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Abstract

This paper presents an automatic tool capable to learn from a patients data

set with 24 medical indicators characterizing each sample and to subsequently

use the acquired knowledge to differentiate between five degrees of liver fi-

brosis. The indicators represent clinical observations and the liver stiffness

provided by the new, non-invasive procedure of Fibroscan. The proposed

technique combines a hill climbing algorithm that selects subsets of impor-

tant attributes for an accurate classification and a core represented by a

cooperative coevolutionary classifier that builds rules for establishing the di-

agnosis for every new patient. The results of the novel method proved to

be superior as compared to the ones obtained by other important classifica-

tion techniques from the literature. Additionally, the proposed methodology

extracts a set of the most meaningful attributes from the available ones.
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1. Introduction

Hepatic fibrosis, the main pointer for the materialization of a liver dis-

ease within chronic hepatitis C, can be measured through several stages. The

correct evaluation of its degree based on non-invasive procedures is essential

since, in case of a significant level, an immediate antiviral therapy has to be

administrated to the patient. Recent medical practice for treating the men-

tioned issue has moved from the standard liver biopsy, which is both invasive

and also deceptive, to either imaging [1] or biochemical testing [2]. One of

the most recent, non-invasive procedures for determining the stiffness of the

liver tissue is the Fibroscan (Echosens, Paris, France) and its accuracy is

impressive. Nevertheless, the complex interaction between its stiffness indi-

cator and the other biochemical and clinical examinations with the purpose

of even more rigorously determining the degree of liver fibrosis is hard to be

manually discovered.

Such support for the decision-making based on the values that the pa-

tients have obtained both from the medical exams and the result from the

non-invasive technique (Fibroscan, imaging or biochemical methodologies)

could be addressed by an appropriate learning method from artificial intel-

ligence with the aim of discovering the corresponding degree of fibrosis. In

this respect, some papers have arisen recently, employing classical techniques

like näıve Bayes and k-nearest neighbor [3] or more modern ones like neural

networks [4] or support vector machines [1], [2].

Aiming to evaluate stiffness together with standard exams for predicting

2



the liver fibrosis stage, present paper puts forward a novel approach that is

comprised of two parts, each based on evolutionary algorithms (EAs): the

first, a hill climbing algorithm, has the goal of finding a promising set of fea-

tures for the second one, the cooperative coevolutionary algorithm (CCEA),

which is the main engine of the proposed evolutionary method. The CCEA

purpose is to evolve a set of rules with regard to the training samples that

will be subsequently applied for determining the degree of hepatic fibrosis for

new cases.

The aims of the current paper can be enumerated as follows:

• To offer a fast and reliable way for an automated prediction of liver

fibrosis stages.

• To provide an accurate diagnosis.

• To highlight which are the most important features and also how they

can be connected in order to give more accurate results.

The paper is organized as follows: next section presents the problem to

be solved, that of diagnosing the degree of liver fibrosis based on several

medical non-invasive indicators; the features are outlined and other previous

research on the particular data set is discussed. After a brief introduction

to evolutionary computation, section 3 presents the CCEA, its approach for

classification, and the accompanying hill climbing algorithm used for feature

selection. Experimentation is described in section 4 and the last part contains

the final conclusions and ideas for future research.
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2. The Classification Problem: Liver Fibrosis Staging

The chronic hepatitis C data set employed in this paper comes from

the 3rd Medical Clinic, University of Medicine and Pharmacy, Cluj-Napoca,

Romania, and consists of 722 samples, each described by 24 indicators, with

a small number of missing values.

The medical attributes that are chosen to provide information that trig-

gers a certain degree of liver fibrosis are outlined in Table 1. The first one

is the stiffness indicator from the Fibroscan, while the others represent stan-

dard hematological and biochemical exams that are required in a patient with

chronic hepatitis C. The five possible degrees of fibrosis have the following

meaning and number of representatives:

• F0 (no fibrosis) – 29 examples;

• F1 (portal fibrosis without septa) – 227 examples;

• F2 (portal fibrosis and few septa) – 164 examples;

• F3 (numerous septa without cirrhosis) – 87 examples;

• F4 (cirrhosis) – 215 examples.

