
Evolutionary-Driven Support Vector Machines for Determining
the Degree of Liver Fibrosis in Chronic Hepatitis C

Ruxandra Stoeana,∗, Catalin Stoeana, Monica Lupsorb, Horia Stefanescub, Radu Badeab

aDepartment of Computer Science, University of Craiova, A. I. Cuza Str., No. 13, 200585, Craiova, Romania
bDepartment of Ultrasonography, 3rd Medical Clinic, University of Medicine and Pharmacy Cluj - Napoca, Croitorilor

Str., No. 19-21, 400162, Cluj-Napoca, Romania

Summary

Objective: Hepatic fibrosis, the principal pointer to the development of a liver disease within
chronic hepatitis C, can be measured through several stages. The correct evaluation of its de-
gree, based on recent different non-invasive procedures, is of current major concern. The latest
methodology for assessing it is the Fibroscan and the effect of its employment is impressive.
However, the complex interaction between its stiffness indicator and the other biochemical and
clinical examinations towards a respective degree of liver fibrosis is hard to be manually discov-
ered. In this respect, the novel, well-performing evolutionary-powered support vector machines
are proposed towards an automated learning of the relationship between medical attributes and
fibrosis levels. The traditional support vector machines have been an often choice for addressing
hepatic fibrosis, while the evolutionary option has been validated on many real-world tasks and
proven flexibility and good performance.

Methods and material: The evolutionary approach is simple and direct, resulting from the
hybridization of the learning component within support vector machines and the optimization
engine of evolutionary algorithms. It discovers the optimal coefficients of surfaces that separate
instances of distinct classes. Apart from a detached manner of establishing the fibrosis degree for
new cases, a resulting formula also offers insight upon the correspondence between the medical
factors and the respective outcome. What is more, a feature selection genetic algorithm can be
further embedded into the method structure, in order to dynamically concentrate search only on
the most relevant attributes. The data set refers 722 patients with chronic hepatitis C infection and
24 indicators. The five possible degrees of fibrosis range from F0 (no fibrosis) to F4 (cirrhosis).

Results: Since the standard support vector machines are among the most frequently used meth-
ods in recent artificial intelligence studies for hepatic fibrosis staging, the evolutionary method is
viewed in comparison to the traditional one. The multifaceted discrimination into all five degrees
of fibrosis and the slightly less difficult common separation into solely three related stages are
both investigated. The resulting performance proves the superiority over the standard support
vector classification and the attained formula is helpful in providing an immediate calculation
of the liver stage for new cases, while establishing the presence/absence and comprehending the
weight of each medical factor with respect to a certain fibrosis level.

Conclusion: The use of the evolutionary technique for fibrosis degree prediction triggers sim-
plicity and offers a direct expression of the influence of dynamically selected indicators on the
corresponding stage. Perhaps most importantly, it significantly surpasses the classical support
vector machines, which are both widely used and technically sound. All these therefore confirm
the promise of the new methodology towards a dependable support within the medical decision-
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making.
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1. Introduction

The major indicator of progressive liver disease within chronic hepatitis C – hepatic fibrosis –
needs to be most accurately staged for an immediate antiviral therapy in case of a significant level.
Recent medical practice for this purpose has moved from the standard liver biopsy, which is both
invasive and somewhat unreliable, to either biochemical testing [1] or imaging [2]. The most
recent technological advancement for the evaluation of liver fibrosis is the Fibroscan (Echosens,
Paris, France), which measures liver stiffness through elastographical means.

However, for the final interpretation of the influence of the liver stiffness and the other com-
plementary medical exams over the corresponding degree of fibrosis, an appropriate learning
method from artificial intelligence helps assist the complicated decision-making. Hence, a sig-
nificant number of papers have arisen in the latest years, exploiting the application of approaches
ranging from the classical techniques of naı̈ve Bayes and k-nearest neighbor [3] to the modern
neural networks [4].

Remarked for their high predictive power, support vector machines (SVMs) [5] have also been
widely used for mining liver fibrosis [1, 2], as well as other medical data [6]. They resolve classi-
fication through a geometrical perspective on the problem: Hyperplanes divide data from distinct
classes and their optimal formulation must be discovered. Although the accuracy of prediction
deriving from a SVM solving of a problem is superior to that resulting from other intelligent
systems, the complexity of the traditional mathematical treatment of the inherent optimization
task is somewhat uninviting. There are, nevertheless, several software implementations to be
straightly utilized, but the inner engine is still a black-box; moreover, they are usually directed
towards obtaining the value of an overall accuracy on a test set of data rather than exhibiting a
formula for further direct predictions.

It is because of these reasons that the present paper puts forward an alternative methodology
by means of a novel hybridization between support vector machines and evolutionary algorithms
(EAs) [7]. The evolutionary-driven support vector machines (ESVMs) [8, 9] assume the geo-
metrical principles upon learning/separation of SVMs, but solve the inferred optimization task
of determining the optimal hyperplane (coefficients) through evolutionary means.

The motivation of current work is consequently to offer a more flexible methodology provided
by the EA, while inheriting the strengths of the classical SVMs, in order to eventually give
assistance for liver fibrosis staging. Present approach thus aims towards both an enhanced model
and better performance in four main steps:

1. To simplify and exhibit a white-box solving – training of separating hyperplanes – and
achieve a hands-on fast testing.

2. To implicitly select the most important indicators for decision making.
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3. To provide a direct expression (formula) of the influence of the implied medical indicators
on the fibrosis level and use it for a direct call to any new patient sample that arrives, without
repeating the entire training process.

4. To surpass the accuracy of SVMs in the prediction of the fibrosis degree for new examples.

The paper is structured as follows. Section 2 describes the given problem of predicting stages
of liver fibrosis based on stiffness-related and clinical medical indicators: The problem is de-
tailed, the data set is explained and previous studies are discussed. Section 3 outlines the con-
cepts revolving around classification and SVMs – the learning metaphor and training mechanism
are reviewed. The proposed ESVM approach is given in Section 4: The aims are defined, the
algorithm and components are summarized and an enhancement of the ESVM by exploiting the
inner EA in order to additionally achieve the selection of the most important medical indicators
is created. The application of the ESVMs on the liver degree establishment is provided in section
5, where three experiments are carried out: two are concerned with the direct solving of the 5-
and 3-class formulations of the problem, while the last targets the approach endowed with feature
selection. Finally, the performance of prediction of the evolutionary approach in comparison to
that of standard SVMs is thoroughly addressed.

