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Abstract- A new radii-based evolutionary algorithm
(EA) designed for multimodal optimization problems is
proposed. The approach can be placed within the ge-
netic chromodynamics framework and related to other
EAs with local interaction, e.g. using species forma-
tion or clearing procedures. The underlying motiva-
tion for modifying the original algorithm was to pre-
serve its ability to search for many optima in parallel
while increasing convergence speed, especially for com-
plex problems, through generational selection and dif-
ferent replacement schemes. The algorithm is applied to
function optimization and classification; obtained exper-
imental results, in part improved immensely by state-of-
the-art parameter tuning (SPO), encourage further in-
vestigation.

1 Introduction

Belonging to the family of radii-based multimodal evolu-
tionary frameworks, Genetic Chromodynamics (GC) [1] has
recently proven to be a very powerful tool [2], [3], [4]. GC
builds and maintains subpopulations, corresponding each to
a global/local optimum of the problem, through the use of
a stepping stone search mechanism and a local interaction
principle, as selection for reproduction. Selection for re-
placement takes place between resulting offspring and the
current ”stone” chromosome. A merging operator is used to
achieve decrease in the number of individuals.

The work presented here goes further in the development
of another evolutionary algorithm in this framework. The
selection for replacement strategy used in our new algorithm
is generational. In contrast to the stepping stone mecha-
nism, the first parent is selected randomly. The offspring
obtained after crossover does not replace any of the parents
particularly, but the worst chromosome (with respect to fit-
ness values) within a replacement radius, a new parameter
of the algorithm. The local interaction principle and merg-

ing still hold.
The reason for creating the new algorithm, Elitist Gen-

erational GC (EGGC), was that of preserving the ability of
GC to properly locate several or all optima within one go,
and additionally speed up this process. The new algorithm
always achieves the first goal, the second one being accom-
plished for more complex problems (for instance, for higher
values for n in n-dimensional problems), due to changes
that lead to better search space exploitation.

The algorithm is tested on several largely used bench-
mark functions, i.e., Six-Hump Camel Back, Schaffer, Him-
melblau and Schwefel and on classification of medical data.

The paper is organized as follows: the next section
presents an overview of the GC framework; section 3 de-
scribes the modified algorithm; section 4 places GC in the
context of related evolutionary techniques. Futhermore,
section 5 reports experimental results obtained for optimiza-
tion of several multimodal test functions and for classifying
medical data, respectively. These are partly backed up by a
recent parameter tuning method. Finally, we conclude with
a discussion and an outlook onto possible future work.

2 Genetic Chromodynamics framework

The GC framework has demonstrated success in application
to function optimization, clustering and classification. In
particular, it is able to concentrate search on many basins of
attraction in parallel, so that several optima are found simul-
taneously. The evolutionary process takes place as follows.

First, the initial population is randomly generated. Next,
every chromosome is taken into account in the forming of
the new generation. Mating regions around each chromo-
some are determined by a radius. Therefore, only neighbor-
ing chromosomes are recombined. When no mate is found
in the mating region of the current chromosome, the latter
produces one offspring by mutation, with a step size that
still keeps the descendant in the mating region of its par-



ent. If there is more than one chromosome near the current,
the mate is determined using proportional selection. Then,
if the offspring has better fitness than the current chromo-
some, it replaces the latter in the population.

Algorithm 1 Merging procedure
repeat

a chromosome c is considered the current chromosome;
select all m chromosomes in the merging region of c, includ-
ing itself;
remove all but the best chromosome from the selection;

until merging can not be applied at all

At every iteration, each chromosome is important for
building the new generation. By reducing potential partners
for crossover of a chromosome to those lying in its mating
region, only chromosomes that are close to each other re-
combine, favoring the appearance and maintenance of sub-
populations. Offspring replaces the current chromosome
only if fitter. Thus, after a few generations, the chromo-
somes will concentrate on the most promising regions of the
search space, i.e. those connected to the optima. Moreover,
selection for replacement is based on a quasi-generational
strategy since, if replacement takes place, the mating group
of another certain chromosome in the current generation
changes, be that the replaced parent belonged to it.

