
Concerning the Potential of Evolutionary Support Vector Machines

Ruxandra Stoean Mike Preuss Catalin Stoean D. Dumitrescu

Abstract— Within the present paper, we put forward a novel
hybridization between support vector machines and evolution-
ary algorithms. Evolutionary support vector machines consider
the classification task as in support vector machines but use
an evolutionary algorithm to solve the optimization problem of
determining the decision function. They can explicitly acquire
the coefficients of the separating hyperplane, which is often
not possible within the classical technique. More important,
evolutionary support vector machines obtain the coefficients
directly from the evolutionary algorithm and can refer them
at any point during a run. In addition, they do not require
properties of positive (semi-)definition for kernels within non-
linear learning. The concept can be furthermore extended to
handle large amounts of data, a problem frequently occurring
e.g. in spam mail detection, one of our test cases. An adapted
chunking technique is therefore alternatively used. In addition
to two different representations, a crowding variant of the evo-
lutionary algorithm is tested in order to investigate whether the
performance of the algorithm is maintained; its global search
capabilities would be important for the prospected coevolution
of non-standard kernels. Evolutionary support vector machines
are validated on four real-world classification tasks; obtained
results show the promise of this new approach.

I. I NTRODUCTION

Support vector machines(SVMs) represent a state-of-the-
art learning technique that has managed to reach competitive
results in different types of classification and regressiontasks.
Their engine, however, is quite complicated, as far as proper
understanding of the calculus and correct implementation of
the mechanisms are concerned. This paper presents a novel
approach,evolutionary support vector machines(ESVMs),
which offers a simpler alternative to the standard technique
inside SVMs, delivered byevolutionary algorithms(EAs).
This is not the first attempt to hybridize SVMs and EAs.
Existing alternatives are discussed in§III-B. Nevertheless,
we claim that our approach is significantly different.
ESVMs as presented here are constructed solely based on
SVMs applied for classification. Two kinds of possible
representations are considered. Validation is achieved by
considering four real-world classification tasks. Besidescom-
paring results, the potential of the utilized, simplistic EA

R. Stoean is with the Department of Computer Science, Faculty of
Mathematics and Computer Science, University of Craiova, Str. Al. I. Cuza,
No. 13, 200585, Craiova, Romania (e-mail: ruxandra.stoean@inf.ucv.ro).

M. Preuss is with the Chair of Algorithm Engineering, Department of
Computer Science, University of Dortmund, Otto-Hahn-Str, No. 14, 44221,
Dortmund, Germany, (e-mail: mike.preuss@uni-dortmund.de).

C. Stoean is with the the Department of Computer Science, Faculty of
Mathematics and Computer Science, University of Craiova, Str. Al. I. Cuza,
No. 13, 200585, Craiova, Romania (e-mail: catalin.stoean@inf.ucv.ro).

D. Dumitrescu is with the Department of Computer Science, Faculty of
Mathematics and Computer Science, Babes-Bolyai University,Str. M. Ko-
galniceanu, No. 1, 400084, Cluj, Romania (e-mail: ddumitr@cs.ubbcluj.ro).

through parametrization is investigated. To enable handling
large data sets, the first approach is enhanced by use of a
chunking technique, resulting in a more versatile algorithm.
The behaviour of a crowding-based EA on preserving the
performance of the algorithm is examined with the purpose
of the its future employment for the coevolution of non-
standard kernels. Obtained results prove suitability and com-
petitiveness of the new approach, so ESVMs qualify as a
viable simpler alternative to standard SVMs in this context.
However, there is still room for improvement.
The paper is organized as follows.§2 outlines the concepts
of classical SVMs.§3 describes the existing evolutionary ap-
proaches aimed at enhancing the performance of the classical
architecture and explains the concept of the new hybridiza-
tion. §4 puts forward a first considered representation of an
EA inside proposed ESVMs. Validation is achieved on real
world examples. An alternative version of the ESVM which
is endowed with a new mechanism for reducing problem
size in case of large data sets is also presented.§5 brings a
second, simpler, representation of the proposed EA, which
also speeds up runtime; the crowding variant is subsequently
illustrated.§6 exhibits the comparison with results of canon-
ical SVMs implemented in R on the same data sets and in
equivalent conditions. The last section comprises conclusions
and outlines ideas for further improvement.

II. PREREQUISITES

Given {ft∈T |, ft : Rn → {1, 2, ..., k}}, a set of functions,
and{(xi, yi)}i=1,2,...,m, a training set where everyxi ∈ Rn

represents a data sample and eachyi corresponds to a
class, a classification task consists in learning the optimal
function ft∗ that minimizes the discrepancy between the
given classes of data samples and the actual classes produced
by the learning machine. Finally, accuracy of the machine
is computed on previously unseen test data samples. In
the classical architecture, SVMs reducek-class classification
problems to many binary classification tasks that are sepa-
rately considered and solved. Different systems then decide
the class for data samples in the test set. SVMs regard
classification from a geometrical point of view, i.e. they
assume the existence of a separating surface between two
classes labelled as -1 and 1, respectively. The aim of SVMs
then becomes the discovery of this decision hyperplane, i.e.
the determination of its coefficients.