2. Materials

The prognosis and management of chronic liver diseases largely depend on the amount and
progression of liver fibrosis. In patients with chronic hepatitis C, the precise stage of liver fi-
brosis is the most important predictor of disease progression and determines the need for an-
tiviral therapy [10]. Until recently, liver biopsy has been the only way to evaluate fibrosis and
it has traditionally been considered as the gold standard [11]. Liver fibrosis is evaluated semi-
quantitatively according to the METAVIR scoring system as follows: F0 - no fibrosis, F1 - portal
fibrosis without septa, F2 - portal fibrosis and few septa, F3 - numerous septa without cirrhosis
and F4 - cirrhosis.

However, liver biopsy is an invasive and painful procedure, often with poor patient compliance,
also carrying a significant, although small risk of life-threatening complications [12]. An obvious
trend in the clinical practice observed in the latest years consists of finding a correct method for
liver fibrosis evaluation in a non-invasive way, both by biochemical tests as well as imaging
methods, as an alternative to liver biopsy. Virtually, all serological tests developed to date have
not entirely met clinician expectations, as they insufficiently predict the stage of liver fibrosis
on an individual level [13]. The imaging diagnosis methods have the advantage of being non-
invasive and, at the same time, they allow a complete evaluation of the entire organ, with a
precise appreciation of the seriousness of the disease when the fibrosis does not affect the liver
uniformly. Unfortunately, these methods have been limited for the tracing of cirrhosis and its
complications only [14].

The latest technological discovery in the evaluation of liver fibrosis is the Fibroscan, a spe-
cially adapted ultrasound device using the principle of the one-dimension transient elastography
for the assessment of liver stiffness. This gained popularity as a user-friendly, non-invasive tech-
nique for measuring liver stiffness, which has been shown to be significantly correlated with liver
fibrosis stages in a variety of clinical conditions including chronic hepatitis C [15, 16]. Although
such a good binary threshold differentiation among degrees of fibrosis has been obtained from
investigating solely stiffness [17, 18] (also on the particular data set involved in this study [19]),

3



the interaction between itself and the complementary medical examinations could further im-
prove the performance while increasing the complexity of the problem through a simultaneous
distinction between more degrees of fibrosis. It is in this respect that the association between
the elastographical value, together with the other clinical and biochemical medical attributes,
and the corresponding different stages of liver fibrosis must be artificially discovered and in-
telligently learnt in order to offer a reliable automated assistance within the modern medical
decision-making in the field.

2.1. Data set of liver fibrosis degree prediction within chronic hepatitis C

The chronic hepatitis C data set employed in this paper comes from the 3rd Medical Clinic,
University of Medicine and Pharmacy, Cluj-Napoca, Romania, and contains 722 samples of
24 indicators, with a number of missing values. The five possible degrees of fibrosis have the
following number of representatives:

• F0 – 29 examples;

• F1 – 227 examples;

• F2 – 164 examples;

• F3 – 87 examples;

• F4 – 215 examples.

The medical attributes that are chosen to trigger a certain degree of liver fibrosis are outlined in
Table 1. The first one is the stiffness indicator from the Fibroscan. The others represent the usual
hematological and biochemical (illustrative of the hepatic function) exams that are required in a
patient with chronic hepatitis C. The fibrosis stage is confirmed by the result of the liver biopsy
procedure. Summing up, a patient sample refers 24 non-invasive attributes (including the liver
stiffness derived from the Fibroscan) and the outcome established by the invasive biopsy.

2.2. Previous artificial intelligence studies of liver fibrosis grade prediction

Earlier SVM approaches for fibrosis forecasting refer the interpretation of other medical pro-
cedures: B-mode ultrasound [2] or non-invasive serum markers [1]. The former used SVM
classification to distinguish between the possible levels of fibrosis using extracted image features
from 20 post-surgical liver samples. The best classification accuracy of 2, 3, 4 and 5 classes
considered in turn were of 91%, 85%, 81% and 72%, respectively [2]. The latter employed a
SVM-based feature selection to differentiate between the low-grade fibrosis and the therapy in-
dicating significant level. The obtained accuracy for this 2-class problem on 204 patients was of
87%.

On the complementary level of computationally interpreting the stiffness results from the Fi-
broscan, there are several works that addressed other different artificial intelligence techniques
for assisting decision-making in this non-invasive evaluation of liver fibrosis. ROC analysis is
mainly used for this purpose and [19] exploits this idea on the exact current medical environment.
324 results of the Fibroscan alone were taken and the technique was used to resolve the binary
classification between tasks defined as F0 vs. F1234 (87.74% obtained correct differentiation),
F01 vs. F234 (78.62% accurate distinction), F012 vs. F34 (84.91% performance), F0123 vs.
F4 (89.94% accuracy of prediction). Further referring merely to the proposed medical structure
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of the data, a primary database that included 125 patients and 26 attributes (stiffness from the
Fibroscan plus other clinical indicators) was addressed through the application of neural net-
works, naı̈ve Bayesian classification and the k-nearest neighbor algorithm, while investigating
the importance of the stiffness indicator within the discrimination [3]. On the same data set, [4]
employed a feature selection approach, based on the analysis of correlations between the medical
indicators and the fibrosis degrees, to improve the classification process performed by both the
naı̈ve Bayes classifier and the probabilistic neural network model. The best reported resulting
accuracy of prediction was of 70%. To the best of our knowledge, no artificial intelligence-based
investigation has been yet performed on the specific data set reported in this paper.

As compared to these preceding studies, the use of proposed ESVM on the data set enunciated
in subsection 2.1 aims for taking the classification power from the SVM, for the theoretical suc-
cess, while simplifying its operation and improving its inner mechanics, for a better performance
and usefulness on the practical side. Therefore, following the previous efficient application of
SVM approaches for the differentiation among liver fibrosis degrees (and in further other medi-
cal fields), the target of present paper is to offer a more flexible and easily functional alternative,
which is achieved through the hybridization of SVM learning and EA training/optimization.

3. Prerequisites of the model

The intelligent automated classification of chronic hepatitis C patients into grades of liver
fibrosis is approached by a novel technique that proceeds from the state-of-the-art learning
paradigm of SVMs, while it further derives the detection of discriminating surfaces between
outcomes through the means of EAs [8, 9].

3.1. A characterization of classification
A classification problem may be defined by the subsequent components:

• a set of m training pairs of the form (xi, yi), where each couple holds the information related
to a data sample and its confirmed outcome;

• every example is described by n attributes: xi ∈ [a1, b1]× [a2, b2]× ...× [an, bn], where ai, bi

denote the bounds of definition for every attribute of a sample;

• each corroborated outcome yi ∈ {0, 1, ..., k − 1}, where there are k possible classes;

• a set of p test pairs of the type (x′i , y
′

i), where the target is unknown to the learning machine
and must be predicted.