Algorithm 2 GC algorithm
t = 0;
initialize population P(t);
repeat

evaluate each chromosome;
for all chromosomes c in the population do

if mating region of c is empty then
apply mutation to c;
if obtained chromosome is fitter than c then

replace c;
end if

else
choose one chromosome from the mating region of c for
crossover by proportional selection;
obtain and evaluate one offspring;
if the offspring has better fitness than c then

replace c
end if

end if
end for
merging;
t = t + 1;

until stop condition

{Remark: Usually, the stop condition refers to the total number
of generations or to the number of generations passed without
any major improvement of the solutions.}

For the subpopulations to become better and better sepa-
rated with each iteration, GC reduces the population size in
a way that preserves the position of each subpopulation. In
this respect, a new operator, called merging, is introduced. It
merges very similar chromosomes and is applied after per-
turbation takes place. Let a chromosome c be given. If the

distance between c and another chromosome is very small,
under a given radius, then the latter is considered part of the
merging region of c. From the set of all chromosomes in the
merging region of c only one is kept. Generally, it is chosen
such that the one with the best fitness evaluation is kept in
the population. Alternatively, other merging schemes may
be used (for instance, the mean of the chromosomes in the
merging region). The merging procedure is outlined in algo-
rithm 1. The interplay between merging and mating regions
strongly impacts convergence properties: a large merging
radius leads to deletion of potential mates of the surviving
individuals and thus blocks crossover. Therefore, it is usu-
ally chosen much smaller than the mating area. Along with
separation, the worse chromosomes are removed step by
step, and the process gradually transforms from a globally–
oriented population–based to a parallel local search algo-
rithm. Thus, in the end, only one chromosome remains
connected to any optimum. Each such chromosome now
corresponds to a single hillclimber that only uses mutation
as variation operator. Figure 1 illustrates radii-based mating
and merging, while algorithm 2 outlines high-level pseudo-
code.

c2
c1

c2

Figure 1: Mating (left) and merging (right) within GC. Chromo-
some c1 produces one offspring by mutation, chromosome c2 se-
lects another chromosome from its mating region (dotted circle)
and produces one offspring by crossover. Crossed lines indicate
replaced chromosomes with worse fitness. During merging, c2 is
deleted because there is another chromosome with better fitness in
its merging region (solid circle).

3 Elitist Generational GC algorithm

In our new algorithm, the original scheme was modified
in order to achieve increased convergence speed based on
better exploitation of the search space. That is obtained
especially by the way in which offspring resulting from
crossover enters the population. It does not replace the
first parent, but the worst chromosome in its replacement
radius. Therefore, weak chromosomes are removed more
aggressively (alongside with the effect merging has in this
respect) from the current population. For this reason, the
stepping stone principle is not applied here, but n (where
n is the number of chromosomes in the population) random
chromosomes are selected instead. Now, chromosomes may
be replaced by some offspring without ever being selected
for recombination. However, an important aspect of the al-



gorithm is the choice of the replacement radius value. If
picked properly, this new parameter may lead to improved
convergence speed.

Algorithm 3 EGGC algorithm
t = 0;
initialize population P(t);
repeat

evaluate each chromosome;
for i = 1 to n do

randomly choose a chromosome c;
if mating region of c is empty then

apply mutation to c;
if obtained chromosome is fitter than c then

replace c;
end if

else
choose one chromosome from the mating region of c for
crossover by proportional selection;
obtain and evaluate one offspring d;
find worst chromosome w within replacement radius of
d;
if d has better fitness than w then

replace w;
end if

end if
end for
merging is applied to all chromosomes;
t= t + 1;

until stop condition

{Remark: The offspring d obtained after crossover can replace
a chromosome that does not belong to any of the mating regions
of its parents, thus performing faster separation of chromosomes
into clusters.}

Selection for replacement adopts a generational scheme,
as already stated. As the effect of quasi-generational se-
lection for replacement, used by the classical GC, can be
noticed only when another stepping-stone does not find the
initial chromosome in its mating region but sees the off-
spring instead, the new algorithm is totally generational.
This means that the offspring that replaces its parent might
be selected for reproduction many times in the same gen-
eration or might vanish within that generation. Thus, the
generational scheme leads to increased exploitation.

The local interaction, crossover, mutation and merging
principles still hold. Radii-based evolution in the new con-
text of EGGD is depicted in figure 2 and the complete algo-
rithm is outlined in alg. 3.