A. Support Vector Machines

If training data is known to be linearly separable, then there
exists a linear hyperplane that performs the partition, i.e.

〈w, x〉 − b = 0, where w ∈ Rn is the normal to the
hyperplane and represents hyperplane orientation andb ∈ R

denotes hyperplane location. The separating hyperplane is
thus determined by its coefficients,w and b. Consequently,
the positive data samples lie on the corresponding side of the
hyperplane and their negative counterparts on the opposite
side. As a stronger statement for linear separability, the
positive and negative samples each lie on the corresponding
side of a matching supporting hyperplane for the respective
class (Figure 1a) [2], written in brief as (1):

yi(〈w, xi〉 − b) > 1, i = 1, 2, ...,m. (1)

In order to achieve the classification goal, SVMs must
determine the optimal values for the coefficients of the
decision hyperplane that separates the training data with as
few exceptions as possible. In addition, according to the
principle of Structural Risk Minimization from Statistical
Learning Theory [15], separation must be performed with a
maximal margin between classes. Summing up, classification
of linear separable data with a linear hyperplane through
SVMs leads to the following optimization problem (2):

{

find w andb as to minimize‖w‖2

2

subject toyi(〈w, xi〉 − b) ≥ 1, i = 1, 2, ...,m.
(2)

Training data are not linearly separable in general and it
is obvious that a linear separating hyperplane is not able
to build a partition without any errors. However, a linear
separation that minimizes training error can be tried as a
solution to the classification problem. Training errors can
be traced by observing the deviations of data samples from
the corresponding supporting hyperplane, i.e. from the ideal
condition of data separability. Such a deviation corresponds
to a value of ±ξi

‖w‖ , ξi ≥ 0. These values may indicate
different nuanced digressions (Figure 1b), but only aξi

higher than unity signals a classification error. Minimization
of training error is achieved by adding the indicator of
error for every training data sample into the separability
statement and, at the same time, by minimizing the sum
of indicators for errors. Adding up, classification of linear
nonseparable data with a linear hyperplane through SVMs
leads to the following optimization problem, whereC is a
hyperparameter representing the penalty for errors (3):



















find w andb as to minimize‖w‖2

2 + C
∑m

i=1 ξi,

C > 0

subject toyi(〈w, xi〉 − b) ≥ 1 − ξi, ξi ≥ 0,

i = 1, 2, ...,m.

(3)

If a linear hyperplane does not provide satisfactory results
for the classification task, then a nonlinear decision surface
can be appointed. The initial space of training data samples
can be nonlinearly mapped into a high enough dimensional
feature space, where a linear decision hyperplane can be
subsequently built. The separating hyperplane will achieve

an accurate classification in the feature space which will
correspond to a nonlinear decision function in the initial
space (Figure 1c). The procedure therefore leads to the
creation of a linear separating hyperplane that would, as
before, minimize training error, only this time it would
perform in the feature space. Accordingly, a nonlinear map
Φ : Rn → H is considered and data samples from the
initial space are mapped intoH. w is also mapped through
Φ into H. As a result, the squared norm that is involved
in maximizing the margin of separation is now‖Φ(w)‖2.
Also, the equation of the hyperplane consequently changes
to 〈Φ(w),Φ(xi)〉 − b = 0.
As in the training algorithm vectors appear only as part
of dot products, the issue can be further on simplified by
substituting it by what is called a kernel, i.e. a function with
the property thatK(x, y) = 〈Φ(x),Φ(y)〉, wherex, y ∈ Rn.
SVMs request that the kernel is a positive (semi-)definite
function in order for the standard solving approach to find a
solution to the optimization problem [12]. Such a kernel is
one that satisfies Mercer’s theorem from functional analysis
and is, therefore, a dot product in some space [3].
The problem with this restriction is twofold [12]. On the
one hand, Mercer’s condition is very difficult to check for
a newly constructed kernel. On the other hand, kernels that
fail the theorem could prove to achieve a better separation
of the training samples.
Applied SVMs consequently use a couple of classical kernels
that had been demonstrated to meet Mercer’s condition, i.e.
the polynomial classifier of degreep: K(x, y) = 〈x, y〉p and

the radial basis function classifier:K(x, y) = e
‖x−y‖2

σ , where
p andσ are also hyperparameters of SVMs.
In the place of the canonical solving of the optimization
problem, a direct search algorithm would however disregard
whether the kernel is positive (semi-)definite or not.
In conclusion, classification of linear nonseparable data with
a nonlinear hyperplane through SVMs leads to the same
optimization problem as in (3) which is now considered in
the feature space and with the use of a kernel function (4):



















find w andb as to minimizeK(w,w)
2 + C

∑m

i=1 ξi,

C > 0

subject toyi(K(w, xi) − b) ≥ 1 − ξi, ξi ≥ 0,

i = 1, 2, ...,m.
(4)

This generalized formulation is called the primal problem.
After the optimization problem is solved, the class of every
test sample is calculated, i.e. the side of the decision bound-
ary on which every new data sample lies is determined (5):

class(x) = sgn(K(w, x) − b). (5)

It is seldom the case that coefficients can be explicitly deter-
mined following the standard solving of the primal problem,
as the mapΦ cannot be always specifically determined.
In this situation, the class for a new sample follows from
computational artifices.