Remark: As in the customary notation, throughout present paper, vectors are written in bold.

Learning then pursues the following steps:

• A chosen classifier learns the associations between each training sample and the acknowl-
edged output.

• Either in a black-box manner or explicitly, the obtained classifier takes each test sample and
makes a forecast on its probable class, according to what has been learnt.

• The prediction accuracy of the technique is eventually assessed as the number of correctly
labeled cases over the total number of test samples.
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• The information regarding the disposal of the misclassified examples – the confusion ma-
trix – brings additional insight into the problem and possible limitations of the considered
method.

3.2. Support vector machines

A modern and powerful way to tackle classification is provided by the original, though inter-
nally complex technique of SVMs. The methodology considers the distinct classes of examples
being divided by geometrical surfaces – separating hyperplanes – whose optimal behavior is
determined by an extension of the method of Lagrange multipliers.

3.2.1. Classification particularities
To start with, there are a couple of characteristics in their reference to classification. A k-class

task is reconsidered through corresponding 2-class reformulations that are separately and inher-
ently addressed and afterwards combined in a voting scheme. The most famous such mechanism
is the one-against-all procedure (1aa) [20]. Moreover, as compared to the other known method,
the one-against-one (1a1) scheme, 1aa requires less SVMs to be constructed, although the in-
dividual binary problems are larger in this case [21]. 1aa builds k classifiers: Every ith SVM
considers all training samples labeled with i as positive and all the remaining as negative. Once
each separating surface is determined by the SVM learning and optimization engines, the label
for a test sample is given by the class that has the maximum value as output from the k obtained
decision functions. Therefore, the second feature of classification within SVMs is that no data
example remains unclassified – there is always a class to which it is appointed.

3.2.2. Support vector learning and optimization
Training samples may be either linearly or nonlinearly separable and SVMs build a corre-

sponding hyperplane accordingly. In the best case scenario, when the opposite (positive and
negative) sets of samples are strongly disconnected from each other, there exists a linear hyper-
plane of equation (1) which performs the separation.

〈w, xi〉 − b = 0, i = 1, 2, ...,m . (1)

In (1), xi stands for every training sample in turn, w ∈ <n and b ∈ < are the coefficients of
the hyperplane and 〈〉 denotes the scalar product.

As a stronger condition for linear separability, examples of each class are, in fact, positioned
behind a supporting hyperplane for that label, which can be mathematically expressed as (2) [22].

yi(〈w, xi〉 − b) > 1, i = 1, 2, ...,m . (2)

Equation (2) outlines the existence of the supporting hyperplanes for both the positive and
negative training sets in a concise manner, where it is regarded that yi ∈ {−1, 1}.

In practice, the situation when (2) holds for all given examples with no exception is extremely
rare. Errors of separation may be nevertheless added to the formulation with the additional
requirement that they are kept to a minimum. By observing the deviation of every data sample
from the corresponding supporting hyperplane, which can be measured as ±ξi/‖w‖, ξi ≥ 0, the
condition in (2) may be relaxed by introducing such error variables (3).

yi(〈w, xi〉 − b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, ...,m . (3)
6



On the other hand, a discriminating surface must be general enough to handle new instances
with proper decision ability. This leads to the prerequisite that the two sets of training examples
must have a maximal margin of separation in-between. The hyperplane is therefore compelled
to a minimal ‖w‖.

Hence, the SVM learning scheme specifically leads to the optimization problem (4).
minw,b

such that the objective ‖w‖2 + C
m∑

i=1

ξi,C > 0, holds

subject to constraints yi(〈w, xi〉 − b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, ...,m .

(4)

If the samples cannot be delimited in a linear fashion, then a nonlinear surface is obtained by
the kernel trick [5]: Data are mapped into a higher dimensional space where a linear surface is
able to do the separation. Kernels are commonly taken in either a polynomial expression (with a
certain degree) or Gaussian (radial) formulation (of parameter γ).

The resulting optimization statement in (4) may be standardly resolved by relying on a math-
ematically complex extension of the Lagrange multipliers technique [5]. A dual formulation
is derived and the optimal Lagrange multipliers are considered as the solutions of the system
resulting by setting the gradient of the new objective function to zero. Once the Lagrange mul-
tipliers are found, several underlying conditions may be used to further compute the coefficients
of the hyperplane. Existing software programs, however, only output the class of a test case di-
rectly after the black-box training; no formula describing the relations among indicators can be
visualized, at least not straightforwardly.

3.2.3. Pros and cons of support vector machines for practical reference
SVMs are popular for real-world classification due to several advantages over classical

paradigms:

• From the performance perspective, they are one of the most powerful classifiers.

• Their working is independent of the number of features involved in a decision problem [23];
the ”curse of dimensionality” is clearly handled.

• From the computational point of view, SVMs provide a fast training.

• They are very useful for a fast insight into the capability of a robust learning technique,
when facing an explicit problem to be solved.

However, there are also several disadvantages that they bring along to their modeler and user:

• Although learning is fast, present implementations do not provide a formula for parameters-
decision interaction, which is extremely useful for gaining inside information into the prac-
tical phenomenon.

• These decision equations could be nevertheless computed, but this requires further inspec-
tion of the available software programs and the design of a second application that could
store them and be called whenever a new case appears.

• A complete SVM algorithm may be implemented and expanded for the particular require-
ments of a current problem, but this will prove to be a relatively demanding task.
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• The learning process is rather black-box and the testing phase must necessarily include the
training, which slows down the effective application, especially if the number of known
cases is large.

4. Methodology

In what follows, the proposed evolutionary approach is described with respect to its compo-
nents and algorithm.

4.1. Motivation and aim

The recently developed method of evolutionary-driven support vector learning (ESVM) [8]
has been thoroughly investigated and validated on several benchmark real-world data sets [9].
Experiments have demonstrated both the absolute performance of the hybridized classifier and its
relative competitiveness, in simplicity and prediction ability, in direct comparison to the standard
mechanism of SVMs.

The prior application of the SVMs for the liver fibrosis staging and the previous findings and
results of ESVMs have provided the motivation to consider employing the new learning strategy
towards the discovery of the relationship between the clinical, biochemical, elastographical indi-
cators and the corresponding degree of liver fibrosis. The specific features and implementation
of the ESVM open the possibility not only for a strong support in the decision-making process,
but also for an explicit mathematical view on the interaction of each medical parameter on the
outcome.