4 GC and related evolutionary algorithms

Both concrete algorithms from the Genetic Chromodynam-
ics framework presented here are radius-based methods for
multimodal optimization. Thus, they are related to several
other evolutionary algorithm types that use properties of the
search space distribution of a population to maintain sev-
eral search paths at the same time. In the ideal case, every
search path corresponds to one basin of attraction (and, if
the number of basins is small, also vice versa), so that every
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Figure 2: Mating (left) and merging (right) within EGGC. As in
figure 1, c1 and c2 each produce one offspring. This time, the
second offspring replaces its other parent because the latter is
the worst chromosome in its replacement region. During merg-
ing, two chromosomes are removed, c2 and one offspring, because
now three chromosomes are within merging radius from c2.

run results in finding many optima, be they local or global.
Such information may be valuable by itself if multiple so-
lutions are desired; additionaly, it helps in determining the
global optimum of a problem.

A first similar approach we know of is the Species Con-
servation algorithm [5] where a radius around each individ-
ual is used to determine groups of individuals (species) that
represent similar solutions. A specialized selection opera-
tor guarantees survival of at least the best individual of each
group. GC algorithms achieve the same implicitly by local
selection and merging, without ever detecting a species as a
whole. This does not necessarily make them faster, but in
our opinion the GC concept is simpler.

A second approach, even more similar to that of GC, is
the Clearing procedure [6]. It is a niching algorithm where
sharing of resources within every subpopulation takes place
only between the winners, the fittest of that niche, instead
of applying to all its individuals as standard. The number
of winners is generally set to 1, but their number, called
capacity of a niche, can be higher. While GC performs
crossover only between individuals belonging to the same
mating region, clearing performs global recombination. GC
sets two different radii for the identification and mainte-
nance of niches in the population, one for mating and one
for merging, while the other algorithm utilizes a single ra-
dius, for the clearing region. The approaches further differ
in the effect of merging: the Clearing procedure decreases
population size only temporary to circumvent selection of
dominated individuals for reproduction.

The use of mating restrictions is another well-known fea-
ture of EAs for multimodal optimization, in island or diffu-
sion (or, more generally, topology-based) models as well
as for explicit niching algorithms [7], [8], [9], [10]. In
GC, mating as well as merging radius is measured in search
space, and it is usually chosen such that some potential part-
ners survive merging, thereby enabling recombination in the
next generation.

On the other hand, merging in GC usually leads to de-
creasing population sizes. In case the radii parameters
have been set to proper values, depending on the problem,



subpopulations crowding one basin of attraction each get
smaller and smaller until only one individual — per opti-
mum — is left that performs a simple hillclimbing strategy,
similar to a (1 + 1) evolution strategy [11]. In reality, it is
often difficult to find these parameter values — or even im-
possible, when the sizes of basins of attraction have large
variance. However, we expect that much yet unused poten-
tial is hidded here that can be exploited with modified GC
variants of which EGGC is a first attempt.

5 Numeric optimization experiments

The proposed algorithm was tested on three bi-dimensional
functions and an n-dimensional one (table 1) and obtained
results indicate that it has good accuracy, stability, low com-
putational time and thus provides a good method for multi-
modal function optimization.

5.1 Function optimization

Table 1: The four considered multimodal test problems

• Six-Hump Camel Back (2D)
f1(x, y) = -[(4 - 2.1x2+ x4

3
)x2 + xy + 4(y2 - 1)y2]

where -2 ≤ x ≤ 2 and -2 ≤ y ≤ 2

• Schaffer function (2D)