(a) (b)

(c)

Fig. 1. (a) Decision hyperplane (continuous line) that separates between
circles (positive) and squares (negative) and supporting hyperplanes (dotted
lines). (b) Position of data and corresponding indicators for errors - correct
placement,ξi = 0 (label 1) margin position,ξi < 1 (label 2) and
classification error,ξi > 1 (label 3). (c) Initial data space (left), nonlinear
map into the higher dimension where the objects are linearly separable/the
linear separation (right), and corresponding nonlinear surface (bottom).

B. Multi-class Support Vector Machines

Multi-class SVMs build several 2-class classifiers that sepa-
rately solve the matching tasks. Resulting decision functions
are then considered as a whole and the class for each sample
in the test set is decided by different systems, i.e. one-against-
all, one-against-one or decision directed acyclic graph.
1) One-against-all:The one-against-all (1aa) technique [10]
builds k classifiers. Everyith SVM considers all training
samples labelled withi as positive and all the remaining as
negative.
Consequently, the aim of everyith SVM is to determine
the optimal coefficients,w andb, of the decision hyperplane
which best separates the samples with outcomei from all
the other samples in the training set, such that (6):



















minimize K(wi,wi)
2 + C

∑m

j=1 ξi
j ,

subject toyj(K(wi, xj) − b) ≥ 1 − ξi
j ,

ξi
j ≥ 0

j = 1,m, i = 1, k.

(6)

Once the coefficientswi and bi of all k hyperplanes are
determined, the following decision system to label new test
data is employed. The class for a test samplex is given by
the category that has the maximum value for the learning
function, as in (7):

class(x) = argmaxi=1,2,...,k(K(wi, x) − bi). (7)

2) One-against-one:The one-against-one (1a1) technique
[10] builds k(k−1)

2 SVMs. Everyith machine is trained on
data from every two classes,i and j, where samples labelled
with i are considered positive while those in classj are taken
as negative.

Accordingly, the aim of every SVM is to determine the
optimal coefficients,w and b, of the decision hyperplane
which best separates the samples with outcomei from the
samples with outcomej, such that (8):



















minimize K(wij ,wij)
2 + C

∑m

l=1 ξ
ij
l ,

subject toyl(K(wij , xl) − b) ≥ 1 − ξ
ij
l ,

ξ
ij
l ≥ 0

l = 1,m, i, j = 1, k, i 6= j.

(8)

Once the coefficients of thek(k−1)
2 SVMs are found, avoting

method is used to determine the class for a test samplex.
For every SVM, the class of each samplex is computed by
following the sign of the corresponding decision function
applied tox. Subsequently, if the sign saysx is in classi,
the vote for thei-th class is incremented by one; conversely,
the vote for classj is increased by unity. Finally,x is taken to
belong to the class with the largest vote. In case two classes
have identical number of votes, the one with the smaller
index is selected.
3) Decision Directed Acyclic Graph:Training in the deci-
sion directed acyclic graph (DDAG) technique [14] happens
in an identical manner to that of 1a1.
Once the coefficients of thek(k−1)

2 SVMs are evolved, the
following graph system is used to determine the class for a
test samplex (Figure 2). Each node of the graph has a list of
classes attached and considers the first and last elements of
the list. The list that corresponds to the root node containsall
k classes. When we evaluate a test instancex we descend
from node to node, i.e. we eliminate one class from each
corresponding list, until the leaves are reached.
The algorithm starts at the root node which considers the
first and last classes. At each node,i vs j, we refer to the
SVM that was trained on data from classesi andj. The class
of x is computed by following the sign of the corresponding
decision function applied tox. Subsequently, if the sign says
x is in classi, the node is exited via the right edge; conversely,
we exit through the left edge. We thus eliminate the wrong
class from the list and proceed via the corresponding edge
to test the first and last classes of the new list and node. The
class is given by the leaf thatx eventually reaches.

Fig. 2. DDAG for labelling a test sample in 3-class problems

C. The Canonical Solving of the Primal Problem

Classical SVMs approach the optimization problem that is
reached through a dualization method utilizing Lagrange
multipliers [8]. Nevertheless, the mathematics of the tech-
nique can be found to be very difficult both to grasp and
apply. As a consequence, a new approach that would simplify
(and improve) the solving of the optimization problem would
be desirable.

III. E VOLUTIONARY SUPPORTVECTORMACHINES

In the following, we develop a new straightforward hy-
bridization of SVMs and EAs, put it into context with other
existing combinations of these two paradigms, and finally
verify it by targeted experimentation.

A. Main Question and Aim

Can we provide an evolutionary solution to the primary
optimization problem?
We put forward a new hybridized approach where separation
of positive and negative samples proceeds as in standard
SVMs, while the optimal values for the coefficients of the
separating hyperplane (w and b) are directly determined
by an EA. Therefore, the coefficients of the separating
hyperplane, i.e.w and b, are encoded in the representation
of the EA and their evolution is performed with respect to
the objective function and the constraints in the general form
of the optimization problem (4) within SVMs. Although the
suggested representation appears to be straightforward, deter-
mining several other algorithm details (operators, parameters)
is not; these are to be explored. In other words, we target
at attaining a suitable EA for solving the primal problem of
finding the separation hyperplane.