In terms of comparison to the existing SVM solution to the problem, it is expected that, besides
their inherent straightforwardness and transparency, ESVMs will manage to also outperform the
standard SVM methodology as accuracy of the trained classifier is concerned.

The proposed policy unfolds in the following manner. A training data set, comprised of sam-
ples with a given outcome for the liver fibrosis grade, is given to the ESVM for learning the un-
derlying example-class correspondence. The ESVM regards the separation into categories in the
same geometrical manner as the original SVMs. Once an optimization formulation is reached,
the evolutionary component generates the coefficients of each surface of decision between the
different degrees. When the coefficients are determined, an equation differentiating each grade
of fibrosis from the others is obtained, stored and ready to be utilized, at no further computational
cost, whenever a new case arrives. The accuracy of the method is reported as a result of testing a
set of previously unseen samples.

4.2. Evolutionary-powered optimization within support vector machines

The optimization task in (4) may be alternatively plainly addressed by the adaptable and gen-
eral algorithms of evolutionary computation. Based on principles of evolution and hereditary [7],
EAs are able to inherently and unrestrainedly determine the coefficients that lead to an optimal
separation into classes. EAs maintain a population of potential solutions: Each such individual
encodes a candidate array of w and b and the whole set interacts towards the creation of en-
hanced solutions and the survival of the fittest against the training examples. After a number of
generations, the EA converges to an (almost) optimal solution, which represents the best deci-
sion hyperplane that separates samples from divergent classes and is both accurate and general
enough. Since the coefficients w and b are encoded in the structure of individuals, the equation of
the evolving separating hyperplane is available at all times and especially useful at the end of the
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process. The evolved mathematical combination of chronic hepatitis C indicators may prove to
be helpful to understand the weight and interaction of each medical attribute on the liver fibrosis
grade. The accuracy of prediction of the model is computed using the available test samples,
while the formula is stored for future reference and employment when a new case appears.

4.2.1. The evolutionary algorithm for support vector optimization
The specific evolutionary steps to reach the optimal coefficients of a SVM decision surface are

outlined in pseudo-code in Algorithm 1 and are detailed in section 4.2.2.

Algorithm 1 The EA to establish the optimal equation of a SVM decision hyperplane
Require: The optimization problem in (4)
Ensure: The fittest separating hyperplane with high training accuracy and generalization ability

begin
t← 0
initialize population P(t) of potential hyperplanes of coefficients w and b
evaluate P(t) in terms of training accuracy and maximal separation between decision classes
while maximum number of evolution generations not reached do

t← t + 1
select parents in P(t) from P(t-1)
recombination on P(t)
mutation on P(t)
select survivors in P(t)
evaluate P(t)

end while
return fittest hyperplane coefficients
end

4.2.2. The evolutionary components
The considered EA features the following elements and behavior:

Individual encoding An individual c is represented as an array of the coefficients of the hyper-
plane, w and b (5).

c = (w1, ...,wn, b). (5)

Initial population Individuals are randomly generated, such that wi ∈ [−1, 1], i = 1, 2, ..., n
(recall that n is the number of features of a sample), and b ∈ [−1, 1].

Fitness assignment The fitness expression derives from the objective function of the optimiza-
tion problem (4) and is subject to minimization. Constraints are handled by penalizing the
infeasible individuals through appointing a function t : R → R which returns the value of
the argument, if negative, and zero otherwise. Consequently, the expression of the fitness
function for determining the optimal coefficients of the decision hyperplane is defined as in
(6).
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f (w, b) = ‖w‖2 + C
m∑

i=1

ξi +

m∑
i=1

[t(yi(〈w, xi〉 − b) − 1 + ξi)]2. (6)

The scalar product is employed in the form (7):

〈u, v〉 = uT v. (7)

Indicators for errors Additionally, all deviations ξi, i = 1, 2, ...,m (m is the number of samples),
are computed [22] in order to be referred in the fitness function. The current individual
(separating hyperplane) is taken and matching supporting hyperplanes are appointed. A
minimum and maximum, respectively, of the value for scalar products between w and the
positive and negative samples, correspondingly, are calculated as in (8).

m1 = min{〈w, xi〉|yi = +1}.
m2 = max{〈w, xi〉|yi = −1}.

(8)

The coefficients of the supporting hyperplanes are then accordingly derived in (9).


p = |m1 − m2|.

w′ = 2
p w.

b′ = 1
p (m1 + m2).

(9)

Next, for every training sample xi, the deviation to its corresponding supporting hyperplane
is obtained from (10).

δ(xi) =


〈w′, xi〉 − b′ − 1, yi = +1,
〈w′, xi〉 − b′ + 1, yi = −1,
i = 1, 2, ...,m.

(10)

Finally, if the sign of the deviation equals that of the class, the corresponding ξi = 0; else,
the (normalized) absolute deviation is returned as the indicator for error. Normalization
may be necessary as the sum of deviations is added to the expression of the fitness function.
As a consequence, in the early generations, when the generated coefficients lead to high
deviations, their sum, considered from 1 to the number of training samples, takes over the
whole fitness value and the evolutionary process is driven off the course to the optimum.

Parent selection Perhaps the most simple and practical selection method is tournament selection
[7] that is based on a relative fitness comparison and consequently is decided to be used
in the ESVM. For the number of times required to fill the parents pool, two (or more)
individuals are randomly chosen and the best one of them, based on their evaluations, is
selected for reproduction.
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Variation operators The types of recombination and mutation operators [7] that commonly act
within canonical real encoded EAs are also chosen to be employed within the ESVMs.

Within recombination, for every individual in the current population, a random number in
the [0, 1] interval is generated; if it is smaller than the given recombination probability, then
the current individual is chosen for recombination. If the number of chosen individuals is
even, then they recombine as pairs which are randomly formed. Otherwise, one individual
is deleted or another one is added from the parents pool, a decision which is also randomly
taken. The typically used recombination for real encoded problems is the intermediate
scheme, which presumes that the value of each gene of the offspring is a convex combination
of the corresponding values of the parents (11). The usual number of offspring is one or two.

oi = α · p1i + (1 − α) · p2i , i = 1, 2, ..., n. (11)

In present implementation, only one offspring is presumed and α is taken equal to 0.5.

Mutation takes every individual in the current population in turn and, for each gene of that
individual, a random number in the [0, 1] interval is generated. If the mutation probability
is higher than the generated number, then that gene suffers mutation. For the continuous
instances, mutation customarily performs a small perturbation in the value of the selected
gene, which is induced by a parameter called mutation strength multiplied by a number that
is randomly generated, usually following an either uniform or normal distribution (12).

oi = oi + N(0, 1) · ms, i = 1, 2, ..., n. (12)

Mutation strength is denoted by ms and N(0, 1) stands for the standard normal distribution.