f2(x, y) = -0.5-
sin2(

√
x2+y2)−0.5

(1+0.001(x2+y2))2

where -20 ≤ x ≤ 20 and -20 ≤ y ≤ 20

• Himmelblau function (2D)
f3(x, y) = 200 - (x2 + y - 11)2 - (x + y2 - 7)2

where -4 ≤ x ≤ 4 and -6 ≤ y ≤ 6

• Schwefel function (100D)
f4(x) =

∑n
i=1 xisin

√|xi|
where -500 ≤ xi ≤ 500 and i ∈ {1, 2, ..., n}

The aim for the Six-Hump Camel Back function is to lo-
cate the two global optima and the four other local optima.
The main issue here is that the two local optima with the
same value -2.1043 can easily be missed by a multimodal
evolutionary algorithm. For instance, in [12], several al-
gorithms were used (a genetic algorithm using gradient in-
formation, a local optimization method, a multi-start local
optimization method and a conventional GA), but each time
only one local or global optimum was detected with an ac-
curacy of ε = 10−3. Because of lack of information, di-
rect comparisons to GC algorithms could not be conducted.
In table 2, results obtained by the original GC algorithm,
EGGC and two algorithms presented in [13] are outlined.
The values for the EGGC parameters used for f1 are shown
in table 7. The success rate was computed as the ratio be-
tween the number of cases when all optima have been lo-
cated with the desired accuracy and the total number of runs.
For the two algorithms from [13], local optima accuracies
had not been specified. Although the number of generations
in EGGC was lower than that in the classical algorithm of
GC, the number of evaluations in EGGC was a little higher;

the explanation is that after each crossover, there are some
more evaluations that are performed for all chromosomes in
the replacement area of the offspring. To conclude, the two
algorithms perform in a very similar manner for this func-
tion.

Table 2: Comparisons for the Six-Hump Camel Back function

Measures CDE and MCDE MMDE GC EGGC

No. of runs 30 30 30 30
Acc. global opt. 10−5 10−5 10−5 10−5

Acc. local opt. – – 10−4 10−4

Success rate 100% 100% 100% 100%
Mean eval calls 62 645 14 610 19 923 19 980

The aim for the Schaffer function is to detect the global
optimum f2(x, y) = 0 that can be escaped because of the
high number of local optima around it and because the dif-
ference between the values of the local optima and the value
of the global optimum is very small (of order 10−3). This is
the reason why the parameters for f2 (table 7) were chosen
such that the entire search space was covered. As noticeable
from table 3, the original GC algorithm, although perform-
ing well, needs many more evaluations than EGGC.

Table 3: Performance of GC and EGGC on the Schaffer function

Results GC EGGC

No. of runs 30 30
Accuracy global optimum 10−6 10−6

Success rate 100% 100%
Mean eval calls 658 211 349 712

The Himmelblau function has four global optima,
f3(x, y) = 200. In [14], it was tested using a sequential
niche technique; again, obtained results cannot be directly
compared with those obtained by GC/EGGC due to the fact
that in [14], to detect all the four optima, several runs (6.1,
on average) of the algorithm were necessary. Additionaly,
the desired accuracy had not been specified. Using the pro-
posed algorithm, all four optima were detected for each of
the 30 runs with the accuracy ε = 10−5. A performance
comparison between GC and EGGC is given in table 4.

Table 4: Performance of GC and EGGC on Himmelblau’s function

Measures GC EGGC

No. of runs 30 30
Accuracy global optima 10−4 10−4

Success rate 100% 100%
Mean eval calls 87 307 97 817

The aim for the Schwefel function is to find the global
optimum f4(x) = 418.9829n. In this paper, f4 was con-
sidered in turn for n = 1, 2, ..., 100. Although radii-based
evolutionary algorithms usually have difficulties with high-
dimensional test problems, the proposed algorithm detects
the optimum with an accuracy of ε = 10−2, even for n =
100, in all 100 runs, but only after a high number of fitness
evaluations. The accuracy improves with the decrease of the
number of dimensions.



The Schwefel function was also tested with the origi-
nal GC algorithm which detected the optimum for n = 100
with similar accuracy, but needed even more fitness evalu-
ations than EGGC. We present a comparison of both algo-
rithms and different performance measures for n = 10 and
ε = 10−2 in table 5.

Table 5: GC and EGGC performance on the Schwefel function
when n=10

Numerical results GC EGGC

No. of runs 30 30
Average evaluations to solution 1 819 593 1 545 752
Mean generations 48 747 39 043
Mean best fitness 4189.827822 4189.827956

Results for the Schwefel function were compared to
those in [15]. In the latter, authors presented the behavior of
four global evolutionary algorithms, four island algorithms
and one cellular algorithm on the shifted Schwefel function
with n = 1, 2, ..., 10. In the first category, a simple genetic
algorithm (SGA), an elitist SGA (ESGA), the parallel CHC
(pCHC) and the Genitor algorithm were present. The sec-
ond category contained island-SGA (I-SGA), island elitist
SGA (I-ESGA) island-pCHC (I-pCHC) and island-Genitor
(I-Genitor). The algorithms were run for a set number of
generations and the number of runs (out of 30) in which the
global optimum was found (denoted by ns) was reported,
along with the mean best fitness of the 30 runs (denoted by
MBF in table 6). Note that fitness values are normalized so
that the global optimum is 0.0.