——————————— Table 1 about here ——————————–

There has been a number of previous approaches to address the auto-

mated decision-making in the non-invasive evaluation of liver fibrosis using

only the stiffness of the liver attribute. It is mostly ROC analysis that is

employed for this purpose [5], [6], [7], [8]. There is also a study concerned

with its application to a part of the medical data used within current work
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[9], which will be next discussed more elaborately. Only 324 samples (of the

722 used within current paper) were considered, but the goal was only to

differentiate between two classes like F0 vs. F1234 (87.74% obtained correct

differentiation), F01 vs. F234 (78.62% accurate distinction), F012 vs. F34

(84.91% performance), F0123 vs. F4 (89.94% accuracy of prediction). [9]

has made however no attempt to assign a patient to exactly one of the five

possible degrees.

On the other hand, with the goal of differentiating among the 5 distinct

liver fibrosis stages, the application of neural networks, näıve Bayesian clas-

sification and the k-nearest neighbor algorithm has also been addressed for

a primary database that included 125 patients and 26 attributes (stiffness

from the Fibroscan and other clinical indicators), while investigating the

importance of the stiffness indicator within the discrimination [3]. On the

same data set, [4] employed a näıve Bayes classifier and a probabilistic neural

network model; these were also used in conjunction with a feature selection

algorithm, but there was gain only in runtime, without improving the accu-

racy. Overall, the best reported accuracy of prediction on this smaller data

set was of 70%.

In comparison to earlier reported work, the proposed CCEA, in conjunc-

tion with the hill climbing algorithm for feature selection, aims to demarcate

among the 5 different classes, supply information about the attributes that

are most important and, moreover, even provide some automatically detected

relations between the indicators that were considered for classification.
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3. Cooperative Coevolution for Classification

A rough introduction to the evolutionary computation field precedes the

presentation of the main aspects of the general cooperative coevolution frame-

work. The bases are then set for the presentation of the CCEA approach

for classification. In order to decrease the problem dimensionality and, at

the same time, achieve some gain in classification accuracy, a hill climbing

algorithm is used to choose the most significant attributes, prior to the ap-

plication of the cooperative coevolution approach.

3.1. Evolutionary Computing

The power of evolution in nature is obvious since diverse species that make

up our world manage to survive and adapt in their own niches, sometimes

in very cruel environments. Thus, it is not surprising that some researchers

chose natural evolution as a source of inspiration for problem solving.

A common artificial evolutionary process starts with a population of indi-

viduals that are randomly generated. Based on the fitness values, some of the

individuals are selected to be the parents of the population in the next gener-

ation; descendants are obtained by applying recombination and/or mutation

to the previously chosen individuals. Recombination takes place between

two or more individuals and one or more descendants (or offspring) are ob-

tained; descendants borrow particularities from each of the parents. When

mutation is applied to a candidate solution, the result is one new candidate

that is usually only slightly different from its parent. After applying these

variation operators (mutation and recombination), a set of new individuals

is obtained that will fight for survival with the old ones for a place in the

6



next generation; the candidate solutions that are fitter are advantaged in

this competition. The evolutionary process resumes and usually stops after

a predefined computational limit is reached. A general scheme of an EA is

presented in pseudocode in Algorithm 1 [10].

Algorithm 1 Pseudocode of an evolutionary algorithm
Require: A search/optimization problem

Ensure: The best obtained individual(s)

Initialize population with random candidate solutions;

Evaluate each candidate;

while termination condition is not satisfied do

Select parents;

Recombine pairs of parents and obtain offspring;

Apply mutation to offspring;

Evaluate resulting offspring;

Select individuals that will form the next generation;

end while

3.2. Cooperative Coevolution

According to the Darwinian principles [11], an individual evolves through

the interaction with the environment. An important part of its environment

is, however, represented by other individuals so, as a consequence, evolution

can be viewed as coevolution. This could be understood in two opposite ways:
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on the one hand, the individuals could collaborate for the same purpose

and thus construct the solution together or, on the contrary, they could

compete against each other for the same resources. As a consequence, two

types of artificial coevolutionary systems exist: cooperative and competitive,

respectively.

Within cooperative coevolution, a solution for the problem to be solved is

created through the unification of several individuals that evolve in different

populations, while within the competitive approach, a candidate solution is

evaluated based upon the results that it obtains after a set of competitions

with several other individuals. We will further on discuss only the collabo-

rative paradigm since it powers the proposed classifier.

