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Abstract— Within the present paper, we put forward a novel through parametrization is investigated. To enable hagdli
hybridization between support vector machines and evolution- |arge data sets, the first approach is enhanced by use of a
ary algorithms. Evolutionary support vector machines consider chunking technique, resulting in a more versatile algarith

the classification task as in support vector machines but use The behavi f ding-based EA ina th
an evolutionary algorithm to solve the optimization problem of € behaviour of a crowding-base on preserving the

determining the decision function. They can explicitly acquire P€rformance of the algorithm is examined with the purpose
the coefficients of the separating hyperplane, which is often of the its future employment for the coevolution of non-
not possible within the classical technique. More important, standard kernels. Obtained results prove suitability amd-c
evolutionary support vector machines obtain the coefficients petitiveness of the new approach, so ESVMs qualify as a

irectly f h luti Igorith fer th . . . . .
gltr?r:g plgnmt tjueriri\;loamrlgrr:érl)rl] Zggirtlito? t?]ré?/ %%n nrsterre;u?g viable simpler alternative to standard SVMs in this context

properties of positive (semi-)definition for kerels within non-  However, there is still room for improvement.

linear learning. The concept can be furthermore extended to The paper is organized as follow§2 outlines the concepts
handle large amounts of data, a problem frequently occurring  of classical SVMs§3 describes the existing evolutionary ap-
e.g. in spam mail detection, one of our test cases. An adapted ,55ches aimed at enhancing the performance of the classica

chunking technique is therefore alternatively used. In addition hitect d lains th t of th hvbridi
to two different representations, a crowding variant of the evo- architecture and expiains the concept of the new nybridiza-

lutionary algorithm is tested in order to investigate whether the ~ tion. §4 puts forward a first considered representation of an
performance of the algorithm is maintained; its global search EA inside proposed ESVMs. Validation is achieved on real
capabilities would be important for the prospected coevolution \world examples. An alternative version of the ESVM which
of non-;tandard kernels. Evolutionary support vector.machllnes is endowed with a new mechanism for reducing problem
are validated on four real-world classification tasks; obtained .~ . : .
results show the promise of this new approach. size in case of large data sefts is also preseritedirings a _
second, simpler, representation of the proposed EA, which
I. INTRODUCTION also speeds up runtime; the crowding variant is subsequentl
Support vector machine€SVMs) represent a state-of-the- illustrated.§6 exhibits the comparison with results of canon-
art learning technique that has managed to reach competiti¢al SVMs implemented in R on the same data sets and in
results in different types of classification and regressasis. €quivalent conditions. The last section comprises coranss
Their engine, however, is quite complicated, as far as propand outlines ideas for further improvement.
understanding of the calculus and correct implementatfon o
the mechanisms are concerned. This paper presents a novel
approach,evolutionary support vector machinégSVMs), Given { fier|, fr : R" — {1,2,...,k}}, a set of functions,
which offers a simpler alternative to the standard techmiquand { (i, y:)}i=12,....m, @ training set where every;, € R"
inside SVMs, delivered byevolutionary algorithms(EAs). represents a data sample and eaghcorresponds to a
This is not the first attempt to hybridize SVMs and EAsclass, a classification task consists in learning the optima
Existing alternatives are discussed §HI-B. Nevertheless, function f- that minimizes the discrepancy between the
we claim that our approach is significantly different. given classes of data samples and the actual classes pdoduce
ESVMs as presented here are constructed solely based hthe learning machine. Finally, accuracy of the machine
SVMs applied for classification. Two kinds of possibleis computed on previously unseen test data samples. In
representations are considered. Validation is achieved Bye classical architecture, SVMs reducelass classification
considering four real-world classification tasks. Besictm®-  problems to many binary classification tasks that are sepa-
paring results, the potential of the utilized, simplisti& E rately considered and solved. Different systems then éecid
o s < with the Deoartment of Computer Sl . the c_liass.for data samples i|_f1 the t.est set._ SVMs regard
MatHemgﬁgge:r?dvgomputer Sf:)ience, University%LfJCG:aio(\:/I:;é?n’. Cﬁga,y Tlassification frpm a geometrical pplnt of view, i.e. they
No. 13, 200585, Craiova, Romania (e-mail: ruxandra.stoeah@i.ro). assume the existence of a separating surface between two
M. Preuss is with the Chair of Algorithm Engineering, Depzett of classes labelled as -1 and 1, respectively. The aim of SVMs