B. Evolutionary Approaches to Support Vector Machines

Note that this is not the first attempt to hybridize SVMs
and EAs. Existing alternatives are numerous and recent, of
which some are presented further on. Their combination en-
visaged four different directions: model and feature selection,
kernel evolution and evolutionary detection of the Lagrange
multipliers. Model selection concerns adjustment of hyper-
parameters (free parameters) within SVMs, i.e. the penalty
for errors and parameters of the kernel which, in standard
variants, is performed through grid search or gradient descent
methods. Evolution of hyperparameters can be achieved
through evolution strategies [7]. When dealing with high
dimensional classification problems, feature selection regards
the choice of the most relevant features as input for a SVM.
The optimal subset of features can be evolved using genetic
algorithms [6] and genetic programming [5]. Evolution of
kernel functions to model training data is performed by
means of genetic programming [9]. Finally, the Lagrange
multipliers involved in the expression of the dual problem
can be evolved by means of evolution strategies and particle
swarm optimization [11]. To the best of our knowledge,
evolution of the coefficients of the decision function within
SVMs has not been accomplished yet.

IV. A N AIVE REPRESENTATION

A. Research question

How do we refer errors (slack variables) in the optimization
problem? Evolve them?

B. Preexperimental Planning

First experiments have been conducted on four data sets (with
no missing values) concerning real-world problems coming
from the UCI Repository of Machine Learning Databases1,
i.e. diabetes mellitus diagnosis, spam detection, iris recog-
nition and soybean disease diagnosis. The motivation for
the choice of test cases was manifold. Diabetes and spam
are two-class problems, while soybean and iris are multi-
class. Differentiating, on the one hand, diabetes diagnosis
is a better-known benchmark, but spam filtering is an issue
of current major concern; moreover, the latter has a lot
more features and samples, which makes a huge difference
for classification as well as for optimization. On the other
hand, while soybean has a high number of attributes, iris has
only four, but a larger number of samples. For all reasons
mentioned above, the selection of test problems certainly
contains all the variety of situations that is necessary forthe
objective validation of the new approach of ESVMs. Brief
information on the classification tasks is given in Table I.

C. Task

We want to evaluate whether the suggested hybrid ESVM
with evolved errors produces competitive classifiers if com-
pared to standard approaches (results for these are given in
§6) and how appropriate parameters will be chosen.

D. Algorithm Setup

1) Representation:An individual encodes the coefficients
of the separating hyperplane,w and b. Since indicators for
errors of classification,ξi, i = 1, 2, ...,m, appear in the
conditions for hyperplane optimality, ESVMs may handle
them through inclusion in the structure of an individual, as
well (9):

c = (w1, ..., wn, b, ξ1,, ξm). (9)

After termination of the algorithm, the approximately optimal
values for the coefficients of the decision hyperplane are
obtained.
2) Initial population: Individuals are randomly generated
such thatwi ∈ [−1, 1], i = 1, 2, ..., n, b ∈ [−1, 1] and
ξj ∈ [0, 1], j = 1, 2, ...,m.
3) Fitness assignment:The fitness function derives from
the objective function of the optimization problem and has
to be minimized. Constraints are handled by penalizing the
infeasible individuals through appointingt : R → R which
returns the value of the argument, if negative, while otherwise
0. The expression of the function is thus as follows (10):

1Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html

f(w, b, ξ) = K(w,w) + C

m
∑

i=1

ξi

+
m

∑

i=1

[t(yi(K(w, xi) − b) − 1 + ξi)]
2 (10)

4) Search and variation operators:Operators were chosen
experimentally. Tournament selection, intermediate crossover
and mutation with normal perturbation are applied. Mutation
of errors is constrained, preventing theξis from taking
negative values.
5) Stop condition:The algorithm stops after a predefined
number of generations. As the coefficients of the separating
hyperplane are found, the class for a new, unseen test data
sample can be determined directly following (5).

E. Problem Setup

For each data set, 30 runs of the ESVM were conducted;
in every run approx. 70% random cases were appointed
to the training set and the remaining 30% went into test.
Experiments showed the necessity for data normalization in
diabetes, spam and iris. No further modification of the data
was carried out and all data was used in the experiments.
SVM and EA parameter values are given in the naive
representation section of Table I. As training in DDAG is
identical to that of the 1a1 multi-class approach, the same
parameter values are employed in either situation and we
therefore refer only the latter in the table.
The error penalty was invariably set to1. Since this is the
first ESVM approach, we have used only the traditional
polynomial and radial kernels.

TABLE I

DATA SET PROPERTIES AND MANUALLY TUNED PARAMETER VALUES.