The CCEA [12] requires that any candidate solution of the problem at

hand is decomposed into several subsolutions and each of these separate

components are evolved by a distinct EA. The only interaction between the

different populations takes place when an individual is evaluated: its quality

(or adaptation to the environment) cannot be measured separately because

it represents only a part of a potential solution, but individuals from all

the other populations have to be selected and brought together in order to

construct a complete candidate solution that can be assigned a fitness score.

The numerical value that stands for the evaluation of the latter is assigned

as the fitness of the initial individual. There are many possibilities to choose

the collaborators when computing the fitness evaluation [12]. Nevertheless,

in order to keep the complexity of the problem low, in the current paper only

one collaborator from each class is considered for the evaluation and each

such collaborator is chosen following a random selection.
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Algorithm 2 simulates the mechanisms of a standard CCEA. Each popu-

lation is evolved by a different canonical EA.

3.3. The CCEA Approach for Classification

Recent research showed that cooperative coevolution can be successfully

applied for classification purposes [13], [14]. A short account of a general

classification problem is therefore outlined and followed by the description

of the way the cooperative coevolution approach has been adapted for this

type of problem.

3.3.1. Classification Problem Description

A set of n objects, each described bym attributes, a1, a2, ..., am, plus a de-

cision value di, i ∈ 1, 2, ..., k, is divided into two subsets, one used for training

an automated method and the other for testing its efficiency. The training

and test sets are disjoint. Starting from the training set, the method has

to automatically learn the relationship between the values of the attributes

and the possible outcomes. Then, when applied to the test set, the technique

finds one output for each object and the detected value is checked against the

actual outcome. The prediction accuracy is then computed as the percent of

objects from the test set that are correctly classified by the method.

In order to cross-validate the given data and verify the generalization

ability of probabilistic methods for the classification task, it is customary to

try several random ways of splitting the samples into training and test sets,

apply the technique for these configurations and compute an average over all

obtained accuracies.
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Algorithm 2 A canonical cooperative coevolutionary algorithm
Require: A search/optimization problem

Ensure: The best obtained individual(s)

t ← 0;

for each species s do

randomly initialize population Pops(t);

end for

for each species s do

evaluate Pops(t);

end for

while termination condition is not satisfied do

t ← t + 1;

for each species s do

select population Pops(t) from Pops(t - 1);

apply variation operators to Pops(t);

evaluate Pops(t);

end for

end while
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3.3.2. Cooperative Coevolution for Classification

Within a possible evolutionary treatment of a classification problem [13],

[14], the aim is to perform a generation of rules for each class. Rules are first

randomly created, subsequently tested against the training set and continu-

ally adjusted in order to increase the training accuracy they provide.

As stated in the previous subsection, in order to solve a problem by

means of a cooperative coevolution engine, a potential solution has to be

decomposed into several items and every component is treated by a separate

EA. For the classification problem, each population may evolve rules for a

certain class and thus the number of species equals the number of outcomes

of the classification problem. A complete candidate solution may therefore

represent an entire set of rules that optimally associates the indicators with

the fibrosis levels.

Each rule has the same representation as the samples in the data set to

be classified, i.e. it has the same number of features and one outcome. The

value for each attribute is initially randomly generated following a uniform

distribution between the definition bounds for that specific feature, that is

between the minimum value that exists for that attribute in the data set

and the maximum one. Individuals can be interpreted as simple IF-THEN

rules having the condition part in the attributes space and the conclusion

in the classes space (1). However, an individual does not specifically encode

the decision class, as this is implicit from the population to which the rule

belongs.

IF a1 = v1 AND a2 = v2... AND am = vm THEN di, i ∈ {1, 2, ..., k} (1)

In order to evaluate an individual (rule) from a certain population, a complete
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set of rules has to be formed, in the sense that one rule from each of the other

classes has to be selected. The entire rule set is then applied to the training

data: for every sample, similarities between each rule in the set and the

current object are computed and the found class is concluded to be the one

of the rule that is closest. A prediction accuracy over all samples is obtained

and assigned as the fitness of the rule to be evaluated.

In order to calculate how close the current rule is to a sample from the

training/test set, a distance measure has to be employed. In the experiments

conducted within the current paper, it is the Manhattan distance (2) that

is considered in this respect; x and s represent an individual and a sample,

respectively, and xi is the i-th component of the potential solution. However,

there is obviously no obstacle in using any other desired distance measure.

d(x, s) =
n∑

i=1

| xi − si | (2)

At the end of the run, CCEA provides several population of rules, each

one with those prototypes that define a certain class. In order to apply these

rules for samples in the test set, individuals are selected once more from each

population, objects are labeled accordingly and the prediction accuracy is

achieved.