Computer Science, University of Dortmund, Otto-Hahn-Str, N6, 44221, then becomes the discovery of this decision hyperplane, i.e
Dortmund, Germany, (e-mail: mike.preuss@uni-dortmund.de). . . . ..
C. Stoean is with the the Department of Computer Science, fraoti  th€ determination of its coefficients.
Mathematics and Computer Science, University of Craiova,A$til. Cuza, .
No. 13, 200585, Craiova, Romania (e-mail: catalin.stoeah@ivro). A. Support Vector Machines
D. Dumitrescu is with the Department of Computer Science, Eaail - . .
Mathematics and Computer Science, Babes-Bolyai UniverStty,M. Ko- If training data is known to be linearly separable, theneher

galniceanu, No. 1, 400084, Cluj, Romania (e-mail: ddumitr@afscluj.ro).  eXists a linear hyperplane that performs the partition, i.e

Il. PREREQUISITES



(w,z) —b = 0, wherew € R"™ is the normal to the an accurate classification in the feature space which will
hyperplane and represents hyperplane orientationhand?  correspond to a nonlinear decision function in the initial
denotes hyperplane location. The separating hyperplanesigace (Figure 1c). The procedure therefore leads to the
thus determined by its coefficients, and b. Consequently, creation of a linear separating hyperplane that would, as
the positive data samples lie on the corresponding sideeof thefore, minimize training error, only this time it would
hyperplane and their negative counterparts on the opposjierform in the feature space. Accordingly, a nonlinear map
side. As a stronger statement for linear separability, thé : R — H is considered and data samples from the
positive and negative samples each lie on the correspondimitial space are mapped intd. w is also mapped through
side of a matching supporting hyperplane for the respective into H. As a result, the squared norm that is involved

class (Figure 1a) [2], written in brief as (1): in maximizing the margin of separation is noy®(w)]|?.
Also, the equation of the hyperplane consequently changes
yi((w, ;) —b) > 1,6 =1,2,...,m. 1) to(®(w),®(z;)) —b=0.

i o As in the training algorithm vectors appear only as part
In order to achieve the classification goal, SVMs muskt got products, the issue can be further on simplified by

determine the optimal values for the coefficients of thepsiituting it by what is called a kernel, i.e. a functiortwi
decision hyperplane that separates the training data wsith g o property thaf (z, y) = (®(z), d(y)), wherez,y € R™.

few exceptions as possible. In addition, according to thgy/s request that the kernel is a positive (semi-)definite
principle of Structural Risk Minimization from Statistica nction in order for the standard solving approach to find a
Learning Theory [15], separation must be performed with gq)tion to the optimization problem [12]. Such a kernel is

maximal margin between classes. Summing up, classificatige that satisfies Mercer’s theorem from functional analysi
of linear separable data with a linear hyperplane through,q is therefore. a dot product in some space [3].

SVMs leads to the following optimization problem (2):  the problem with this restriction is twofold [12]. On the
one hand, Mercer’s condition is very difficult to check for
find w andb as to minimize@ @ a 'newly constructed kernel. On the 'other hand, kernels that
subject toy; ((w, z;) — b) > 1,0 = 1,2, .., m. fail the theorem could prove to achieve a better separation

of the training samples.

Training data are not linearly separable in general and Applied SVMs consequently use a couple of classical kernels
is obvious that a linear separating hyperplane is not abthat had been demonstrated to meet Mercer’s condition, i.e.
to build a partition without any errors. However, a lineaithe polynomial classifier of degree K (z,y) = (x,y)? and
separation that minimizes training error can be tried as @e radial basis function classifiei:(z, y) = 222 here

solution to the classification problem. Training errors can ando are also hyperparameters of SVMs.

be traced by observing the deviations of data samples frofq the place of the canonical solving of the optimization
the corresponding supporting hyperplane, i.e. from thalideproplem, a direct search algorithm would however disregard
condition of data separability. Such a deviation corresison yhether the kernel is positive (semi-)definite or not.

to a value of 7, & > 0. These values may indicate |n conclusion, classification of linear nonseparable dath w
different nuanced digressions (Figure 1b), but only;a 3 nonlinear hyperplane through SVMs leads to the same
higher than unity signals a classification error. Minimiaat optimization problem as in (3) which is now considered in

of training error is achieved by adding the indicator Ofhe feature space and with the use of a kernel function (4):
error for every training data sample into the separability

statement and, at the same time, by minimizing the sum
of indicators for errors. Adding up, classification of linea
nonseparable data with a linear hyperplane through SVMs ) € >0

leads to the following optimization problem, whe¢gis a subject toy; (K (w,x;) —b) > 1—¢;,& >0,
hyperparameter representing the penalty for errors (3): i=1,2,..,m.

find w andb as to minimizeX&:®) | oy ¢,

(4)
This generalized formulation is called the primal problem.

find w andb as to minimizel“” ¢ ¢, e :
2 Lim & After the optimization problem is solved, the class of every

c > 0 (3) test sample is calculated, i.e. the side of the decision doun
subject toy; ((w, ;) —b) > 1—§,& >0, ary on which every new data sample lies is determined (5):
t=1,2,....m.