Diabetes Iris 1a1/1aa Soybean Spam
Data
Number of samples 768 150 47 4601
Number of attributes 8 4 35 57
Number of classes 2 3 4 2
Naive rep.
p or σ p = 2 σ = 1 p = 1 p = 1

Population size 100 100/100 100 100
Generations 250 100/100 100 250
Crossover prob. 0.40 0.30/0.70 0.30 0.30
Mutation prob. 0.40 0.50/0.50 0.50 0.50
ξ mutation prob. 0.50 0.50 0.50 0.50
Mutation strength 0.10 0.10/4 0.10 0.10
ξ mutation strength 0.10 0.10/0.10 0.10 0.10
Hyperplane rep.
Population size 100 100/100 100 150
Generations 250 100/100 100 300
Crossover prob. 0.4 0.30/0.70 0.30 0.80
Mutation prob. 0.4 0.50/0.50 0.50 0.50
Mutation strength 0.1 4/4 0.1 3.5

In order to validate the manually found EA parameter values,
the parameter tuning method SPO [1] was applied with a
budget of 1000 optimization runs. Parameter bounds were
set as follows:

• Population size - 10/200

• Number of generations - 50/300

• Crossover probability - 0.01/1

• Mutation probability - 0.01/1

• Error mutation probability - 0.01/1

• Mutation strength - 0.001/5

• Error mutation strength - 0.001/5

Since the three multi-class techniques behave similarly in
all our manual multi-class experiments (Table III), we run
automatic tuning only for the most widely used case of 1a1.
Parameter settings of the best parameter configurations as
determined by SPO are depicted in the naive representation
section of Table II.

TABLE II

SPOTUNED PARAMETER VALUES

Diabetes Iris Soybean Spam Spam
Naive representation +Chunks
Population size 198 46 162 154 90
Generations 296 220 293 287 286
Crossover prob. 0.87 0.77 0.04 0.84 0.11
Mutation prob. 0.21 0.57 0.39 0.20 0.08
ξ mutation prob. 0.20 0.02 0.09 0.07 0.80
Mutation strength 4.11 4.04 0.16 3.32 0.98
ξ mutation strength 0.02 3.11 3.80 0.01 0.01
Hyperplane representation
Population size 190 17 86 11
Generations 238 190 118 254
Crossover prob. 0.13 0.99 0.26 0.06
Mutation prob. 0.58 0.89 0.97 0.03
Mutation strength 0.15 3.97 0.08 2.58
Hyperplane representation with Crowding
Population size 92 189 166 17
Generations 258 52 201 252
Crossover prob. 0.64 0.09 0.77 0.42
Mutation prob. 0.71 0.71 0.92 0.02
Mutation strength 0.20 0.20 0.04 4.05

F. Results

Test accuracies obtained by manual tuning are presented in
the naive representation section of Table III. Differentiated
(spam/non spam for spam filtering and ill/healthy for dia-
betes) accuracies are also depicted. The naive representation
section of Table IV holds performances and standard devia-
tions of the best configuration of an initial latin hypersquare
design (LHD) sample of size4 × 100.

G. Observations

SPO indicates that for all cases, except for the soybean
data, crossover probabilities were dramatically increased,
while often reducing mutation probabilities, especially for
errors. However, the relative quality of SPO’s final best
configurations against the ones found during the initial LHD
phase increases with the problem size. It must be stated that
in most cases, results achieved with manually determined
parameter values are only improved by SPO – if at all – by
increasing effort (population size or number of generations).
A problem appears for large data sets, i.e. spam filtering,
where the amount of runtime needed for training is very
large. This stems from the large genomes employed, as
indicators for errors of every sample in the training set are
included in the representation. Consequently, we tackle this

TABLE III

ACCURACIES OF DIFFERENT MANUALLY TUNEDESVM VERSIONS ON

THE CONSIDERED TEST SETS, IN PERCENT.

Average Worst Best StD
Naive representation
Diabetes (overall) 76.30 71.35 80.73 2.24
Diabetes (ill) 50.81 39.19 60.27 4.53
Diabetes (healthy) 90.54 84.80 96.00 2.71
Iris 1aa (overall) 95.85 84.44 100.0 3.72
Iris 1a1 (overall) 95.18 91.11 100.0 2.48
Iris DDAG (overall) 94.96 88.89 100.0 2.79
Soybean 1aa (overall) 99.22 88.24 100 2.55
Soybean 1a1 (overall) 99.02 94.11 100.0 2.23
Soybean DDAG (overall) 98.83 70.58 100 5.44
Spam (overall) 87.74 85.74 89.83 1.06
Spam (spam) 77.48 70.31 82.50 2.77
Spam (non spam) 94.41 92.62 96.30 0.89
ESVMs with Chunking
Spam (overall) 87.30 83.13 90.00 1.77
Spam (spam) 83.47 75.54 86.81 2.78
Spam (non spam) 89.78 84.22 92.52 2.11
Hyperplane representation
Diabetes (overall) 74.60 70.31 82.81 2.98
Diabetes(ill) 45.38 26.87 58.57 6.75
Diabetes (healthy) 89.99 86.89 96.75 2.66
Iris 1aa (overall) 93.33 86.67 100 3.83
Iris 1a1 (overall) 95.11 73.33 100 4.83
Iris DDAG (overall) 95.11 88.89 100 3.22
Soybean 1aa (overall) 99.22 88.24 100 2.98
Soybean 1a1 (overall) 99.60 94.12 100 1.49
Soybean DDAG (overall) 99.60 94.12 100 1.49
Spam (overall) 86.19 82 100 3.12
Spam (spam) 70.54 62.50 77.80 4.55
Spam (non spam) 95.39 92.66 97.44 1.09