3.4. Feature Selection by Means of a Hill Climbing Algorithm

It is customary that techniques for automated diagnosis in biology and

medicine [15], [16] make an a priori use of some mechanism of selecting the

most relevant indicators in the data set. The reason lies in the assumption
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that some attributes might only hinder the search for the accurate solutions

or even block the entire method under the curse of dimensionality.

One of the commonly used feature extraction mechanisms, Principal Com-

ponent Analysis (PCA), is thus also employed in our study. This leads to

a sizeable reduction of the data dimensionality from 24 to only 6 assembled

attributes. When applying CCEA to the new data, the results are improved

by only 1.4%, as opposed to those achieved through the direct application

on the original data. It has to be mentioned that there is, however, a major

improvement in runtime.

Therefore, a different way to considerably improve the results accuracy

has to be discovered. In this respect, the classification method can be aided

by an incorporated dynamic feature selection mechanism. In order to make

the additional procedure efficient, a limited number of applications of the

CCEA technique is desired. For that reason, a hill climbing algorithm is used

with the purpose of choosing the attributes that make the CCEA perform

more beneficially.

An individual is represented as binary, has a number of genes equal to

the number of features that exist in the data set and a value of 1 means

that the corresponding attribute is taken into consideration, while 0 that the

attribute is skipped. An individual is randomly constituted and the selected

attributes are considered for the CCEA. The algorithm generates rules based

on the newly defined training set and then applies them to the test set; an

accuracy is obtained and that value represents the fitness evaluation of the

hill climber. Perturbation is then applied for the individual, a new climber

is obtained, it is evaluated and, if fitter, it replaces the previous one.
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4. Experimental Results

In order to closely follow the conducted tests and make the entire exper-

imentation clear, the section is divided into several parts: early observations

are mentioned, the task is accurately defined, the experimental preparation

is described and finally the results are disseminated, following the order in

which they were pursued by the authors.

Pre-experimental planning: As regards the fibrosis problem, first of all,

the issue of missing data had to be resolved: in this respect, the common

method of mean substitution per class is chosen for their imputation. Second

of all, within the initial experiments, we tried CCEA on the entire data set

directly, without any prior feature selection. However, after some shallow

tuning of the CCEA parameters, the average results over 30 repeated runs

only reached 51.8% test accuracy. This fact determined us to support CCEA

by an additional mechanism that would preprocess the data set. PCA came

as an alternative, it compressed the data from 24 to only 6 dimensions, but

the accuracy only reached 53.2%.

In order to eliminate the noisy indicators, our next choice was to use a

genetic algorithm for selecting the attributes; however, because a CCEA run

may take up to 10 seconds, a hill climbing algorithm appeared as the more

proper choice for this assignment.

The individuals that encode the rules within CCEA are randomly gen-

erated using a uniform distribution; it has been also tried to include some

samples from the training set among the rules of each class (up to 60% of

the population) in order to help each of them evolve faster to the best pro-

totype. Unexpectedly, this conducted the search to even worse results than
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the populations with random rules, so this idea was abandoned.

Task: A hill climbing algorithm is used to dynamically pick the proper

attributes from the data set and then the CCEA is employed to classify the

selected data into five different classes. Our task is to obtain an accuracy

that is better than the ones acquired by other state of the art classification

methods like support vector machines (SVMs) or neural networks (NNs)

applied on both the raw data set or on a PCA dimensionally reduced one.

Experimental Setup: The hill climber starts from a randomly generated

binary configuration of 24 genes (the number of attributes from the data set),

the indicators that have a corresponding value of 1 are considered as selected

and the CCEA is applied 30 times to the data set referring only the chosen

features. The average accuracy obtained over the 30 repeats represents the

fitness evaluation of the hill climber. In each of the 30 runs, the training and

test sets are randomly chosen in order to have a more objective evaluation.

Mutation is then applied and the genes values can be flipped depending

on the probability set for this purpose. The generated offspring is evaluated

and, if fitter, it replaces the parent hill climber. The process continues and, if

there is no improvement in fitness for a number of iterations, a new individual

is generated and the process restarts. A fixed budget of fitness evaluations

is set for the hill climber as a stop condition for the algorithm. The values

for all parameters involved in maneuvering the hill climber can be found

in the first line of Table 2. All values are empirically set. The mutation

probability is decided to be small in order to have only slight steps from

one configuration to another (about 2-3 bits are changed when mutation

occurs). The number under generations refers to the number of iterations
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that pass without improvement (necessary to restart the hill-climber), while

the number under fitness evaluation calls regards the stop condition for the

hill climbing algorithm.