If a linear hyperplane does not provide satisfactory result class(z) = sgn(K(w,z) = b). ©)

for the classification task, then a nonlinear decision serfa It is seldom the case that coefficients can be explicitly dete
can be appointed. The initial space of training data samplesined following the standard solving of the primal problem,
can be nonlinearly mapped into a high enough dimensionas the map® cannot be always specifically determined.
feature space, where a linear decision hyperplane can lrethis situation, the class for a new sample follows from
subsequently built. The separating hyperplane will achiewcomputational artifices.



Accordingly, the aim of every SVM is to determine the
optimal coefficients,w and b, of the decision hyperplane
which best separates the samples with outceni®m the
samples with outcome, such that (8):

N @

supperting hyperplane
\_\- ‘@_ @
E ®

B \ﬂeszlsiunh |:|:=;r|:|la?:a0 L] ® L. K(wij wij) m ij
i .\ minimize f +CY &7, B
subject toy, (K (w'l,z0) =b) > 1=, o
(b) & >0

l:17m7i7j: 17k7i#j'

Once the coefficients of th@kg;l) SVMs are found, aoting
method is used to determine the class for a test sample
For every SVM, the class of each samplés computed by
following the sign of the corresponding decision function
applied tox. Subsequently, if the sign saysis in classi,

Fig. 1. (a) Decision hyperplane (continuous line) that safes between the vote for the-th class is incremented by one; conversely,
circles (positive) and squares (negative) and supportjmgiplanes (dotted the vote for clasgis increased by unity. Finally is taken to
lines). (b) Position of data and corresponding indicatorsefrors - correct  pa|ong to the class with the largest vote. In case two classes
placement.¢; = 3 (anel 1) margin positiont; < 1 (abel 2) and have identical number of votes, the one with the smaller
classification errorg; > 1 (label 3). (c) Initial data space (left), nonlinear )

map into the higher dimension where the objects are lineaparsble/the index is selected.

linear separation (right), and corresponding nonlineafase (bottom). 3) Decision Directed Acyclic GraphTraining in the deci-
sion directed acyclic graph (DDAG) technique [14] happens
in an identical manner to that of 1al.

i i - Once the coefficients of thé(’gél) SVMs are evolved, the
Multi-class SVMs build several 2-class classifiers thatasepfollowing graph system is used to determine the class for a
rately solve the matching tasks. Resulting decision fonsti ¢ samplex (Figure 2). Each node of the graph has a list of

are then considered as a whole and the class for each samlesqes attached and considers the first and last elements of
in the test set is decided by different systems, i.e. on@aga e |ist, The list that corresponds to the root node contaiins

all, one-against-one or decision directed acyclic graph. ;. casses. When we evaluate a test instanage descend
1) One-against-all:The one-against-all (1aa) technique [10kom node to node, i.e. we eliminate one class from each
builds % classifiers. Everyi*® SVM considers all training corresponding list, until the leaves are reached.

sampl_es labelled with as positive and all the remaining SThe algorithm starts at the root node which considers the
negative. _ " _ _first and last classes. At each nodeys j, we refer to the
Consequently, the aim of every” SVM is to determine g\ that was trained on data from classemd . The class
the optimal coefficientsy andb, of the decision hyperplane ¢, is computed by following the sign of the corresponding
V:]h'ChhbeSt seplarat.es r:he sfalfnples with %utﬁonh@rp all decision function applied to. Subsequently, if the sign says
the other samples in the training set, such that (6): xisin clasg, the node is exited via the right edge; conversely,
R (i) mo e we exit through the left edge. We thus eliminate the wrong

mlnfm|ze 2 ,+ CZj:l 37 ) class from the list and proceed via the corresponding edge
subject toy, (K (w',z;) —b) > 1 -], (6) totestthe firstand last classes of the new list and node. The
§=>0 class is given by the leaf that eventually reaches.

j=T,m,i=1,Fk.

