A Collaborative Classifier Construction
Framework

Mircea PREDA

Faculty of Mathematics and Computer Science,
Department of Computer Science,
University of Craiova, Romania
mirceapreda@central.ucv.ro

Abstract. ADAPTTREEQ algorithm, introduced in [6], is a decision
tree construction algorithm whose performances increase over time due
to the usage of a reinforcement learning method. Decision trees are
approximations of discrete functions created based on some sets of ex-
amples for that the functions values are known and the classification
results provided by a decision tree are inherently imprecise. The situ-
ations when several intelligent agents are interested by same classifica-
tion problem are pretty common and the collaboration between these
agents brings at least two advantages: an agent can compare the results
of its classification process with the results of the rest of the agents and
can adjust its classification process and even it can renounce to perform
classification if the task was already completed by other trusted agents.
The paper proposes a collaborative framework that includes several
agents that use ADAPTTREEQ decision tree construction algorithm
and cooperate to solve same classification problem. The framework em-
ploys a client server architecture, the server mediating the differences
between the client agents.

Keywords: decision tree, reinforcement learning, inductive learning,
classification, distributed systems

Math. Subject Classification 2000: 68T05, 68T30

1 Introduction

ADAPTTRFEEQ algorithm, introduced in [6], is a decision tree construc-
tion algorithm whose performances increase over time due to the usage of a
reinforcement learning method that evaluates the decisions taken during of
a tree construction process and favors the decisions that conducted to good
results in the past. Decision trees are approximations of discrete functions cre-
ated based on some sets of examples for that the functions values are known.
Consequently, the classification results provided by a decision tree are inher-
ently imprecise and this imprecision has two sources: first, the set of examples
used to construct the tree can contain noise or can be too small to contain all
relevant situations and, second, the tree itself can be pruned in order to ob-
tain generalization capabilities. The situations when several intelligent agents

A Collaborative Classifier Construction Framework 95

are interested by same classification problem are pretty common, for example
several e-commerce sites can be interested to classify their clients profiles in
order to provided customized content to them, the members of an organization
receive approximately similar e-mails and can be interested to classify them in
regular e-mails or spam, the nodes from a computer network experience similar
traffic and can be interested to classify it as regular or attack, etc. If the agents
interested by the same classification problem collaborate, this brings two ad-
vantages for an individual agent: it can compare the results of its classification
process with the results of the rest of the agents and can adjust its classifica-
tion process and even it can renounce to perform classification if the task was
already completed by other trusted agents. The paper proposes a collabora-
tive framework that includes several agents that use ADAPTT REFEQ decision
tree construction algorithm and cooperate to solve same classification problem.
The framework employs a client server architecture, the server mediating the
differences between the client agents. The rest of the paper is organized in two
main sections: the first one presents the theoretical grounds of two reinforce-
ment learning based decision tree building algorithms; the second part sketches
the generic collaborative classifier construction framework that uses the above
algorithms and explains the functionality of the framework’s components.

2 Adaptive learning of a classifier for a generic
classification problem

2.1 Framework

Let £ be the set of elements that should be classified. The elements of £ are
described by a set of attributes Attr. Each attribute at € Attr has attached a

function
at(.) : £ — Val(at)

where Val(at) is the set of the all possible values of the attribute at. An element
e € £ is uniquely identified by the set of pairs
{< at,at(e) > |at € Attr}.
The function at(.) can be extended to subsets of examples as follows:
at(.) : 2 — Val(at)

where
t(F) =a ax € Flat(e) =
() = arg_max |{e € Elat(e) = v}
is the dominant value of the attribute at over the set E.
Let C be the finite set of the categories of the elements from £. A classifier
for £ is a function
c:&—C.

96 M. PREDA

Usually, the function c¢ is not known. Instead, we have a subset of examples
Ex C & for that the values c(ex),Vex € Ex are available. Our purpose is to
build an approximation

c:E—C.

for ¢ based on the examples from Ez.

For each attribute at € Attr, an equivalence relation =, C Ex x Ex will
be defined as follows: (ex1,exs) €=, if and only if at(ex1) = at(exs). Let
X C Ex aset of examples and ex € X an example. By [ex]x 4+ Will be denoted
the equivalence class

[ex]x,at = {x € X|at(ex) = at(x)}.

The set of all equivalence classes in X given the equivalence relation =,; is
denoted as X/ =,; and called the quotient set of X by =,;. Sometimes X/ =+
will be denoted by

X/, = {1 Xut=vys s Xat=v,, |

where Val(at) = {v1,...,0m }.
Similarly, equivalence classes can be defined for the target function c. Let
us denote by [ex]x the equivalence class of ex

[ez]x = {z € X|c(ex) = c(x)}.
The set of the all equivalence classes in X given ¢ will be denoted as X/c.
X/e={Xe=cys oy Xe=c, }

where C = {c1,...,cp }

2.2 Reinforcement learning

Let us consider a problem where an agent interacts with an environment.
The problem is described by the following parameters:

— S The set of the all possible states of the environment. In the most cases
the agent has only partial information about the current state of the envi-
ronment. Usually, a subset of states F' C S is also known. The elements of
F are named final states.