All samples in the data set are normalized, therefore the genes for the

individuals that encode the rules within the CCEA are generated in the

interval [0, 1]. The established evolutionary parameters of the CCEA are

given in the second line of Table 2. Each involved population is set to a

size of 50 and, since there exist five classes, there are 250 individuals evolved

overall.

——————————— Table 2 about here ——————————–

The utilized genetic and variation operators within CCEA are the ones

commonly employed for the EA application to real-valued domains [10]:

• Binary tournament selection, where every two individuals fight to enter

the parents pool based on their fitness values.

• Intermediate recombination with probability Pr, so that the genes of

an offspring O are obtained from two parents P and Q from the same

species according to (3), where R is a uniformly distributed random

number over [0, 1].

O = P +R · (Q− P ). (3)

• Mutation with normal perturbation with probability Pm. A gene of

an individual X selected to be modified through mutation is changed

according to (4); MS and N(0, 1) represent the mutation strength and

a normally distributed random variable with expected mean 0 and vari-
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ance 1, respectively.

X ′ = X +MS ∗N(0, 1). (4)

A high probability is set for recombination with the purpose of bringing

homogeneity within each species, while for the mutation probability a small

value is chosen in order to gradually explore the search space and avoid

the rapid change of the entire genotype. As the values of the genes are set

between 0 and 1, the mutation strength MS is set to a small number that

allows the search to perform fine tuning. A number of 80 generations is

set as a stop condition, as it has been observed during pre-experimentation

that it provides sufficient time to reach an (almost) optimum. All parameter

values are established as a result of manual tuning; there were however other

configurations that yielded good results, however the one proposed herein

also showed consistency as regards the standard deviation.

The hill climber uses 1000 fitness evaluations and begins by generating a

random configuration which is evaluated, suffers mutation and, if changed,

is re-evaluated. If fitter, it replaces the previous hill-climber. If there is

no improvement for 20 generations, a new individual is generated and the

process is restarted, but resuming the count of the fitness evaluations.

In order to validate the results against the ones obtained by other ar-

tificial intelligence methods, the state-of-the-art SVMs and NNs are chosen

accordingly. Since there are no previous applications of the techniques to the

same data set, it is decided to use the implementations within the R software

and environment. Three R packages are necessary for the purpose, e1071 for

both implementations, kernlab for SVMs and nnet for NNs. For the for-

mer, the pre-experiments demonstrated that a linear kernel is preferable to
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a polynomial of higher degree or radial, as it achieved the best performance.

The chosen implementation presumes an implicit one-against-one separation.

For the NN method, the default parameters are changed as the necessity is

indicated by some prolonged parameter tuning: the number of units in the

hidden layer is raised to 30, the rang is set to 0.1 and the maximum number

of iterations is increased to 500. 30 random trials are executed by both the

SVM and NN in the same manner as for the CCEA, i.e. the training and

test sets are randomly chosen in each run.

In addition, the two methods are applied to the reduced data attained

by the PCA mechanism. In the following, when the two techniques refer the

transformed data, they are denoted by SVM+PCA and NN+PCA, respec-

tively.

Results and Visualization: Depending on the selected attributes, the

best accuracy result obtained as the average over 30 repeated runs of ran-

dom cross-validation of the CCEA is of 62.11% correctly classified patients.

Over the 1000 fitness evaluations of the hill climber, the average accuracy is

of 55.93%, while the worst test accuracy is of 47.92%. The individual that

yields the best obtained accuracy only selected 9 attributes out of the 24

available and these are the following: stiffness, triglycerides, HDL choles-

terol, aspartate aminotransferase, gama glutamyl transpeptidase, alkaline

phosphatase, prothrombin index, prolonged activated partial thromboplas-

tin time and hematocrit.

For some configurations of the training-test sets and with the attributes

mentioned above, the test accuracy even reaches above 65% correctly clas-

sified samples. This is the case with the run of CCEA that is represented
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in Figure 1, where both the training and test accuracies are illustrated from

generation 1 and up to generation 80. Furthermore, the dissimilarity between

the individuals from the same species was measured during the evolutionary

process; in Figure 2 it can be observed that the distance between rules of

each class decreases almost in the same manner. When randomly generated,

all dissimilarities start from a large value and converge to a comparable small

value after 80 generations. The dissimilarity within a species is obtained by

adding the distances from each individual to the mean of that population.