B. Multi-class Support Vector Machines

Once the coefficientsy’ and b* of all k hyperplanes are
determined, the following decision system to label new test
data is employed. The class for a test sampis given by

the category that has the maximum value for the learning
function, as in (7):

class(z) = argmaa;i:1}27,,,,k(K(wi, x) — bi). @)

2) One-against-one:The one-against-one (lal) technique
[10] builds @ SVMs. Everyit* machine is trained on
data from every two classeisandj, where samples labelled Fig. 2.
with i are considered positive while those in clasare taken

as negative.

DDAG for labelling a test sample in 3-class problems



C. The Canonical Solving of the Primal Problem IV. A NAIVE REPRESENTATION

Classical SVMs approach the optimization problem that ia. Research question
reached through a dualization method utilizing Lagrang
multipliers [8]. Nevertheless, the mathematics of the tec
nigue can be found to be very difficult both to grasp an
apply. As a consequence, a new approach that would simpli
(and improve) the solving of the optimization problem woul

ow do we refer errors (slack variables) in the optimization
groblem? Evolve them?

. Preexperimental Planning

be desirable. First experiments have been conducted on four data sets (wit
no missing values) concerning real-world problems coming
[1l. EVOLUTIONARY SUPPORTVECTORMACHINES from the UCI Repository of Machine Learning Databases

In the following, we develop a new straightforward hy_i._e: diabetes mellitus Qiagnosis_, spam detection, .iris').gec
bridization of SVMs and EAs, put it into context with othernition and soybean disease diagnosis. The motivation for

existing combinations of these two paradigms, and finall{f’® choice of test cases was manifold. Diabetes and spam
verify it by targeted experimentation. are two-class problems, while soybean and iris are multi-

class. Differentiating, on the one hand, diabetes diagnosi
A. Main Question and Aim is a better-known benchmark, but spam filtering is an issue

Can we provide an evolutionary solution to the primar)P]c curfrentt majordconcerr; morrlgor:/er, lt(he Iatk:er hzgﬁa lot
optimization problem? more features and samples, which makes a huge difference

We put forward a new hybridized approach where separati R classification as well as f or optimization. Qn the .o.ther
of positive and negative samples proceeds as in stand nd, while soybean has a high number of attributes, iris has

SVMs, while the optimal values for the coefficients of theOnly four, but a larger number of samples. For all reasons

separating hyperplanew(and b) are directly determined mentlpned above, _the selgctlo_n of test_ problems certainly
by an EA. Therefore, the coefficients of the separatin ontains all the variety of situations that is necessanther

hyperplane, i.ew andb, are encoded in the representation bjective validation of the new approach of ESVMs. Brief

of the EA and their evolution is performed with respect tdnformation on the classification tasks is given in Table I.
the objective function and the constraints in the generahfo C. Task
of the optimization problem (4) within SVMs. Although the ~°
suggested representation appears to be straightfornetet; d We want to evaluate whether the suggested hybrid ESVM
mining several other algorithm details (operators, patars With evolved errors produces competitive classifiers if eom
is not; these are to be explored. In other words, we targggred to standard approaches (results for these are given in
at attaining a suitable EA for solving the primal problem of6) and how appropriate parameters will be chosen.
finding the separation hyperplane. )
D. Algorithm Setup
B. Evolutionary Approaches to Support Vector Machines 1) Representation:An individual encodes the coefficients

Note that this is not the first attempt to hybridize SVMsof the separating hyperplane, and b. Since indicators for
and EAs. Existing alternatives are numerous and recent, efrors of classification¢;, 7+ = 1,2,...,m, appear in the
which some are presented further on. Their combination ependitions for hyperplane optimality, ESVMs may handle
visaged four different directions: model and feature s@ac them through inclusion in the structure of an individual, as
kernel evolution and evolutionary detection of the Lageangwell (9):
multipliers. Model selection concerns adjustment of hyper
parameters (free parameters) within SVMs, i.e. the penalty ¢ = (Wi, .y W, b, 1, ooy &) (9)
for errors and parameters of the kernel which, in standard

variants, is performed through grid search or gradientelgsc After termination of the algorithm, the approximately opél
methods. Evolution of hyperparameters can be achievedlues for the coefficients of the decision hyperplane are
through evolution strategies [7]. When dealing with higlobtained.