— A The actions that are available to the agent. For a state s € S of the
environment we denote by A(s) € A the set of the actions that can be
performed in the state s.

— T:5xA— P(S) where P(S) represents the family of the probability dis-
tributions over S. The agent has not a complete control over environment.
When it performs an action a in a state s it does not completely know
which will be the next state of the environment. T'(s, a,s’) represents the
probability that s’ € S to be the next state when the action a is performed
in the state s.

A Collaborative Classifier Construction Framework 97

— 7: 9% A — R. The one step reward function. The learning agent is partially
supervised. It is informed by rewards about what action is good in what
state. r(s,a) represents the reward that is received by the agent after it
performs the action a in the state s.

A policy 7 is a function that maps states into probability distributions over
the set of actions. A trajectory is a sequence of states, actions and rewards
constructed based on a policy as follows. Let sy be the initial state of the
trajectory. An action ag is chosen in accordance with 7(sg). The one step
reward ro = r(so,ag) granted for the pair (sg,ag) is observed. The new state
of the environment s; is dependent on the environment dynamics described by
the function T'. If s; is a final state, the trajectory is completed, otherwise the
process continues iteratively.

The action value function or, alternately, the @ function, measures, for the
value Q7 (s, a), the expected total reward that will be obtained by executing
the action a in the state s; and following the policy = (.) to select the actions
for the next states. The function @ that corresponds to a policy #(.) is defined
by:

Q7 (s¢,a¢) = 1y + Q7 (8441, 7(5e41))- (1)

v € (0,1] is a parameter that quantify how important are the rewards received
during the later interactions between agent and environment. The advantage
provided by the @ function is that the agent can perform an one step search
of the optimal action without to be needed to know the one step reward func-
tion and the dynamics of the environment. If the agent knows the optimal @
function, denoted by @Q*, which corresponds to the optimal policy 7*, then it
can select the optimal action by using the search:

af = *(sy) = arg_max {Q"(se.ar)}. @)
at€A(st)

The optimal @ function can be computed by using the dynamic programming
if the one step reward function and the dynamics of the environment are com-
pletely known in advance. But even in this case the spaces of the states and
actions can be to big to accurately compute the value Q*(s, a) for each state
action pair (s,a). So, in most cases, a method to approximate the Q* function
is preferred. Reinforcement learning theory proposes several such methods like
SARSA and Q-learning [10].

2.3 Building decision trees using reinforcement learning

In order to apply the reinforcement learning to the generalized classifica-
tion problem we should identify the components of the reinforcement learning
framework in the classification settings.

— The set of states S is the family of the all partitions of the set of examples.
A state s € S is a set s = {s1,...,s,} such that s, Ns; = 0, Vi,j €

98 M. PREDA

P

{1,...,n},i # jand |J s; = Fz. A state s = {s1,...,$p} is named final if
1

and only if s;/c = {s;}, Vi = 1,n (all examples from s; are classified in the
same category). The family of the all final states will be denoted by F(S5).

— Let s = {s1,...,8n} € S be a state. The set of actions A(s) that can be
performed in the state s is the set A(s) = Attr x {1,...,n}. An action is a
pair (at,i) with the meaning that the attribute at will be used to further
classify the subset of examples s;.

— Let s = {s1,...,8,} € S a state and a = (at,i) € A(s) an action. The next
state s of the environment after performing action a in the state s will be
8" = {815,861, 80, sy Siy, 5 Sit 1y, Sny Where {s; ,..,8, }=s;/=,,.
This can be also stated as:

S = (s\ {s:}) Usi/—,.

— For the reward function we will set 7(s,a) = —1, Vs ¢ F(S) and Va € A(s)
and r(s, a) = 0 otherwise. This definition of the reward function is intended
to encourage the completion of the decision tree building process in a min-
imum number of steps (with a minimum number of internal nodes). If the
attributes have different test costs we can represent this feature naturally
by using different rewards for different attributes.

The number of the all possible partitions of the set of examples Ex is too big,
and consequently, the values of the function Q(s, a) that approximates Q*(s, a)
cannot be maintained by using a table. () will be represented as a parameterized
functional form with the parameter vector 8 = (01, ..., 0x) € R*. To make the
computations simpler, () will be a linear function of the parameter vector 6.
For every pair (s, a), there is a vector of features ¢(s,a) = (§s’“>7 o <b,(:’“))T €
R* with the same number of components as . The approximate action value
function is given by

k
Qs,a) =0-g(s,0) = 3 060"
i=1

and the resulting method is synthesized in the algorithms 1 and 2. The features
will be constructed as follows:

d:SxA—RF, d(s,a) = f(g(s,a)).

The function g : S x A — R!*! transforms a state action pair (s, a) into an array
of real number because the majority of the function approximation methods
are devised to work with numeric arguments. The values associated by the g
function must synthesize both the status of the learning process in the current
state s and the discrimination capabilities of the selected action a. The status
of the learning process is described by computing the entropy function over the
subsets of the partition s. As the learning process advances, the entropy of the

A Collaborative Classifier Construction Framework 99

Algorithm 1 ADAPTTREEOQ(Ex, Attr) - an adaptive algorithm for con-
structing decision trees. The algorithm uses linear gradient descendent SARSA
with tile coding features and e-greedy policy.