——————————— Figure 1 about here ——————————–

——————————— Figure 2 about here ——————————–

As concerns the quality of the results, a confusion matrix is outlined in

Table 3, thus illustrating how far the misclassified samples are from the actual

classes and which degrees are better interpreted. It is taken from a run that

achieved an accuracy of 65% on the test set. The correctly classified samples

are the ones on the principal diagonal. The test set comprises of 180 samples,

all from the F1 class are correctly classified, but, unfortunately many from

F2 are also labeled as F1. Most of the data are split between levels F1 (59)

and F4 (62) and the CCEA basically concentrates on recognizing these two

classes as good as possible. However, it has to be underlined that, in each

run, the training and test data are different and the confusion matrices may

change considerably.

——————————— Table 3 about here ——————————–

The test accuracies obtained by CCEA and by the techniques used for

comparison are highlighted in Table 4. Besides the mean value over the

30 repeated runs, the minimum, maximum and the standard deviation are
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reported. CCEA obtains the best average value and the smallest standard

deviation, demonstrating through the latter better stability than the rest

of the techniques. NN delivers the worst mean result, but also the best

maximum accuracy obtained in one run: this and the fact that it has the

highest standard deviation proves that the technique is the least stable among

the ones tested.

——————————— Table 4 about here ——————————–

In order to verify the significance of the results and to validate the hy-

pothesis formulated in the task subsection, two statistical tests are conducted

for the results obtained in the 30 repeats of the algorithms. A t-test for in-

dependent samples is used to assess the difference in means between CCEA

and every other technique that is used for comparison. An alternative given

by the Wilcoxon rank-sum test is also employed, since in some instances it

gives greater power to reject the null hypothesis than the t-test. The sta-

tistical results are presented in Table 5. A p-value that is smaller than 0.05

demonstrates significant difference in results. The only method that, from a

statistically point of view, is not at a sizeable difference from the dominating

CCEA is the SVM applied on the data modified by PCA, although the mean

difference is of almost one percent. Nevertheless, the proposed method has

the essential advantage that it reveals sets of attributes that, even if at first

glance may not appear as the most suitable choice for a medical expert, it

is through association that they provide a better accuracy than when using

the entire set of features.

——————————— Table 5 about here ——————————–

Discussion: Naturally, besides the discussed configuration, there are several
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others found by the hill climbing algorithm which also produce good results.

It is very interesting to observe that there are not always the same attributes

that are selected; the hill climbing algorithm rather discovers sets of features

that in connection perform better. However, there are some attributes that

are included more often into many successful configurations and, in order to

discover them, best 3% of the 1000 different configurations that were evolved

are examined and the importance of the features is illustrated in Figure 3.

Overall, among the attributes that seem more decisive are the following: stiff-

ness, sex, cholesterol, glycemia, prothrombin index and alkaline phosphatase.

However, the attributes were not necessarily considered in this combination

and there are others that immediately follow in importance, like prolonged

activated partial thromboplastin time or haematids; the enumeration could

continue in the order of weight, according to the automated artificial intelli-

gence composed methodology used in the current paper.

——————————— Figure 3 about here ——————————–

It has to be underlined that the most significant feature, the one that has

been chosen in most of the successful combinations, was the liver stiffness

indicator, fact that is also acknowledged by the medical experts.

As concerns the prediction power on the training and test sets (see Fig-

ure 1), the test accuracy is most of the time above the training one, meaning

that overfitting is avoided. Approximately from the second half of the evolu-

tion time (generation 45), there is no major fluctuation with respect to either

of the two accuracies as the methods stabilizes around the final result.
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5. Conclusions and Future Work

A hill climbing algorithm for choosing a set of features to be used by a

classifier is employed together with a cooperative coevolutionary method that

provides rules for differentiating between fibrosis degrees, following several

medical indicators of patients with chronic hepatitis C.