problem with an adaptation of a chunking procedure [13]
inside ESVMs.
A chunk of N training samples is repeatedly considered.
Within each chunking cycle, the EA (with a population of
half random individuals and half previously best evolved
individuals) runs and determines the coefficients of the hy-
perplane. All training samples are tested against the obtained
decision function and a new chunk is constructed based
on N/2 randomly (equally distributed) incorrectly placed
samples and half randomly samples from the current chunk.
The chunking cycle stops when a predefined number of
iterations with no improvement in training accuracy passes.
ESVM with chunking was applied to the spam data set.
Manually tuned parameters had the same values as before,
except the number of generations for each run of the EA
which is now set to 100. The chunk size, i.eN , was chosen
as 200 and the number of iterations with no improvement
(repeats of the chunking cycle) was designated to be 5.
Values derived from the SPO tuning are presented in the
ESVMs chunking section of Table II.
Results of manual and SPO tuning are shown in the ESVMs
chunking sections of Tables III and IV. The novel algorithm
of ESVM with chunking reached its goal, running 8 times
faster than the previous one, at a cost of a small loss in
accuracy.
Besides solving the EA genome length problem, proposed
mechanism additionally reduces the large number of compu-
tations that derives from the reference to the many training
samples in the expression of the fitness function.

TABLE IV

ACCURACIES OF DIFFERENTSPO ESVMVERSIONS ON THE

CONSIDERED TEST SETS, IN PERCENT.

LHD best StD SPO StD
Naive representation
Diabetes (overall) 75.82 3.27 77.31 2.45
Diabetes (ill) 49.35 7.47 52.64 5.32
Diabetes (healthy) 89.60 2.36 90.21 2.64
Iris (overall) 95.11 2.95 95.11 2.95
Soybean (overall) 99.61 1.47 99.80 1.06
Spam (overall) 89.27 1.37 90.59 0.98
Spam (spam) 80.63 3.51 83.76 2.21
Spam (non spam) 94.82 0.94 95.06 0.62
ESVMs with Chunking
Spam (overall) 87.52 1.31 88.37 1.15
Spam (spam) 86.26 2.66 86.35 2.70
Spam (non spam) 88.33 2.48 89.68 2.06
Hyperplane representation
Diabetes (overall) 72.50 2.64 73.39 2.82
Diabetes(ill) 35.50 10.14 43.20 6.53
Diabetes (healthy) 92.11 4.15 89.94 3.79
Iris (overall) 95.41 2.36 95.41 2.43
Soybean (overall) 99.61 1.47 99.02 4.32
Spam (overall) 89.20 1.16 89.51 1.17
Spam (spam) 79.19 3.13 82.02 3.85
Spam (non spam) 95.64 0.90 94.44 1.42
Hyperplane representation with Crowding
Diabetes (overall) 74.34 2.30 74.44 2.98
Diabetes(ill) 43.68 6.64 45.32 7.04
Diabetes (healthy) 90.13 3.56 90.17 3.06
Iris (overall) 95.63 2.36 94.37 2.80
Soybean (overall) 99.61 2.11 100 0.00
Spam (overall) 88.72 1.49 89.45 0.97
Spam (spam) 80.14 5.48 80.79 3.51
Spam (non spam) 94.25 1.66 95.07 1.20

H. Discussion

Obtained results for the classification tasks we have under-
taken to solve have proven to be competitive as compared to
accuracies of the canonical SVMs on the same test problems
(see§6). Note that discrete result values lead to high standard
deviations, limiting the use of hypothesis tests. Only for
the largest problem (spam), standard deviation intervals of
algoritm variants do not always overlap. For SPO, a similar
hardness occurs: Distinguishing the performance of different
configurations is difficult even after computing a large num-
ber of repeats. Consequently, the ’parameter optimization
potential’ justifies employing a tuning method only for
the larger problems, diabetes and spam. Especially for the
small problems, well performing parameter configurations
are seemingly easy to find.
It must be stated that for the standard kernels, we cannot
expect ESVMs to be better than standard SVMs. However,
in future work, we can profit from the flexibility of the EAs
as optimization tools, by being able to additionally evolve
kernels that achieve a better separation, regardless of whether
they are positive (semi-)definite or not.

V. HYPERPLANEREPRESENTATION

Although already a viable alternative approach, the ESVMs
may still be improved concerning simplicity.

A. Research question

The current optimization problem requires to treat the error
values, which in the present EA variant are included in the
representation. These can be expected to severely complicate
the problem by increasing the genome length (variable count)
by the number of training samples. We propose to tackle
this issue by a reconsideration of the elements of the EA as
follows. Can we represent only the hyperplane coefficients
and compute the errors instead of evolving them?

B. Preexperimental Planning

For reasons of comparison between the two representations,
we keep the same data sets for application.

C. Task

It will be investigated if a representation without errors can
perform as well as the naive representation of§4.