dimensional classification problems, feature selectigangs 2) Initial population: Individuals are randomly generated
the choice of the most relevant features as input for a SVMuch thatw; € [-1,1],i = 1,2,...,n, b € [-1,1] and
The optimal subset of features can be evolved using genetice [0,1],7 = 1,2, ...,m.

algorithms [6] and genetic programming [5]. Evolution of3) Fitness assignmentThe fitness function derives from
kernel functions to model training data is performed byhe objective function of the optimization problem and has
means of genetic programming [9]. Finally, the Lagrangeéo be minimized. Constraints are handled by penalizing the
multipliers involved in the expression of the dual problemnfeasible individuals through appointirtg: R — R which

can be evolved by means of evolution strategies and partigigturns the value of the argument, if negative, while otligew
swarm optimization [11]. To the best of our knowledgep. The expression of the function is thus as follows (10):
evolution of the coefficients of the decision function withi

SVMs has not been accomplished yet. 1Available at http://www.ics.uci.edw/mlearn/MLRepository.html



« Crossover probability - 0.01/1
lis o Mutation probability - 0.01/1
Fw,b,€) = K(w,w) + 02& o Error mutation probability - 0.01/1
m o Mutation strength - 0.001/5
2
+ D i (K (w,2:) =) — 14 &)] (10) « Error mutation strength - 0.001/5
i=1
4) Search and variation operatorgOperators were chosen
experimentally. Tournament selection, intermediate swosr
and mutation with normal perturbation are applied. Mutatio

Since the three multi-class techniques behave similarly in
all our manual multi-class experiments (Table IIl), we run
automatic tuning only for the most widely used case of 1al.
of errors is constrained, preventing tiigs from taking Param(_ater settings of the b_est pgrameter_configurations_as
' determined by SPO are depicted in the naive representation

negative values. .
5) Stop condition: The algorithm stops after a predefinedSeCtlon of Table Il.

number of generations. As the coefficients of the separating TABLE |I
hyperplane are found, the class for a new, unseen test data SPOTUNED PARAMETER VALUES

sample can be determined directly following (5). Diabetes Iris  Soybean Spam  Spam

Naive representation +Chunks
E. Problem Setup Population size 198 46 162 154 90
For each data set, 30 runs of the ESVM were conducte Generations . 296 220 293 287 286
; ; Crossover prob. 0.87 0.77 0.04 0.84 0.11
0,
in every run approx. 70% randqm cases were gppomt( T 021 057 039 020 008
to the training set and the remaining 30% went into tes" ¢ mutation prob. 020 002  0.09 0.07 0.80

Experiments showed the necessity for data normalization Mutation strength 4.11 4.04  0.16 332 0.98

; - e & mutation strength ~ 0.02 3.11 3.80 0.01 0.01
diabetes, spam and iris. No further modification of the dat~|_|yperp|(,jIne EHTEEEEaT

was carried out and all data was used in the experiments. population size 190 17 86 11
SVM and EA parameter values are given in the naivi Generations 238 190 118 254
Crossover prob. 0.13 0.99 0.26 0.06

_repre_sentatlon section of Table _I. As training in DDAG is g ~v it 058 089 097 0.03
identical to that of the 1al multi-class approach, the sam mutation strength 0.15 3.97 0.08 258
parameter values are employed in either situation and v Hyperplane representation with Crowding

; Population size 92 189 166 17
therefore refer only thellatte.r in the table.. o Generations 258 52 201 52
The error penalty was invariably set 10 Since this is the  crossover prob. 0.64 0.09 0.77 0.42
first ESVM approach, we have used only the traditione Mutation prob. 071 071 092 0.02

TABLE | F. Results

DATA SET PROPERTIES AND MANUALLY TUNED PARAMETER VALUES Test accuracies obtained by manual tuning are presented in
Diabetes Iris 1al/laa Soybean Spam the naive representation section of Table Ill. Differetetih

Data (spam/non spam for spam filtering and ill/healthy for dia-

Hﬂmgg: 8{ ;&m}%‘;ss 738 120 gg 4291 betes) accuracies are also depicted. The naive représentat

Number of classes 2 2 4 2 section of Table IV holds performances and standard devia-

Naive rep. tions of the best configuration of an initial latin hypersmua

poro p= oc=1 p=1 p=1 ; :

Population size 100 100/100 100 100 design (LHD) sample of size x 100.

Generations 250 100/100 100 250 .

