based on the state-of-the-art EC field of coevolution. Coevolution between 
individuals assumes two opposite interactions: cooperative and competitive. 
Analogously, coevolution for classification assumes two possible and opposed manners 
of solving the task. Within both approaches, the solution of a classification problem is 
regarded as a set of IF-THEN conjunctive rules in first order logic (as in the Michigan 
approach), where the condition part is made of attributes (indicators) and the conclusion 
part is represented by the class. 

 
2. OBJECTIVES 
 

The mission of this chapter is three-fold. First and foremost, we target to present two 
novel applications of coevolution to classification, from both a cooperative and a 
competitive perspective. Subsequently, we aim to achieve an objective comparison 
between the two opposite proposed techniques that lie within the same framework. 
Finally, we outline the practical applications of presented approaches from a binary 
problem, i.e. breast cancer diagnosis, to a multi-class task, i.e. iris plants differentiation. 
 
3. COOPERATIVE COEVOLUTION FOR CLASSIFICATION 

 
Cooperative coevolution implies a decomposition of a candidate solution of the 

problem to be solved into a number of components and each of these parts is treated by 
an EA. The EAs evolve separately and interactions between populations exist only in the 
moment when fitness is computed; when an individual is evaluated, collaborators from 
all the other populations are selected in order to form a complete solution that can be 
measured.  

Cooperative coevolution was introduced around a decade ago as an alternative 
evolutionary approach to function optimization [Pot94]. For this issue, one considers as 
many populations as the number of variables the specific function has, i.e. each variable 
of the function represents a component of the solution and is separately treated using an 
EA. Any EA can be used to handle the components of the solution. Several functions 
with multiple local optima and one global optimum were considered and the cooperative 
coevolutionary algorithm proved to be effective [Pot94, Wie03]. The technique was 
recently successfully applied to develop a rule-based control system for agents; two 
species were considered, each consisting of a population of rule sets for a class of 
behaviours [Pot01]. 

To the best of our knowledge, there has been no attempt in applying cooperative 
coevolution to classification based on individuals that encode simple conjunctive IF-
THEN rules in first order logic. Nevertheless, other classification evolutionary models for 
coadapted components are Holland's classifier system (the Michigan approach earlier 
discussed) [Hol86] and the REGAL system [Gio00], where stimulus-response rules in 
conjunctive form (such as in the present approach) were evolved by EAs. In [Gio00], 
problem decomposition is performed by a selection operator, complete solutions are 



found by choosing best rules from each component, a seeding operator maintains 
diversity and fitness of individuals within one component depends on their consistency 
with the negative samples and on their simplicity [Pot00].  

Within the proposed technique [Sto06a, b, c], the final rule set is imagined as to have 
one rule for each category of the classification problem. A natural decomposition of the 
problem solution is to assign rules of the same outcome to a population; thus, the number 
of species equals the number of classes. 

When the quality of an individual is measured, collaborators (individuals) from all the 
other populations have to be selected with the aim of forming complete solution(s) that 
may be easily evaluated. A complete solution of the problem consists of a set of rules, 
one for each class of the considered problem. The set of rules is applied to the training 
data and accuracy is computed. The accuracy represents the evaluation of the considered 
individual (rule). When a set of rules is applied to a sample, the distances from the 
sample to each of the rules are computed. The class of the sample is considered to be the 
class of the rule that was closest. Accuracy is computed as the percent of correctly 
classified samples over all considered samples. 

Validation has been achieved on both a binary classification task, i.e. breast cancer 
diagnosis, in order to get a first glance on the performance capability of the approach, as 
well as on a problem with multiple outcomes, i.e. iris plants recognition, with the aim to 
verify the capacity of the algorithm to deal with several populations that coevolve. 
Obtained results have been competitive to state-of-the-art classification techniques from 
different fields of artificial intelligence, e.g. support vector machines, classification trees, 
logistic regression etc. 

In the form considered so far, the coevolutionary classifier obtains a number of rules 
equal to the number of categories of the classification problem. However, it may happen 
that more rules are needed for one class as there may be the case that several objects in 
the data set that have the same class are very different. In this sense, in the future, the 
canonical EA will have to be replaced with a multi-modal evolutionary technique. The 
goal is to acquire all optima, i.e. the best possible rules, for each category of the 
considered problem. This represents, without a doubt, an important means of improving 
the classifier based on cooperative coevolution. 

 
4. COMPETITIVE COEVOLUTION FOR CLASSIFICATION 

  
Within the competitive model, two species evolve complementarily through an 

inverse fitness interaction process, similarly to the predator-prey systems. This means 
that success on one side is regarded as failure on the other side; the latter species will 
have to react in order to maintain its chances of survival. This competitive interaction 
between species will eventually drive them to evolution. In terms of computational 
entities, one species will correspond to certain tests and the other to the proposed 
solutions. Competition is achieved through encounters between one individual from a 
population and one from the other. The two selected individuals are checked against each 
other and if the solution passes the test then the former is rewarded and the latter is 
penalized; if it fails, credits are assigned in an inverse manner. Each individual has a 
history of its encounters and fitness is computed on this basis. 



The competitive paradigm has been applied to a wide range of problems, from the 
primary field of game-playing to process control [Par97a], path planning [Par97b], 
constraint satisfaction [Par94b] and classification. As classification is concerned, known 
techniques involve the evolution of neural networks [Par94a], decision trees [Sie94], 
cellular automata rules [Jui96], [Par97c] and the use of genetic programming for the 
problem of intertwined spirals [Jui98]. Again, it has to be stated that to the best of our 
knowledge, the competitive coevolution between simple IF-THEN rules and the training 
set has not been achieved yet. 

The proposed evolutionary classifier considers the training data set as one fixed 
species and the potential rules of assessment as the other evolving one. The two species 
evolve together, through the inverse fitness interaction: As candidate rules fit certain 
samples descriptions, these records receive weaker evaluation scores and are therefore 
not selected for encounters any more. Consequently, other samples, more difficult to 
assess, will be more often selected for competitions and rules will have to evolve through 
adaptation to the new records that must be given a verdict. The personal history of 
individuals is also important as it offers lifetime evaluations of individuals and allows 
them to keep up with the changing rankings in the other species.  

Encounters are performed only between solutions and samples of the same class. 
Such an encounter returns the distance between the individual (rule) and the training 
sample as negative for the most recent fitness of the former and positive for that of the 
latter. Additionally, the individuals that are selected for recombination belong to the same 
class. Through these restrictions, we maintain diversity within the EA, such that final 
rules for each class are distinct from those with different outcomes. 

The proposed algorithm has been tested against the same two data sets and has proven 
to provide viable results, as well. 

Future work envisages the inclusion of some mechanism for sample selection, 
because, as the second population encodes the entire training set, runtime increases with 
the number of records in the data set. 

 
5. DISCUSSION 
 

The two related algorithms have demonstrated the ability to solve classification tasks 
of different content, dimension and number of outcomes in a well performing manner. 
Nevertheless, a drawback of the cooperative algorithm is the fact that the number of 
populations must increase with the number of classes of the task, while a flaw of the 
competitive approach is the high necessary runtime to encode a large data set.  

The realistic and immediate implication of the application of the proposed 
classification framework would be the incorporation into medical decision making 
systems, as a means of checking the consistency of the assessment, which takes into 
account a large number of variables and more than often exhibits low 
generalization. Additionally, an online integration with electronic records would provide 
a real time learning and evaluation. 
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