Table 6: Performance of different evolutionary techniques on the
Schwefel function, from [15]

Algorithm Ns f4 MBF

SGA 0 17.4
ESGA 16 17.3
pCHC 15 5.9
Genitor 20 13.2
I-SGA 9 6.5
I-ESGA 13 2.6
I-pCHC 28 0.2
I-Genitor 24 0.9
Cellular 26 0.7

Table 7 contains the empirically determined EGGC pa-
rameter values for the four functions. Mutation with normal
perturbation was used in all cases; the value of the muta-
tion strength directly depends on the size of the interval and
implicitly on search space size. In case of the Schwefel
function, a higher mutation strength was chosen in the be-
ginning, to escape local optima. The value was afterwards
decreased by n/100 every 100 generations, where n rep-
resents the number of dimensions. The values for mating
and merging radii were chosen in the same manner, thus de-
pending on the search space size. Replacement radius for
a given chromosome is generally chosen to be equal to the
mating value of that individual. However, for problems with
large plateaus in the fitness landscape, by choosing a differ-
ent value for the replacement from that of the mating radius,

faster convergence can be achieved (see tables 5 and 7 vs.
table 8 for f4). On the other hand, for problems with very
close optima, its value must be chosen again not equal to
the mating radius (see f1 in table 7), in order to obtain all
optima. The last parameter from table 7 gives the number
of generations without any improvement which is necessary
to determine termination of the algorithm. For the Schaffer
and Schwefel functions, the stop condition was established
to be the moment when the algorithm achieves the desired
accuracy because only the global optimum had to be deter-
mined.

Table 7: Parameters of the algorithm for all functions

Parameters f1 f2 f3 f4

No. of chromosomes 100 2000 150 500
Mutation strength 0.1 0.1 0.5 25n
Mating radius 0.14 0.1 2 15n
Replacement radius 0.1 0.1 2 15n
Merging radius 0.14 0.1 0.02 12n
Mutation probability 0.4 0.4 0.4 0.4
No improvement times 100 – 50 –

5.2 Parameter tuning-supported comparison

To strengthen our assumption that for the tested high di-
mensional problem, EGGC is really faster than the original
GC algorithm, we applied a recent parameter tuning method
[16], [17]. SPO builds on a quadratic regression model, sup-
ported by latin hypercube sampling (LHS) and noise reduc-
tion by incrementally increased repetition of runs.

At first, we tuned parameters for the 10 dimensional
Schwefel function. SPO was run for 6 steps with an initial
design size of 50, adding up to a total of around 850 runs
(table 8). The response value Y (quality criterion) was set
to the average number of evaluations (AES) until reaching
the global optimum with accuracy 10−2.

Results show that for both algorithms, the AES de-
creased considerably, to ≈ 10% of the original values re-
ported in table 5. A t-test confirms that the true means for
GC and EGGC are different with 95% confidence (p-value
0.036), so that we conclude that EGGC is indeed faster on
this problem. However, the difference is quite small —

Table 8: Algorithm design for optimizing the 10-dimensional
Schwefel function with GC and EGGC. The two last columns give
the best found configurations, the last lines the resulting AES mea-
sures with standard deviations.

Parameter name N/R Min Max GC EGGC

No of chromosomes N 10 500 10 13
Mating radius R+ 0.01 5.0 3.6752 2.9366
Replacement radius R+ 0.01 5.0 – 4.748
Merging radius R+ 0.01 5.0 1.275 3.9197
Mutation strength R+ 1.0 250.0 238.45 231.08
Mutation prob. R+ 0.0 1.0 0.6185 0.8575
Mutation scaledown N 10 1000 368 625
No improv. times N 1 200 167 46

AES, 32 runs – – – 1.69E+5 1.45E+5
AES standard dev. – – – 5.92E+4 3.63E+4



Table 9: Algorithm design for optimizing the 20 dimensional
Schwefel function with GC and EGGC; the maximum radii are
increased compared to table 8.