The CCEA is kept to its simplest formulation with the coevolutionary

parameters set to the easiest default values in order to simplify the job of

the user that has to establish only the parameters of the EA; these can also

be straightforwardly handled, as experimentation provided good results for

a large range of configurations. Moreover, the proposed technique performed

better than recognized classification techniques like SVMs of NNs, with or

without a preprocessing method like PCA. Additionally to that, when having

evolved the rules, it takes less than a 10th of a second for the testing part

to take place on an average performing computer. Most importantly, the

method can provide prototypes of rules for each fibrosis stage and information

about the importance and interaction of the attributes.

As a future step to be undertaken, it is planed to focus more on the most

important feature, the liver stiffness, as a part of the patients can be di-

rectly classified by using that attribute only while, for the other part, it gives

important information about the classes they are close to; the classification

method proposed herein could then be adapted and employed only for these

delicate cases.

Additionally, images obtained by clinical ultrasound examination are to

be used in the near future as another indicator that could help in identifying

a more precise diagnosis like in [17].
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Method Pop. Size Pr Pm MS Eval. calls Generations

Hill Climbing 1 - 0.1 - 1000 20

CCEA 50 0.9 0.2 0.1 - 80

Table 2: Parameter values for the hill climbing algorithm and the CCEA. Pop. size refers

to the size of the population, Pr and Pm are the probabilities for recombination and

mutation, MS is the mutation strength and the last two parameters represent the stop

conditions for the two combined methods.

27



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Generations

A
cc

ur
ac

y 
%

Test Accuracy
Training Accuracy

Figure 1: Accuracies for a well-performing run of the best configuration found by the hill

climbing algorithm.
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Figure 2: Dissimilarities in each of the five species for the same run as in Figure 1.
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Actual

Predicted

F0 F1 F2 F3 F4

F0 0 0 2 0 0

F1 7 59 27 7 1

F2 0 0 4 0 8

F3 0 0 0 8 8

F4 0 0 3 2 46

Table 3: Example of a confusion matrix of CCEA for differentiating the correct labeling

from the misclassifications: predicted outcomes on the rows, actual classes on the columns,

number of correct predictions on the diagonal.
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Method Minimum Maximum Mean (%) St. dev. (%)

CCEA 58.89 65.55 62.11 2.14

SVM 53.33 63.89 60.11 3.74

NN 53.33 66.67 58.89 4.29

SVM+PCA 57.78 64.44 61.33 2.56

NN+PCA 52.22 66.67 59.61 3.54

Table 4: The comparison between the accuracy results obtained by the considered tech-

niques averaged over 30 repeated runs. The minimum and maximum values over the 30

trials, as well as the standard deviations are included.

CCEA vs.
p-values

t-test Wilcoxon Rank-Sum Test

SVM 0.01 0.07

NN 4.3e-4 6.8e-4

SVM+PCA 0.2 0.3

NN+PCA 0.06 0.02

Table 5: The p-values calculated through a t-test for independent samples and a Wilcoxon

rank-sum test for CCEA vs. the other techniques as applied for the classification of the

liver fibrosis staging data.
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Figure 3: Most selected attributes (from 30 configurations) that yield the best results.

The attributes are represented in the order in which they were previously presented in

Table 1.
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Summary

A rule generator based on cooperative coevolution and powered by a hill

climber to choose the most appropriate and crucial medical attributes is

employed in present paper for the determination of the liver fibrosis degree

within chronic hepatitis C. Clinical/biochemical examinations and the liver

stiffness result from the state-of-the-art non-invasive Fibroscan device play

together a complex role that must be discovered by the proposed methodol-

ogy. The combination between the hill climber and the cooperative coevo-

lutionary classifier aims not only towards a rigorous feature selection and

accurate prediction capacity, but additionally for an illustration of the exist-

ing interaction between those attributes that actually trigger the outcome.

Hepatic fibrosis is a crucial indicator of a liver disease within chronic hepati-

tis C. The more precise the identification of its stage, the more increased the

chances of an immediate proper treatment and survival of the patient. The

particular data set employed in this study comes from the 3rd Medical Clinic

of the University of Medicine and Pharmacy of Cluj-Napoca, Romania, and

consists of 722 samples with 24 attributes and 5 possible degrees of fibrosis. A

hill climber searches for a possible boolean selection of attributes through the

search space. Every candidate configuration is measured against the training

set by means of a cooperative coevolutionary approach to classification. For

the given selection of features, corresponding genotypic rules evolve within

different species for each class. The performance of a resulting set of rules

is the fitness credited to the potential combination of attributes. The medi-

cal expert opinion on the significance and relationships of the consequential

features confirms the computational findings.
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