Crossover prob. 0.40 0.30/0.70 030  0.30 G. Observations

Mutation prob. 0.40 0.50/0.50 0.50 0.50 P

¢ mutation prob. 050 050 050 050 SPO indicates that for .:?\I.I cases, except ]‘or tht_a soybean

Mutation strength 0.10 0.10/4 0.10 0.10 data, crossover probabilities were dramatically incrdase

gH mutatllon strength ~ 0.10 0.10/0.10 0.10 0.10 while often reducing mutation probabilities, especialty f
yperplane rep. . . e

Population size 100 100/100 100 150 errors. quever, Fhe relative quality of _SPOS _flp_al best

Generations 250 100/100 100 300 configurations against the ones found during the initial LHD

ﬁrOSS_OVEF prgb- 8-3 8-28;8-;8 8-28 8-28 phase increases with the problem size. It must be stated that
utation prob. o o o o o . . . .

Mutation strength 01 /4 01 35 in most cases, results achieved with manually determined

Qarameter values are only improved by SPO — if at all — by
|£lcreasing effort (population size or number of generatjon
&problem appears for large data sets, i.e. spam filtering,
where the amount of runtime needed for training is very
large. This stems from the large genomes employed, as
« Population size - 10/200 indicators for errors of every sample in the training set are
o Number of generations - 50/300 included in the representation. Consequently, we tackte th

In order to validate the manually found EA parameter value
the parameter tuning method SPO [1] was applied with
budget of 1000 optimization runs. Parameter bounds we
set as follows:



TABLE Il TABLE IV

ACCURACIES OF DIFFERENT MANUALLY TUNEDESVM VERSIONS ON ACCURACIES OF DIFFERENTSPO ESVMVERSIONS ON THE
THE CONSIDERED TEST SETSIN PERCENT CONSIDERED TEST SETSIN PERCENT.

Average  Worst Best StD LHD pes;  StD SPO StD
Naive representation Naive representation
Diabetes (overall) 76.30 7135 80.73 224 Diabetes (overall) 75.82 3.27 7731 245
Diabetes (ill) 50.81 39.19 60.27 4.53 Diabetes (ill) 49.35 7.47 52.64 5.32
Diabetes (healthy) 90.54 84.80 96.00 2.71 Diabetes (healthy) 89.60 236 90.21 2.64
Iris 1aa (overall) 95.85 84.44 100.0 3.72 Iris (overall) 95.11 295 95.11 2.95
Iris 1al (overall) 95.18 91.11 100.0 2.48 Soybean (overall) 99.61 1.47 99.80 1.06
Iris DDAG (overall) 94.96 88.89 100.0 2.79 Spam (overall) 89.27 1.37 90.59 0.98
Soybean laa (overall) 99.22 88.24 100 2.55 Spam (spam) 80.63 351 8376 221
Soybean 1al (overall) 99.02 94.11 100.0 2.23 Spam (non spam) 94.82 0.94 95.06 0.62
Soybean DDAG (overall) 98.83 70.58 100 5.44 ESVMs with Chunking
Spam (overall) 87.74 85.74 89.83 1.06 Spam (overall) 87.52 131 8837 1.15
Spam (spam) 77.48 70.31 8250 2.77 Spam (spam) 86.26 2.66 86.35 2.70
Spam (non spam) 94.41 92.62 96.30 0.89 Spam (non spam) 88.33 248 89.68 2.06
ESVMs with Chunking Hyperplane representation
Spam (overall) 87.30 83.13 90.00 1.77 Diabetes (overall) 72.50 264 7339 282
Spam (spam) 83.47 75.54 86.81 2.78 Diabetes(ill) 35.50 10.14 43.20 6.53
Spam (non spam) 89.78 84.22 9252 211 Diabetes (healthy) 92.11 415 89.94 3.79
Hyperplane representation Iris (overall) 95.41 236 9541 243
Diabetes (overall) 74.60 70.31 8281 2.98 Soybean (overall) 99.61 1.47 99.02 4.32
Diabetes(ill) 45.38 26.87 5857 6.75 Spam (overall) 89.20 1.16 89.51 1.17
Diabetes (healthy) 89.99 86.89 96.75 2.66 Spam (spam) 79.19 3.13 82.02 3.85
Iris 1aa (overall) 93.33 86.67 100 3.83 Spam (non spam) 95.64 0.90 94.44 142
Iris 1al (overall) 95.11 73.33 100 4.83 Hyperplane representation with Crowding
Iris DDAG (overall) 95.11 88.89 100 3.22 Diabetes (overall) 74.34 230 7444 298
Soybean laa (overall) 99.22 88.24 100 2.98 Diabetes(ill) 43.68 6.64 4532 7.04
Soybean lal (overall) 99.60 94.12 100 1.49 Diabetes (healthy) 90.13 356 90.17 3.06
Soybean DDAG (overall) 99.60 94.12 100 1.49 Iris (overall) 95.63 236 9437 2.80
Spam (overall) 86.19 82 100 3.12 Soybean (overall) 99.61 211 100 0.00
Spam (spam) 70.54 62.50 77.80 4.55 Spam (overall) 88.72 1.49 89.45 0.97
Spam (non spam) 95.39 92.66 97.44 1.09 Spam (spam) 80.14 548 80.79 351