Survivor selection The population of the next generation is decided to be formed of the newly
obtained individuals plus the individuals that were not selected for reproduction; this means
that the offspring resulting after either recombination or mutation automatically replace their
parents. In the current case of recombination, where one offspring results from two parents,
it is the less fit of them that is substituted by the descendant.

Stop condition It is opted for the modality when the EA stops after a predefined number of
generations. The fittest individual (hyperplane) from the entire evolutionary process is taken
as the solution to the classification problem.

Test step As the fittest coefficients of the separating hyperplane, wopt and bopt, are found, the tar-
get for a new, unseen test data instance x′i can be determined directly following the function
in (13).

f (x) = 〈wopt, x
′

i〉 − bopt, i = 1, 2, ..., p. (13)

If the classification task is intrinsically binary, then the class is determined from the sign of
the function as positive or negative. If the problem has several (k > 2) classes, then a voting
mechanism, based on the values of the current sample as a parameter of the different result-
ing decision functions, is applied. In the 1aa mechanism that is chosen to act on the present
prediction challenge, a distinct ESVM is created to separate one fibrosis grade from the
united others. Each ESVM algorithm determines the optimal expression of a corresponding
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decision function (13). In order to establish the label for a test sample, the values of the k
functions for that example are compared and the highest estimate is taken to point to the
class that triggered that ESVM.

The accuracy of the ESVM classifier is calculated by counting the percent of correctly
appointed test cases.

4.3. GA-based feature selection within ESVM

Although SVMs have been demonstrated to circumvent the curse of dimensionality for highly
multidimensional data sets [23], it may prove important to concentrate learning only on the
most influential features from all given indicators. The ESVM could also surely benefit from
some form of prior feature selection. Therefore, one of the commonly used feature extraction
mechanisms, Principal Component Analysis (PCA), has been employed in this respect. This
led to a sizeable reduction of the data dimensionality from 24 to only 6 assembled attributes.
Unfortunately, on the newly obtained data, both the ESVM and SVM performed comparative to
the previously achieved accuracies, but slightly worse. There was however a major improvement
in runtime.

Nevertheless, since EAs power the currently proposed technique, we can once more benefit
from their flexibility in order to implement an original approach for choosing features leading to
improvement in the performance of the ESVM. The presented method is thus further endowed
with a mechanism for dynamic feature selection provided by a genetic algorithm (GA).

The novel GA-ESVM is consequently constituted of a population of individuals on two levels.
The higher level of an individual selects optimal indicators, whose presence/absence is encoded
by binary chromosomes, while the lower one generates weights for the chosen attributes.

The fitness assignment triggers the evaluation on both levels, i.e. what are the selected features
and what are their weights. The individuals to produce the next generation are selected as before,
always retaining both encodings.

Each level of an individual in the population is nevertheless modified by its own genetic op-
erators: the low one as before, while the high GA parts of a chromosome undergo one-point
recombination and bit-flip mutation [7]. This type of recombination swaps parts of the parents
after a randomly generated cut point in order to obtain two offspring that therefore borrow partic-
ularities from both. Bit-flip mutation changes the value of a stochastically chosen gene from 1 to
0 and viceversa. Survivor selection is also performed differently at the high-level, since offspring
(based on the symmetric evaluation value between the two encodings) replace their parents only
if better.

The EA for the double encoding follows the evolutionary cycle in Algorithm 2.

4.4. Theoretical implications of an evolutionary support vector solution to fibrosis differentiation

The newly elaborated ESVMs thus preserve the originality of SVM learning but simplify the
solving of the optimization derived assignment through the flexible nature of EAs.

As a result, in contrast to the SVMs, the ESVMs exhibit a number of qualities, both globally
and in particular for the given task of fibrosis degree prediction:

• The evolutionary technique resolves the complexity of support vector training, traditionally
performed by the mathematically intricate and constrained extension of the Lagrange mul-
tipliers method.
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Algorithm 2 The GA-ESVM to establish both the optimal features and weights of a SVM deci-
sion hyperplane
Require: The optimization problem in (4)
Ensure: The fittest separating hyperplane with high training accuracy and generalization ability

begin
t← 0
initialize population P(t) of potential hyperplanes of coefficients w and b, where each indi-
vidual is made of two levels: a binary one when the powerful attributes are selected and a
real-valued level encoding where weights for these chosen features are generated
evaluate P(t) in terms of training accuracy and maximal separation between decision classes,
taking into account both the selected indicators and the weights in each individual
while maximum number of evolution generations not reached do

t← t + 1
select parents in P(t) from P(t-1)
recombination on high-level P(t)
recombination on low-level P(t)
mutation on high-level P(t)
mutation on low-level P(t)
select survivors in P(t)
evaluate P(t)

end while
return fittest hyperplane coefficients along with its selected features
end

• The implementation is thought to output the coefficients of the separating hyperplane, so
that the test phase actually takes place separately (from the training module) and instantly
as a new case is given as input.

• Because the ESVMs specifically yield the coefficients of the hyperplanes, the decision equa-
tions are additionally available and these are highly important to physicians for the study
regarding the impact of the indicators on the outcome.

• From the algorithmic point of view, the methodology involves active understanding and par-
ticipation from the modeler that connects the artificial learning with the real-world medical
situation.

There are however also some possible limitations that may arise in the experimental stage:

• EAs make use of many parameters which are nevertheless relatively easy to be set in prac-
tical applications.

• Because of the reference to all samples at the evaluation of every individual, ESVMs have a
reasonably slower training period of time than the corresponding procedure within SVMs,
which makes only one call to the data set.

5. Results and interpretation

Apart from the theoretical arguments that the ESVM surpasses the classical SVM in terms
of simplicity and operability, the assumption that the evolutionary alternative also outperforms
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the standard engine as regards accuracy on the practical fibrosis prediction task is further on
investigated. Several experiments and enhancements are performed, the involved parametriza-
tion issues are addressed and an objective comparison to the original formulation is thoroughly
accomplished.

5.1. Pre-validation on different medical data

The proposed approach has demonstrated its efficiency in its application to several test cases
from different real-world domains [8, 9]. Nevertheless, it may be important to review some pre-
validation of its performance on another data set also from the medical domain with a population
of patients different from the one in this paper. In this respect, we analyzed data on diabetes
mellitus diagnosis from the Johns Hopkins University. All patients in the data set are females
of at least 21 years old, of Pima Indian heritage, living near Phoenix, Arizona, USA. There are
8 attributes (either discrete or continuous) referring personal data (age, number of pregnancies)
and medical data (blood pressure, body mass index, result of glucose tolerance test etc).