Parameter name N/R Min Max GC EGGC

No of chromosomes N 10 500 24 10
Mating radius R+ 0.01 15.0 11.695 11.02
Replacement radius R+ 0.01 15.0 – 9.6561
Merging radius R+ 0.01 15.0 14.768 3.81
Mutation strength R+ 1.0 250.0 242.16 237.43
Mutation prob. R+ 0.0 1.0 0.6705 0.6185
Mutation scaledown N 10 1000 269 368
No improv. times N 1 200 8 167

AES, 32 runs – – – 3.32E+5 1.07E+5
AES standard dev. – – – 1.10E+5 2.26E+4

around 15% — and may be statistically significant, but of
little importance for practical uses. Surprisingly, many opti-
mized parameter values are very similar for both algorithms,
e.g. number of chromosomes, mating radius, and the muta-
tion strength and probability. In contrast to that, the merging
radii are chosen differently; larger than the mating radius for
EGGC, and smaller for GC. Nevertheless, other good con-
figurations found during tuning indicate that smaller merg-
ing radii also work for EGGC.

From these first results, and supported by our previous
findings, we learned that EGGC may be advantageous for
higher dimensional problems. Consequently, we performed
a second comparison for the same test function in 20 di-
mensions, this time allowing for larger radius values. The
outcome (table 9) unambiguously favours EGGC over GC,
thereby validating our assumption. However, the maximum
radii tested may still be too small; increasing them may lead
to even better speedup.

6 Application to a decision problem

The EGGC algorithm was applied to a decision problem
(classification of medical data) for two reasons: first, to
prove its suitability as general multimodal optimization
technique, and second, because results can be compared to
the ones reported for entirely different algorithms, namely
artificial neural networks. Applications of other evolution-
ary algorithms to this problem have been found only in hy-
bridization also with neural networks.

6.1 Diabetes diagnosis

EGGC will thus further address the optimization task of
achieving the classification of patients, based on attributes
depicted from a series of medical tests and non-medical
data, into diabetes positive or negative. The data set comes
from the UCI repository of machine learning databases [18].
The decision to be reached is whether a Pima indian is to be
diagnosed with diabetes or not. There are eight continu-
ous attributes containing personal data, e.g., age, number of
pregnancies, and medical data, e.g., blood pressure, body
mass index, glucose tolerance, and a last discrete attribute,
the diagnosis, either 0 (negative) or 1 (positive). 34.9% are
assigned diabetes positive. The total number of cases is 768.

Table 10: Results of comparable techniques for the diabetes task

Algorithm Repeats Accuracy (%)

EGGC with cross-validation 100 75.06
EGGC with Prechelt’s rules 100 69.672
EGGC with random cross-validation 100 69.515
EGGC best accuracy (4 rules) 100 80
Neural Network with Prechelt’s rules 100 65.5
Evolved NN with cross-validation 30 77.6
Evolved NN best result 30 80.7

The data is complete, except for some 0 values of attributes
that were not reported as missing data, but look, however,
strange. No replacement or deletion of these values was un-
dertaken in proposed algorithm.

A chromosome c = (c1, ..., c8, c9) is a string where each
of the first eight genes corresponds to an attribute of a pa-
tient. The last gene represents the outcome. Thus, a chro-
mosome encodes an if-then rule. The condition is a con-
junction of personal data and symptoms and the conclusion
is the diagnosis. The fitness of a chromosome is computed
as its distance to all patients of the training set that have the
same outcome. Minimizing distances leads to good rules
(representing cluster centers in the eight-attribute variable
space) for that diagnosis. The match is determined using
a distance measure between the chromosome (rule) and the
patient, defined as:

d(u, v) =
n∑

i=1

|ui − vi|
bi − ai

, (1)

where ai and bi are the lower and upper bounds, re-
spectively, of the i-th attribute. As the values for the eight
attributes belong to different intervals, the distance mea-
sure has to refer to the interval bounds. We used convex
crossover, with the coefficients biased by the fitness of the
two parents involved. Mutation is with normal perturbation.

At termination of the algorithm, two chromosomes are
obtained, each for a class. These chromosomes are tested
against the data in the test set and accuracy is computed.
The ratio between training and test sets was set to 75%-
25%, as established by Prechelt in [18] with respect to the
diabetes task.