Spam (non spam) 94.25 1.66 95.07 1.20

problem with an adaptation of a chunking procedure [13]

inside ESVMs. H. Discussion

A chunk of N training samples is repeatedly considered.

Within each chunking cycle, the EA (with a population ofObtained results for the classification tasks we have under-
half random individuals and half previously best evolvedaken to solve have proven to be competitive as compared to
individuals) runs and determines the coefficients of the hyaccuracies of the canonical SVMs on the same test problems
perplane. All training samples are tested against the mdbdai (See§6). Note that discrete result values lead to high standard
decision function and a new chunk is constructed basefeviations, limiting the use of hypothesis tests. Only for
on N/2 randomly (equally distributed) incorrectly placedhe largest problem (spam), standard deviation intervéls o
samples and half randomly samples from the current chun&lgoritm variants do not always overlap. For SPO, a similar
The chunking cycle stops when a predefined number dfardness occurs: Distinguishing the performance of differ
iterations with no improvement in training accuracy passesonfigurations is difficult even after computing a large num-
ESVM with chunking was applied to the spam data seber of repeats. Consequently, the 'parameter optimization
Manually tuned parameters had the same values as befapetential’ justifies employing a tuning method only for
except the number of generations for each run of the Ethe larger problems, diabetes and spam. Especially for the
which is now set to 100. The chunk size, g was chosen small problems, well performing parameter configurations
as 200 and the number of iterations with no improvemerdre seemingly easy to find.

(repeats of the chunking cycle) was designated to be f.must be stated that for the standard kernels, we cannot
Values derived from the SPO tuning are presented in thexpect ESVMs to be better than standard SVMs. However,
ESVMs chunking section of Table II. in future work, we can profit from the flexibility of the EAs
Results of manual and SPO tuning are shown in the ESVMsgs optimization tools, by being able to additionally evolve
chunking sections of Tables Ill and IV. The novel algorithmkernels that achieve a better separation, regardless dhahe

of ESVM with chunking reached its goal, running 8 time&hey are positive (semi-)definite or not.

faster than the previous one, at a cost of a small loss in

accuracy.

Besides solving the EA genome length problem, proposed V. HYPERPLANEREPRESENTATION

mechanism additionally reduces the large number of compu-

tations that derives from the reference to the many trainifglthough already a viable alternative approach, the ESVMs
samples in the expression of the fithess function. may still be improved concerning simplicity.



A. Research question of the computed deviations in the cases of diabetes, spam

The current optimization problem requires to treat thererrnd iriS, while, on the contrary, soybean requires without.
values, which in the present EA variant are included in th&he different behaviour can be explained by the fact that
representation. These can be expected to severely coeplich® first three data sets have a larger number of training
the problem by increasing the genome length (variable gourii@MPples. The sum of the deviations is subsequently added to
by the number of training samples. We propose to tacki@e expression of the fitness function. As a consequence, in
this issue by a reconsideration of the elements of the EA #3€ early generations, when the generated coefficientst¢ead
follows. Can we represent only the hyperplane coefficienfigh deviations, their sum, considered from 1 to the number

and compute the errors instead of evolving them? of training samples, takes over the whole fitness value aad th
evolutionary process is driven off the course to the optimum

B. Preexperimental Planning The discussed diverse choices of actions concerning the nor

For reasons of comparison between the two representatioﬁgglization of data and errors and the kernel selection bring

we keep the same data sets for application. experimental evidence for the crucial importance of proper
data preparation parameters prior to the actual applicatio

C. Task SVM learning.

It will be investigated if a representation without erroenc In addition to the different representation, we also test a

perform as well as the naive representatior4f crowding [4] variant of the EA. Here, test for replacement is