D. Algorithm Setup

Since ESVMs directly and interactively provide hyperplane
coefficients at all times, we propose to drop the indicators
for errors from the EA representation and, instead, compute
their values in a simple geometrical fashion. Consequently,
this time, individual representation contains onlyw andb, as
in (11):

c = (w1, ..., wn, b). (11)

Additionally, all indicatorsξi, i = 1, 2, ...,m will have to
be computed in order to be referred in the fitness function
(10), which remains as before. The procedure follows [2] and
takes place as follows.
The current individual (which is the current separating hy-
perplane) is considered and supporting hyperplanes are de-
termined through the mechanism below. One first computes
(12):

{

m1 = min{K(w, xi)|yi = +1}

m2 = max{K(w, xi)|yi = −1}
(12)

Then, we set (13):










p = |m1 − m2|

w′ = 2
p
w

b′ = 1
p
(m1 + m2)

(13)

Finally, for every training samplex, deviation to the cor-
responding supporting hyperplane, following its class, is
calculated, as in (14):

deviation(xi) =











K(w′, xi) − b′ − 1, yi = +1,

K(w′, xi) − b′ + 1, yi = −1,

i = 1, 2, ...,m.

(14)

If sign of deviation equals class, correspondingξi = 0; else,
the (normalized) absolute deviation is returned as the indica-
tor for error. Experiments showed the need for normalization

of the computed deviations in the cases of diabetes, spam
and iris, while, on the contrary, soybean requires without.
The different behaviour can be explained by the fact that
the first three data sets have a larger number of training
samples. The sum of the deviations is subsequently added to
the expression of the fitness function. As a consequence, in
the early generations, when the generated coefficients leadto
high deviations, their sum, considered from 1 to the number
of training samples, takes over the whole fitness value and the
evolutionary process is driven off the course to the optimum.
The discussed diverse choices of actions concerning the nor-
malization of data and errors and the kernel selection bring
experimental evidence for the crucial importance of proper
data preparation parameters prior to the actual application of
SVM learning.
In addition to the different representation, we also test a
crowding [4] variant of the EA. Here, test for replacement is
done against the most similar parent of the current popula-
tion. Crowding based EAs are known to provide good global
search capabilities. This is of limited value for the kernel
types employed in this study, but it is important for non-
standard kernels. For now however, we want to investigate
whether the employment of a crowding-based EA on the
hyperplane representation would worsen the performance of
the algorithm or not. All the other elements of the EA remain
the same.
The EA proceeds with the values for parameters from the
hyperplane representation section in Table I and, in the endof
the run, hyperplane coefficients are again directly acquired.
Resulting parameter values for SPO on the hyperplane and
the hyperplane crowding variant are shown in the appropriate
sections of Table II. Note that only automated tuning is
performed for the hyperplane crowding ESVM.

E. Problem Setup

The problem related settings are kept the same as for the
naive representation.

F. Results

Manual and SPO tuning based results are depicted in the
hyperplane and hyperplane with crowding representation
sections of Tables III and IV. The given SPO performance
values are generated by (30) validation runs for the best
found configurations after initial design and after finishing
SPO, respectively.

G. Observations

Automated tuning revealed that for the crowding variant,
some parameter interactions dominate the best performing
configurations (not depicted due to space limitations): For
larger population size, smaller mutation step sizes and larger
crossover probability are better suited, and with greater run
lengths, performance increases with larger mutation step
sizes. For the original hyperplane variant, no such clear
interactions can be attained. However, in both cases, many
good configurations are detected.

H. Discussion

It is interesting to remark that the hyperplane representa-
tion is not that much faster. Although the genome length
is drastically reduced, the runtime consequently gained is
however partly lost again when computing the values for
the slack variables. This draws from the extra number of dot
products that must be calculated due to (12) and (14). As run
length itself is a parameter in our studies, we rather obtain
an upper bound of the necessary effort. Closer investigation
may lead to a better understanding of suitable run lengths,
e.g. in terms of fitness evaluations. However, the hyperplane
representation has its advantages. Besides featuring smaller
genomes, less parameters are needed, because the slack
variables are not evolved and thus 2 parameters vanish.
The best configurations for hyperplane representation with
and without crowding perform similarly and not significantly
worse as compared to the results recorded for the naive
representation, except for the diabetes test case, where they
are weaker. Parameter tuning beyond a large initial design
appears to be infeasible, as performance is not significantly
improved in most cases. If at all, it is successful for the larger
problems of diabetes and spam. This indicates that parameter
setting for the ESVMs is rather easy, because there is a
large set of good performing configurations. Nevertheless,
there seems to be a slight tendency towards fewer good
configurations (harder tuning) for the large problems.

VI. COMPARISON TOCANONICAL SUPPORTVECTOR

MACHINES

In order to make a direct comparison with the results of the
canonical SVMs, we used the R environment and available
related packages (e1071, mlbench and kernlab) for applying
them to all considered data sets. 1a1 SVM is the only existing
R implementation for multi-class tasks. The results, obtained
after 30 runs, are illustrated in Table V. For the iris data set a
radial kernel was used, while for the other three a polynomial
one was employed. After performing manual tuning for the
SVM parameters, the best results were obtained forC = 1,
σ = 1 andp = 1 in all corresponding cases.