The last attribute is a discrete one and outlines the diagnosis, which is either 0 (negative) or 1
(positive). 34.9% of the patients in the data set are assigned diabetes positive. The total number
of cases is 768 and the data is complete.

When averaging 30 random trials with a rate of 75%-25% training-test samples, ESVMs out-
perform SVMs with a result of 77.31% accuracy as opposed to 76.82% of the latter.

5.2. Setup and pre-experimentation

The 722 patient examples available for fibrosis degree determination are split into 542 training
and 180 test samples, in the proportion 75-25% that is customary in machine learning experimen-
tation. The common method of mean substitution is chosen for the imputation of missing values;
therefore, the mean values – computed for every class in turn – replace the missing records for
instances of the corresponding categories. Data are normalized, and so are errors of classification
ξi, i = 1, 2, ...,m, as these choices led to better performance in the pre-experimentation stage.

The ESVM is run 30 times on randomly generated training and test sets of the established
percentage, for reasons of both statistical validity and mandatory analysis within EA trials. The
reported performance is computed as the average of the accuracy results in 30 applications of the
algorithm on the test samples.

The values for the parameters to be tuned are generated by Latin hypercube sampling (LHS)
in order to automatically obtain a set (as large as necessary) of different configurations. This
statistical method is employed to generate a space-filling (fair) sample of the algorithms param-
eters. For small sample sizes, it is well-known to generate more even distributions than random
sampling [24]. The application of this tool requires an a priori setting of parameter intervals. The
upper bound of the population size is restricted to 200 and that for the number of generations to
500. The mutation and recombination probabilities are selected in the range [0, 1]. The upper
limit for the mutation strength parameter is set to 2. 30 designs are subsequently generated and
the best one in resulting accuracy gives the appropriate values for the parameters.

As the choice of the kernel is concerned, the debate as to which type would be more appro-
priate for the current problem does not have a straightforward answer. It is generally confirmed
that the Gaussian kernel outperforms the linear form, however it is theoretically acclaimed that
one situation when the latter is more suitable than the former is when the number of features is
very large (as here, where the fibrosis differentiation assignment has 24 attributes). In this case,
the data do not need to be mapped into a higher dimensional space, as a nonlinear kernel does

14



not improve the performance and is more difficult to parameterize at the same time [25, 21]. It
finally remains for the automatic parameter setting procedure to establish the proper kernel when
confronted with the actual task.

For the multi-class treatment, 1aa is preferred to 1a1 in the undertaken experiments, as a
small number of ESVMs to be built is cheaper for the particular methodology than a relatively
fewer number of samples for each class that would still not considerably reduce runtime for
the evolutionary solving. What is more, 1aa permits a more accurate discrimination between
the particularities of each individual class and that of the rest. Finally, the early experiments
demonstrated a better prediction with the 1aa mechanism.

5.3. Experiment 1: Demarcation between five possible grades of fibrosis

The most difficult task within the establishment of the fibrosis grade on the base of several
medical factors is to distinguish between every single such stage. Therefore, the aim is to design
an appropriate technique to discover the individual conditions for each degree from F0–F4.

The first experiment thus targets to obtain the ESVM model for the separation of the chronic
hepatitis C patients into the 5 distinct classes of fibrosis and attempts to provide the formula of
indicators interaction for each outcome as opposed to the others.

The best obtained design of the LHS holds values for the evolutionary and SVM parameters
as depicted in the corresponding column (ESVM 5c.) of Table 2. However, the LHS obtained
many different well performing configurations for the involved parameters, which brings another
quality of the proposed solution: The ease in establishing values for the variables supports both
the practical implications of its utilization and the viability of the choice of an evolutionary
multi-parameterized methodology.

The average over the 30 performed trials of random cross-validation resulted in a test accuracy
of 62.03% (Table 9, ESVM column). The distribution of correctly predicted versus misclassified
cases per class can be visualized in the confusion matrix of Table 3, in an example run that
obtained 65% accuracy.

The solution provided by the ESVM is also important for the capability to output formulas for
the differentiation of each class from all the others, as for every degree it gives the coefficients
for each indicator. When applied to the values a new patient has for the considered indicators,
the coefficients are multiplied with the corresponding patient values and then summed as in (13).
As a consequence, each such coefficient value represents a weight for that given attribute: be
that the weight is closer to zero, then the corresponding feature has a smaller importance; if it
has a higher value, be that it is positive or negative, it will more powerfully influence the final
outcome. Figure 1 illustrates sample coefficients found by ESVM for each of the 24 attributes
and for each of the 5 classes. So, the coefficients for the F0 class, for example, can be obtained
from the first bar in each group. It has to be underlined that a smaller negative value or a higher
positive one does not mean that the value for the corresponding attribute has to be low or high:
it just means that the attribute has high significance.

The figure brings evidence of the high significance of the Fibroscan-derived stiffness for
classes F0, F1 and F4, while the usual medical exams exhibit different smaller influences as
the three degrees are concerned. These classes are nevertheless controlled in a significant degree
also by aspartate aminotransferase (w8). F2 and F3 are however influenced in a higher extent
by the total bilirubin indicator (w11). It is worth noticing that most of the weights change in an
almost linear manner from F0 to F4: starting from negative values for the first and reaching to
relatively high positive values for the latter or viceversa.
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Once the expressions of the relationships between the medical indicators and each fibrosis
degree are found as in this example, the labeling of any new case can be instantly conducted:
Its values for every attribute (A1-A24) are introduced in each stored formula and the maximum
obtained number indicates the predicted grade from whose expression it was computed.

5.4. Comparison to standard support vector machines on the initial 5-class problem

Out of the available programs for SVM modeling, it was decided to use two packages within
the R software and environment, i.e. kernlab and e1071, to implement a SVM for an objective
comparison. The reasons for employing these very packages were twofold: kernlab is a flexible
SVM implementation and the svm() function in e1071 is a robust interface.

The best performing design of the LHS gives the values for the inner parameters (type of
kernel, parameter degree or γ of the kernel and the penalty for errors C) that are found in the
corresponding column (SVM 5c.) of Table 2. The chosen implementation presumes an implicit
1a1 separation.

30 random trials were also executed by the SVM and the approach obtained a test accuracy of
61.5% (Table 9, column SVM). The resulting confusion matrix is given in Table 4 on a particular
run that obtained 64.44% accuracy. It must be noted that the two confusion matrices should
not be compared in absolute values, but rather in a relative manner, as the training and test
configurations are randomly chosen for the two examples.