) done against the most similar parent of the current popula-
D. Algorithm Setup tion. Crowding based EAs are known to provide good global
Since ESVMs directly and interactively provide hyperplansearch capabilities. This is of limited value for the kernel
coefficients at all times, we propose to drop the indicatorypes employed in this study, but it is important for non-
for errors from the EA representation and, instead, compugtandard kernels. For now however, we want to investigate
their values in a simple geometrical fashion. Consequentiwhether the employment of a crowding-based EA on the
this time, individual representation contains onlyandb, as  hyperplane representation would worsen the performance of
in (11): the algorithm or not. All the other elements of the EA remain
the same.
¢ = (wr,...,wn, b). (11) The EA proceeds with the values for parameters from the
. . . . hyperplane representation section in Table | and, in theoénd
Additionally, a!l indicatorsg;, i = 1’2’.'"’m W.'" have to . the run, hyperplane coefficients are again directly acduire
be computed in _order to be referred in the fithess functio esulting parameter values for SPO on the hyperplane and
(20), which remains as before. The procedure follows [2] a e hyperplane crowding variant are shown in the apprapriat

takes place as follows. . ST
L S . sections of Table Il. Note that only automated tuning is
The current individual (which is the current separating hy- y g

f d for the h I ding ESVM.
perplane) is considered and supporting hyperplanes are é)e_r ormed for tne hyperplane crowding
termined through the mechanism below. One first computes proplem Setup

12): .
(12) The problem related settings are kept the same as for the
my = min{ K (w, z;)|y; = +1} 12 naive representation.
my = maz{K(w, z;)|y; = —1} F. Results
Then, we set (13): Manual and SPO tuning based results are depicted in the
hyperplane and hyperplane with crowding representation
p = |mi —mo sections of Tables Il and IV. The given SPO performance
w' = %u) (13) values are generated by (30) validation runs for the best
by — %(m1 + M) found configurations after initial design and after finighin

SPO, respectively.
Finally, for every training sample:;, deviation to the cor-

responding supporting hyperplane, following its class, i§€. Observations

calculated, as in (14): Automated tuning revealed that for the crowding variant,

some parameter interactions dominate the best performing
K(w, x;)—b —1,y; = +1, configurations (not depicted due to space limitations): For
deviation(z;) = { K(w',2;) — ¥ + 1,4y, — —1,  (14) larger population size, smaller mutation step sizes argbtar
crossover probability are better suited, and with greatar r
lengths, performance increases with larger mutation step
If sign of deviation equals class, correspondfyg= 0; else, sizes. For the original hyperplane variant, no such clear
the (normalized) absolute deviation is returned as the@di interactions can be attained. However, in both cases, many
tor for error. Experiments showed the need for normalizatiogood configurations are detected.

i=1,2,....,m.



H. Discussion time, performance remains comparable to that of canonical

It is interesting to remark that the hyperplane represent§-VMS- Two possible represer_ltations (one simpler, andle litt
tion is not that much faster. Although the genome lengtf@Ster, and one more complicated, but also more accurate)
is drastically reduced, the runtime consequently gained {8" the EA that determines the coefficients are imagined.
however partly lost again when computing the values fdf? order to enhance suitability of the new technique for
the slack variables. This draws from the extra number of d@y classification issue, a novel chunking mechanism for
products that must be calculated due to (12) and (14). As r§Rducing size in large problems is also proposed; obtaieed r
length itself is a parameter in our studies, we rather obtaffH!ts support its employment. Finally, the use of a crowding
an upper bound of the necessary effort. Closer investigati®@sed EA is mspectgd in relation to .the preservatlon.of the
may lead to a better understanding of suitable run lengtherformance. Crowding would be highly necessary in the
e.g. in terms of fitness evaluations. However, the hypegplafmmediate coevolution of non-standard kernels. '
representation has its advantages. Besides featuringesmaf*though already competitive, the novel ESVMs for classi-
genomes, less parameters are needed, because the sfggtion can still be enhanced. The way of treating the two
variables are not evolved and thus 2 parameters vanish. Criteria (i.e. reduce errors and obtain a flat function) tigio
The best configurations for hyperplane representation wiffifoPosed fitness evaluation may not be the best choice;
and without crowding perform similarly and not significantl instéad, we could try a multicriterial approach. Additibya
worse as compared to the results recorded for the naiyé® Will achieve the simultaneous evolution of the hyperplan
representation, except for the diabetes test case, wheye t}gnd of non-standard kernels. This approach is highly difficu
are weaker. Parameter tuning beyond a large initial desigly Mméans of SVM standard methods for hyperplane deter-
appears to be infeasible, as performance is not significanfitination, whereas it is straightforward for ESVMs.
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