Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>1.1</td>
<td>Evolutionary Computation. Inspiration and Rationale</td>
<td>11</td>
</tr>
<tr>
<td>1.2</td>
<td>Book Motivation and Objectives</td>
<td>14</td>
</tr>
<tr>
<td>1.3</td>
<td>Achievements and Restraints</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Book Outline</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Evolutionary Algorithms. Basic Concepts</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>Objectives of this Chapter</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>What is an Evolutionary Algorithm?</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Components of an Evolutionary Algorithm</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Representation</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Population</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Fitness function</td>
<td>24</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Selection</td>
<td>25</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Variation operators</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Evolutionary Techniques for Multimodal Optimization</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Objectives of this Chapter</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Multimodal Problems and the Necessity for Diversity</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Preservation</td>
<td></td>
</tr>
</tbody>
</table>
5 Genetic Chromodynamics for Classification

5.1 Objectives of this Chapter
5.2 Other Evolutionary Classifiers
5.3 Text Categorization
 5.3.1 Keywords Extraction
 5.3.2 Genetic Chromodynamics Approach to the Spam Filtering Problem
 5.3.3 Experimental Results
5.4 Crowding Genetic Chromodynamics Classifier
 5.4.1 Diabetes Disease Diagnosis
 5.4.2 Iris Plants Identification
 5.4.3 Observations
5.5 Summary
5.6 Future Work

6 Coevolution for Classification

6.1 Objectives of this Chapter
6.2 Overview
 6.2.1 Cooperative Coevolution
 6.2.2 Competitive Coevolution
6.3 Cooperative Coevolution Approach to Classification
 6.3.1 Training Stage. The Evolutionary Algorithm Behind
 6.3.2 Cooperative Coevolution Parameters
 6.3.3 Test Stage. Rules Application
6.4 Competitive Coevolution Approach to Classification
 6.4.1 Training Stage. The Evolutionary Algorithm Behind
 6.4.2 Competitive Coevolution Parameters
 6.4.3 Test Stage. Rules Application
6.5 Experiments. Application to Real-world Problems
 6.5.1 Experiment 1: Cooperative Classification Validation
6.5.2 Experiment 2: Competitive Classification Validation 125
6.5.3 Comparison to Standard Data Mining Approaches 128
6.6 Summary ... 129
6.7 Future Work ... 130

7 Topological Species Conservation Hybridized Technique 131
 7.1 Objectives of this Chapter 131
 7.2 Advantages/Disadvantages of the Parent Techniques 132
 7.3 Description of the Proposed Hybridized Technique 133
 7.3.1 Motivation 133
 7.3.2 The Mechanics 135
 7.4 Application to Function Optimization 147
 7.4.1 Direct Performance Comparison 148
 7.4.2 Model Dependence on Radius/Number of Gradation Parameters .. 153
 7.5 Summary ... 157
 7.6 Future Work ... 157

8 Conclusions and Future Work .. 159
 8.1 Achievements .. 159
 8.2 Remarks ... 160
 8.3 Further Enhancements 161

A Considered Test Functions Suite 163

B Real-world Problems Addressed in the Thesis 173
 B.1 Fisher’s Iris data set 174
 B.2 Pima-Indian Diabetes data set 174
 B.3 Breast Cancer data set 174
 B.4 Spam raw data set 175
 B.5 Hepatic Cancer Early Diagnosis 175

Bibliography ... 177