In order to verify the significance of the difference between the accuracy results of ESVMs
and SVMs, a t-test for independent samples is used to compare the difference in means between
the two approaches. An alternative given by the Wilcoxon rank-sum test is also employed, since
in some instances it gives greater power to reject the null hypothesis than the t-test. The obtained
p-values were of 0.54 and 0.33, respectively, therefore the difference in performances is not
significant (Table 10).

5.5. Experiment 2: Discrimination among mild, clinically significant and severe fibrosis

The ESVM provided reliable results and also sustained the functional purpose of supporting
the decision-making process of the physician. However, it is important to continue the examina-
tion of the problem and apply the approach to a classification task restricted to less classes, i.e. by
uniting the very similar categories of fibrosis: F0 and F1, on the one hand, and F2 and F3, on the
other. This is both medically reasonable and practically essential by observing the misclassified
cases among classes in the attained results. Joining such similar fibrosis grades together is also
reported by [1].

As regards the purpose of this paper, it will be investigated if the data, now distributed to only
three classes, is less ambiguous; this is anticipated to sustain the ESVMs get significantly more
accurate than the SVMs.

The values for the parameters as provided by the best performing LHS design points are given
in the matching column (ESVM 3c.) of Table 2, although many valuable configurations resulted.

By applying the ESVM on the 3-class fibrosis problem, an accuracy on the test set of 73.6%
was now achieved (Table 9, ESVM column), breaking the barrier induced by the large similarities
between values of the indicators for grades that are now in the same category. The confusion
matrix on a sample run that exhibited 75.6% accuracy of predicting the classes of test cases is
depicted in Table 5.

The relationship between the medical indicators and the fibrosis grades F0-F1, F2-F3 and F4
are found once more by the ESVM and detailed in Figure 2 in the same example run as referred
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in Table 5. Again, the stiffness seems to have the highest importance for classes F0 − F1 and
F4. Alkaline phosphatase and thrombocytes (w12 and w23) appear to also make a very straight
demarcation between the 3 outcomes.

5.6. Validation against standard support vector machines on the 3-class formulation

The SVM model was applied to the fibrosis data set and provided a test accuracy of 71% (Ta-
ble 9, SVM column). The correctly classified versus the misclassified cases are shown in the
confusion matrix in Table 6 of a run that obtained 75% accuracy. The generated LHS configura-
tion for best performance is outlined in Table 2 (SVM 3c.).

The difference in resulting accuracies between ESVMs and SVMs was also further subject
to statistical testing. The t- and Wilcoxon rank-sum tests (Table 10) now show a significant
difference in the results of the two techniques, with p-values of 0.002 given by both tests, and
thus validate the hypothesis that the ESVMs perform notably better than the SVMs for the given
3-class task.

5.7. Experiment 3: Feature selection within proposed method

The current experiment investigates whether the GA-based feature selection manages to en-
hance the performance of the original method.

Values for parameters for both the 5 and 3 classes formulations are again derived from LHS.
The best corresponding designs are depicted in Table 2 (GA-ESVM 5c. and 3c.).

When applied to the 5-classes fibrosis instance, the GA-ESVM algorithm obtained an accuracy
of 64.07%, which is a large improvement as opposed to the previous performance without feature
selection. The 3-classes case was resolved with a correct classification rate of 74.76%, surpassing
the earlier ESVM algorithm alone again.

The confusion matrices, once more relative to the training/test formations, are outlined in
Tables 7 (a run of 66.66% accuracy for 5 classes) and 8 (one of 77.77% performance for 3
outcomes).

The supremacy, in terms of classification accuracy, of the GA-ESVM over the SVM and even
the former ESVM (Table 9, GA-ESVM column) is statistically confirmed by both the t- and
Wilcoxon tests in Table 10.

The GA-ESVM additionally outputs the information regarding the most significant attributes
that reach a certain fibrosis level. For the differentiation of each class, the GA-ESVM dynami-
cally selects those indicators that distinguish it from the other degrees. Starting from randomly
chosen attributes, the algorithm cycle pursues an active evolution and an increase in the impor-
tance of certain features in the absence of others. In the end, we find that in the formula for
each fibrosis level it is at most 2 attributes that are missing, one often chosen being the age (A2).
Figures 3 and 4 illustrate the attributes weights for the 5- and 3-classes instances. When an at-
tribute is removed by the GA, its corresponding weight is set to zero in the figures. Beside the
Fibroscan stiffness that is again clearly the most important attribute, other attributes seem to have
important roles in the differentiation between the classes for both the 5 and 3 outcomes: aspartate
aminotransferase (w8), prothrombin index (w13), medium erytrocity volume (w20), thrombocytes
(w23). The GA-ESVM approach has a good advantage in the fact that an attribute is not removed
for all outcomes at once; for instance, it might be the case that an attribute has no meaning for
the healthy people, but it might have a meaning for the ones that possess a certain degree of liver
fibrosis.
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5.8. Practical assistance of the evolutionary support vector algorithm

Regarding the functionality of proposed algorithm for the complex task of a non-invasive
prediction of the correct stage of liver fibrosis, there are several observations to be drawn:

• ESVMs perform very well and stable.

• The automatic tuning of the involved variables illustrates that ESVMs are very robust and
flexible, with several possible good working configurations.

• ESVMs, as well as GA-ESVMs, provide degrees of importance for each involved indicator.

• ESVMs are able to provide a formula of the relationship between the indicators and the
fibrosis degree, which is both informative and prompt with the arrival of new cases.

• The enhanced GA-ESVM is moreover able to also inherently give the most important in-
dicators and, based on these, a significantly increased performance as opposed not only to
SVMs but also to the prior version of ESVMs.

6. Conclusions and prospective work

An evolutionary-propelled support vector learning methodology as opposed to the traditional
paradigm is proposed for the prediction of stages for liver fibrosis within chronic hepatitis C, as
resulting from standard medical examination and the new technological non-invasive approach
of Fibroscan. Motivated by the previous successes of SVMs for this hepatological problem and
the former validated superiority of the ESVM over the SVM application, the current paper inves-
tigates the ESVM solution to the task in terms of simplicity, accuracy and usefulness, taking into
consideration both a simultaneous 5-class discrimination and a coupled 3-degree formulation.

The design and functionality of the application of ESVMs for the discrimination among stages
of liver fibrosis attained its planned goals. The solution is straightforward, advantageous and
handy in several aspects:

• The whole training/optimization module, provided by means of EAs, is transparent and
adaptable.