Three kind of tests were conducted with different possi-
bilities of choosing the data that would go into training and
test, respectively. The two sets are obviously disjoint. First,
cross-validation was performed. The first 75% of the data
were taken to compose the training set and the remaining
data were assigned to the test set, as in the standard manner
of using this data set, according to [18]. The obtained mean
accuracy for the test set in 100 runs was 75.06%. Second,
another test was done according to rules of splitting that
should be used for this data set, as established by Prechelt
in [18]. The data set is sequentially split into 75% train-
ing - 25% test to give 4 different combinations of these two
sets, i.e. first 75% data for training – last 25% for test, first
25% data for test – last 75% for training, first 50% data for
training – next 25% for test – last 25% for training again,
first 25% data for training – next 25% for test – last 50% for
training again. The algorithm is subject to 100 trials again.



The mean accuracy obtained for the test set was 69.672%.
Last, random cross-validation was performed, i.e. the train-
ing set containing 75% data and the test set containing 25%
data were randomly generated in each run. The algorithm
was applied 100 times and the obtained mean accuracy was
of 69.515%. However, in many tests, it was noticed that
when the chromosome pool still has four chromosomes left
and has not converged yet, a higher accuracy of 80% is ob-
tained. This leads to the idea that in the structure of each of
the two obvious clusters two other subclusters are included.
Thus, with the best instead of last accuracy, better results
can be obtained. Note that applying SPO parameter tuning
here did not lead to any improvement.

6.2 Result comparison

Literature reports accuracy on the diabetes task ranging
from 62% to 80.7%. Unfortunately, not many papers spec-
ify variables of the testing environment; thus, proposed al-
gorithm cannot be objectively compared with them. Yet,
there are some papers which specify them although they dif-
fer in training/test sets sizes and method of assigning data to
each of them. Authors also mention they did not delete any
of the tuples containing missing data. When not specified,
the number of runs is presumed to be ten.

In [19] a neural network algorithm to forecast the on-
set of diabetes mellitus was used. From the 768 samples,
an equal number of 170 samples were selected randomly to
represent each of the two possible results of diabetes test:
positive and negative. The remaining 428 were used as vali-
dating samples. The mean of five runs was 75.12%. In [20],
a total of 30% of the records were randomly selected as test
set. Rules were mined from the remaining 70% of the data.
The algorithm was applied ten times. If the authors were
to define a baseline accuracy to mean the accuracy obtained
by simply assigning the most frequently occurring values to
the attributes being predicted, it is 65.1%.

One approach our results can be directly compared to
is [21]. Using a neural network, 75% training - 25% test,
the rules established by Prechelt, 100 trials and no replace-
ment or deletion of missing data, the mean accuracy was
obtained as 65.55%. Another approach that allows for ob-
jective comparison of results is [22]. A new evolutionary
system to evolve artificial neural networks was proposed,
cross-validation was used and 30 runs of the algorithm were
conducted and again no replacement or deletion of missing
data was done. The obtained mean accuracy on the test set
was of 77.6%, the best accuracy 80.7%.

In a brief conclusion, table 10 contains a comparison be-
tween the accuracy obtained by EGGC versus those of the
two algorithms. The original GC algorithm was not applied.

7 Discussion and Conclusions

The present paper describes a new algorithm in the GC
framework. Through its increased exploitative nature, it
seems that a better equilibrium between exploration and ex-
ploitation than in the standard GC algorithm is established.
This leads to two advantages in using Elitist Generational

GC.
First, it proves to be very accurate and stable in very hard

multimodal cases. A first situation is that of the difficulty in
locating the local optima, e.g., the Six-Hump Camel Back
function. Another hard situation would be very distant op-
tima, e.g. the Schwefel function, where other algorithms
often miss the global optimum. Another situation is hav-
ing more global optima which are not easily distinguishable
in the fitness landscape, like in the case of the Himmelblau
function. An even harder situation is that of local optima
lying too close to the global optimum - thus an evolution-
ary algorithm usually gets stuck in a local optimum. This
is the case with the Schaffer function. Some of the evolu-
tionary algorithms fail in some of these cases, some fail in
other cases. The classical GC algorithm, on the other hand,
also performs well in this respect, but its speed of conver-
gence is not very good for functions with many local optima
very near to the global optimum, e.g. the Schaffer function
and, especially in the case of more complex problems (n-
dimensional problems), e.g. the Schwefel function.