TABLE V

ACCURACIES OF CANONICALSVMS ON THE CONSIDERED TEST SETS,

IN PERCENT, AS OPPOSED TO THOSE OBTAINED BYESVMS.

Average Worst Best StD ESVMs Average
Diabetes 76.82 73.95 81.77 1.84 77.31
Iris 95.33 88.0 100.0 3.16 95.63
Spam 92.67 91.56 93.91 0.64 90.59
Soybean 92.22 66.67 100.00 9.60 100

VII. C ONCLUSIONS ANDFUTURE WORK

The proposed new hybridized learning technique incorpo-
rates the vision upon classification of SVMs but solves
the inherent optimization problem by means of an EA. As
opposed to SVMs, ESVMs are definitely much easier to
understand and use. Moreover, the evolutionary solving of the
optimization problem enables the acquirement of hyperplane
coefficients directly and at all times within a run. At the same

time, performance remains comparable to that of canonical
SVMs. Two possible representations (one simpler, and a little
faster, and one more complicated, but also more accurate)
for the EA that determines the coefficients are imagined.
In order to enhance suitability of the new technique for
any classification issue, a novel chunking mechanism for
reducing size in large problems is also proposed; obtained re-
sults support its employment. Finally, the use of a crowding-
based EA is inspected in relation to the preservation of the
performance. Crowding would be highly necessary in the
immediate coevolution of non-standard kernels.
Although already competitive, the novel ESVMs for classi-
fication can still be enhanced. The way of treating the two
criteria (i.e. reduce errors and obtain a flat function) through
proposed fitness evaluation may not be the best choice;
instead, we could try a multicriterial approach. Additionally,
we will achieve the simultaneous evolution of the hyperplane
and of non-standard kernels. This approach is highly difficult
by means of SVM standard methods for hyperplane deter-
mination, whereas it is straightforward for ESVMs.

REFERENCES

[1] T. Bartz-Beielstein,Experimental research in evolutionary computation
- the new experimentalism, Natural Computing Series, Berlin: Springer-
Verlag, 2006.

[2] R. A. Bosch, J. A. Smith, ”Separating Hyperplanes and the Authorship
of the Disputed Federalist Papers,”American Mathematical Monthly,
vol. 105, no. 7, pp. 601–608, 1998.

[3] C. J. C. Burges, ”A Tutorial on Support Vector Machines for Pattern
Recognition,”Data Mining and Knowledge Discovery2, pp. 121–167,
1998.

[4] K. A. DeJong, An Analysis of the Behavior of a Class of Genetic
Adaptive Systems, Ph.D. Dissertation, University of Michigan, Ann
Arbor, 1975.

[5] D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, J.Theiler,
”Genetic Algorithms and Support Vector Machines for Time Series
Classification,”Proc. Symposium on Optical Science and Technology,
Seattle, WA, pp. 74–85, 2002.

[6] B. Feres de Souza, A. Ponce de Leon F. de Carvalho, ”Gene selection
based on multi-class support vector machines and genetic algorithms,”
Journal of Genetics and Molecular Research, vol. 4, no. 3, pp. 599–607,
2005.

[7] F. Friedrichs, C. Igel, ”Evolutionary tuning of multipleSVM parame-
ters,” Proc. 12th European Symposium on Artificial Neural Networks,
pp. 519–524, 2004.

[8] S. Haykin,Neural Networks: A Comprehensive Foundation, New Jersey:
Prentice Hall, 1999.

[9] T. Howley, M. G. Madden, ”The Genetic Evolution of Kernels
for Support Vector Machine Classifiers,”Proc. of 15th Irish Con-
ference on Artificial Intelligence and Cognitive Science, http :

//www.it.nuigalway.ie/m madden/profile/pubs.html, 2004.
[10] C.-W. Hsu, C.-J. Lin, ”A Comparison of Methods for Multi-class

Support Vector Machines,”IEEE Transactions on Neural Networks, vol.
13, no. 2, pp. 415–425, 2002.

[11] I. Mierswa, ”Evolutionary Learning with Kernels: A Generic Solution
for Large Margin Problems,”Proc. of the Genetic and Evolutionary
Computation Conference, Seattle, WA, pp. 1553–1560, 2006.

[12] I. Mierswa, Making Indefinite Kernel Learning Practical, Technical
Report, Artificial Intelligence Unit, Department of ComputerScience,
University of Dortmund, 2006.

[13] F. Perez-Cruz, A. R. Figueiras-Vidal, A. Artes-Rodriguez, ”Double
chunking for solving SVMs for very large datasets,”LEARNING’04:
Linking information and knowledge, Elche, Spain, http://eprints.pascal-
network.org/archive/00001184/01/learn04.pdf, 2004.

[14] J. C. Platt, N. Cristianini, J. Shawe-Taylor, ”Large Margin DAGs
for Multiclass Classification,”Proc. of Neural Information Processing
Systems, MIT Press, pp. 547–553, 2000.

[15] V. Vapnik, Statistical Learning Theory, New York: Wiley, 1998.