• Aside from the delivery of the most appropriate fibrosis grade for a given configuration of
medical attributes, ESVMs also output the formula of interaction between the latter and
the former. This is highly important for an immediate testing of new cases and for un-
derstanding relationships between medical variables that may be difficult to grasp even for
experienced physicians.

• The importance of each indicator is highlighted by the ESVMs by observing the weights
that are found for the considered attributes.

• Most notably, the performance superiority of the alternative improved GA-ESVM is statis-
tically significant in comparison to the traditional SVM.

• Moreover, the GA-ESVM is able to also dynamically determine what are the medical vari-
ables that influence the fibrosis degree by an intrinsic feature selection mechanism.
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• Parametrization is easily manageable even with the increase in the number of variables that
is inherently triggered by the use of an EA.

Although the expected behavior of the evolutionary was confirmed by the experimental eval-
uation, there is one small restraint to be overcome in forthcoming investigations. Training is
somewhat slow as opposed to that within standard SVMs, due to repeated reference to all sam-
ples. This can be counterattacked through the use of a chunking procedure that selects only parts
of the training set instead of all data to be learnt.
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Table 2: Values for parameters of ESVM, SVM and GA-ESVM for the 5- and 3-classes tasks, respectively, as obtained
from best design points of the LHS.

Method
ESVM SVM GA-ESVM

Parameter 5c. 3c. 5c. 3c. 5c. 3c.
Population size 146 105 - - 120 90
Number of generations 292 210 - - 230 192
Binary recombination probability - - - - 0.07 0.05
Real recombination probability 0.23 0.12 - - 0.5 0.6
Binary mutation probability - - - - 0.05 0.04
Real mutation probability 0.21 0.78 - - 0.5 0.6
Mutation strength 0.98 0.54 - - 0.5 0.5
Kernel type pol. pol. rad. pol. pol. pol.
Degree of polynomial kernel 1 1 - 1 1 1
γ of radial kernel - - 0.1 - - -
C 1 1 1 1 1 1
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Table 3: Example of a resulting confusion matrix of the ESVM for the 5-degree fibrosis differentiation: Rows exhibit
predicted outcomes, columns show actual classes. The diagonal outlines the amount of correctly classified samples,
while each intersection of coordinates signals the number of misclassified cases.

True
Predicted F0 F1 F2 F3 F4
F0 0 0 0 0 0
F1 7 63 32 9 1
F2 1 1 2 1 0
F3 0 0 4 4 3
F4 0 0 2 2 48
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Figure 1: The coefficients discovered by the ESVM for each attribute and for each of the 5 classes. Longer bars (both
positive and negative) correspond to more important attributes. Each group of 5 bars relates to the weights of one
attribute.
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Table 4: Example of an obtained confusion matrix of the SVM for the 5-degree fibrosis differentiation: Predicted out-
comes on the rows, actual classes on the columns, number of correct predictions on the diagonal, misclassifications at
intersections.

True
Predicted F0 F1 F2 F3 F4
F0 0 0 0 0
F1 7 47 12 10 1
F2 1 10 18 8 1
F3 0 0 0 2 0
F4 0 3 4 7 49
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Table 5: Example of a resulting confusion matrix of the ESVM for the 3-degree fibrosis differentiation: Rows exhibit
predicted outcomes, columns show actual classes. The diagonal outlines the amount of correctly classified samples,
while each intersection of coordinates signals the number of misclassified cases.

True
Predicted F0 − F1 F2 − F3 F4
F0 − F1 50 31 1
F2 − F3 9 38 2
F4 0 1 48
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Figure 2: The coefficients discovered by the ESVM for each attribute and for each of the 3 classes. Longer bars (both
positive and negative) correspond to more important attributes. Each group of 3 bars relates to the weights of one
attribute.
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Table 6: Example of an obtained confusion matrix of the SVM for the 3-degree fibrosis differentiation: Predicted out-
comes on the rows, actual classes on the columns, number of correct predictions on the diagonal, misclassifications at
intersections.

True
Predicted F0 − F1 F2 − F3 F4
F0 − F1 46 14 1
F2 − F3 20 34 3
F4 4 3 55

28



Table 7: Example of an obtained confusion matrix of the GA-ESVM for the 5-degree fibrosis differentiation: Predicted
outcomes on the rows, actual classes on the columns, number of correct predictions on the diagonal, misclassifications
at intersections.

True
Predicted F0 F1 F2 F3 F4
F0 0 0 0 0 0
F1 8 56 39 5 0
F2 0 1 3 3 1
F3 0 0 0 2 0
F4 0 0 0 3 59
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Table 8: Example of a resulting confusion matrix of the GA-ESVM for the 3-degree fibrosis differentiation: Rows exhibit
predicted outcomes, columns show actual classes. The diagonal outlines the amount of correctly classified samples, while
each intersection of coordinates signals the number of misclassified cases.

True
Predicted F0 − F1 F2 − F3 F4
F0 − F1 52 29 0
F2 − F3 8 34 3
F4 0 0 54
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Table 9: Average accuracies and standard deviations in 30 trials of random cross-validation for the GA-ESVM, ESVM
and SVM.

Method
Problem GA-ESVM ESVM SVM
5-class 64.07±2.95 62.03±3.5 61.5±3.02
3-class 74.76±1.71 73.6±2.8 71±3.3
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Table 10: When the ESVM is compared to the SVM, p-values from a t- and a Wilcoxon rank-sum test show a significant
difference only in the case of the differentiation among 3 degrees of fibrosis, with the advantage on the ESVM side. The
GA-ESVM is however significantly better than both the SVM and the ESVM for either 5 or 3 classes, as indicated by the
same two tests.

Tests for every two methods
ESVM/SVM GA-ESVM/SVM GA-ESVM/ESVM

Problem t- Wilcox. t- Wilcox. t- Wilcox.
5-class 0.54 0.33 0.001 0.001 0.01 0.05
3-class 0.002 0.002 1.72e-06 4.61e-06 0.05 0.05
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Figure 3: The coefficients discovered by the GA-ESVM for each attribute and for each of the 5 classes. Longer bars (both
positive and negative) correspond to more important attributes. Each group of 5 bars relates to one attribute. Attributes
omitted by the GA are represented with a zero weight, i.e. w2 for F0 and F4.
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Figure 4: The coefficients discovered by the GA-ESVM for each attribute and for each of the 3 classes. Longer bars (both
positive and negative) correspond to more important attributes. Each group of 3 bars relates to one attribute. Attributes
skipped by the GA have the weight value set to zero.
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