As the question of computational time arises, for many
low-dimensional multimodal functions, both algorithms are
surely not competitive to other, namely non-evolutionary
algorithms. For the other cases, i.e. local optima and
global optima almost indistinguishable and n-dimensional
function optimization with high values for n, for instance,
both EGGC and GC perform accurate and stable, however,
EGGC is significantly faster.

Another important feature of proposed algorithm is the
new parameter, the replacement radius. Together with the
generational scheme, it seems to have brought more power
to EGGC. For instance, for the Schwefel function, where
the optima are far from each other, this parameter promotes
rapid movement of the chromosomes through the search
space. In the Six-Hump Camel Back function, where the
optima are very close to each other, the parameter is re-
sponsible for the small steps necessary not to escape them.
Parameter tuning methods as employed in 5.2 can help to
exploit the newly added potential.

As for classification problems, since they are also gener-
ally n-dimensional, EGGC should be preferred again. Con-
cerning accuracy improvement, a deeper study and prepro-
cessing on the particular data set prior to applying the al-
gorithm may be helpful. Parameter tuning alone seems
unable to resolve this issue. Also, more work needs to
be done on the hybridization of the evolutionary algorithm
with the issues arising from classification. Last, a training-
validation-testing procedure, as common in genetic pro-
gramming, might lead to better results.

The major weakness of our algorithm lies in the need
to find proper values for mating, merging and replacement
radii. Radii self-adaptation is one of the main goals of fu-
ture work. Another goal would be to try a non-generational
selection for replacement strategy instead of the one we use
and see whether is performs better or worse. A third goal
would be to test if GC algorithms can be combined success-
fully with birth surplus-driven selection schemes as known
from evolution strategies.



Acknowledgements. The authors would like to thank the
anonymous referees for the useful suggestions in improving
this work.

Bibliography

[1] D. Dumitrescu, “Genetic chromodynamics,” Studia
Universitatis Babes-Bolyai Cluj-Napoca, Ser. Infor-
matica, vol. 45, no. 1, pp. 39–50, 2000.

[2] D. Dumitrescu and R. Gorunescu, “Evolutionary clus-
tering using adaptive prototypes,” Studia Universitatis
Babes-Bolyai Cluj-Napoca, Ser. Informatica, vol. 49,
no. 1, pp. 15–20, 2004.

[3] R. Gorunescu and P. H. Millard, “An evolutionary
model of a multidisciplinary review panel for admis-
sion to long-term care,” in Proc. of ICCC 2004, I. Dz-
itac, T. Maghiar, and C. Popescu, Eds., 2004, pp. 181–
185.

[4] C. Stoean, R. Gorunescu, M. Preuss, and D. Du-
mitrescu, “An evolutionary learning spam filter sys-
tem,” in Proceedings 6th International Symposium,
SYNASC04 - Symbolic and Numeric Algorithms for
Scientific Computing, D. Petcu, D. Zaharie, V. Negru,
and T. Jebelean, Eds. Timisoara, Romania: Mirton
Publishing House, 26 - 30 September 2004, pp. 512–
522, iSBN 973-661-441-7.

[5] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clark-
son, “A species conserving genetic algorithm for mul-
timodal function optimization,” Evolutionary Compu-
tation, vol. 10, no. 3, pp. 207–234, 2002.

[6] A. Pétrowski, “A clearing procedure as a niching
method for genetic algorithms,” in Proceedings of
1996 IEEE International Conference on Evolutionary
Computation (ICEC ’96), Nagoya, T. Fukuda, T. Fu-
ruhashi, and D. B. Fogel, Eds. Piscataway NJ: IEEE
Press, 1996, pp. 798–803.

[7] K. Deb and D. E. Goldberg, “An investigation of niche
and species formation in genetic function optimiza-
tion,” in Proc. 3rd Int’l Conf. on Genetic Algorithms
ICGA 89, J. D. Schaffer, Ed. San Mateo, CA: Mor-
gan Kaufmann, 1989, pp. 42–50.

[8] S. W. Mahfoud, “Niching methods for genetic algo-
rithms,” Ph.D. dissertation, University of Illinois at
Urbana Champaign, 1995.

[9] F. Streichert, G. Stein, H. Ulmer, and A. Zell, “A
clustering based niching method for evolutionary al-
gorithms,” in Genetic and Evolutionary Computation
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