Require: Ex # 0, o € (0,1] a parameter named learning rate, v € (0, 1) a parameter
that establishes how important are the rewards received in the future.
1: Initialize s = {FEz}.
2: Create the root node of the tree attached to unique set Ex from partition.
3: a,¢(s,a),Q(s,a) — € — Greedy(s). {Choose an action a € A(s) in accordance
with the e-greedy policy based on Q.}
4: repeat

5: Let s ={s1,...,sn}, a = (at,i) € A(s) and ns, the node in the tree attached to
the set s; from the partition s.
6: for each Siy, € Si/=q: doO
7: Create a new node ”Sz‘uj attached to Siy, and add a new branch in the tree
from ns, to ns, ~labeled with the test at(.) = v;.
8: end for ’
9: Perform the action a, observe the next state s’ and the reward r

10 §—r—Q(s,a)

11: d,¢(s’,a"),Q(s',a') — ¢ — Greedy(s’). {Choose an action a’ € A(s’) in accor-
dance with the e-greedy policy based on Q.}

12: 8§ 86+Q(s',ad)

13: 0 «— 0+ add(s,a)

14: s—s,a+ad.

15: until s € F(S5)

subsets of s should become smaller because, finally, each subset will contain
examples from only one category. In order to accurately describe the effects
of an action a, the definition of g is also based on some of the most known
measures for assessing the classification qualities of an attribute [9].
9(s,a) = (90(5),91(s,a), ..., gi(s,a)) where
go:S—Randg;: SxA—-R,Vi,1 <i<I.

Let s € S be s = {s1,...,8,} and a € A(s) be a = (at,i). The function gg
describe the status of the learning process in the current state s (the progress
of the classification of the training set) and is defined as follows:

gO(S):Z ’L|

' | - Entropy(s;)
where the entropy function is defined by:

|s
|Ex

p

|Xc=c,‘| |Xc=c¢|
Entropy(X) = — Z x| log, x|
i=1

VX C Ex.

100 M. PREDA

Algorithm 2 ¢ — Greedy(s) selects an action a € A(s) for the state s using
the € — greedy strategy.
Require: The exploration probability € € [0, 1].
1: if With probability 1 — € then
2: for all a € A(s) do
¢(s,a) — the vector of features for the pair (s,a)

K (sa)
Q(s,a) — Z gi(bis’a
i1=1

end for
a «— arg max, Q(s, a)
else
a — a random action € A(s)
¢(s,a) «— the vector of features for the pair (s, a)

k

10: Q(s,a) — Y 0:ig{*
i=1

11: end if

12: return a, ¢(s,a), Q(s,a)

The functions g;, 1 < ¢ < [describe the classification effects of the actions.
During tests, the following functions g; were used:

a) Information gain function

91({815 -+ Siy -y Sn T, (at, 1)) = Entropy(s;)

- Z [5i| Entropy(s;,).

|si]
Siy esi/:at

b) Gini index
92({S1, ey Siy ey Sn 1, (at, 1)) = Gini(s;)

— Z 51, Gini(s;,)

Siy es’i/:at |SL|

Gini(s) =1 — i (%)2

¢) Discriminant power function

where

93({S15 s Siy ooy Sn |, (At 1)) =

> (b—l/d : |Sz'v|)

Siy esi/:at

|5l

The function g3 assigns to each pair (s,a) a number in the range (0, 1].

A Collaborative Classifier Construction Framework 101

Remark 1. It is difficult to choose between the various measure functions that
can be used to select the next attribute used in the tree construction process.
Several studies ([1], [2]) suggest that the most functions that evaluate the power
of discrimination of an attribute regarding to a set of examples have similar
performances. Fach criterion is superior in some cases and inferior in others.
The proposed adaptive tree induction method has the advantage that allows
us to use several splitting criteria. During the adaptive process each criterion
will gain or lose importance according with its performances.

Several function approximation methods including artificial neural networks
and linear methods, which are well suited for reinforcement learning, can be
used to define the function f. In our tests, f : Rt — R* was defined by using
the tile coding method ([10]) with & the number of used layers of tiles. Finally,
we should point that the usage of an approximation for @* has another advan-
tage: knowledge can be transferred between similar (s, a) pairs. Consequently,
the newly encountered (s, a) pairs can be evaluated based on the old ones.

A variant of the ADAPTT REEOQ algorithm is constituted by the algorithm
3, which is named ADAPTTRFEE1. The main difference between these two
algorithms is given by the states representation method. The states in the
ADAPTTREEQ algorithm are represented by the frontiers of the partial trees,
in ADAPTTREFE1 the main reinforcement learning problem is decomposed in
several smaller reinforcement learning problems, one for each descendant of the
node that is currently expanded and the states are represented by subsets of
the initial set of training examples. Both methods can be used interchangeably
in the collaborative classifier construction framework, which will be exposed in
the next section.

3 The generic classification system

3.1 Architecture

The global architecture of a generic classification system is depicted in the
figure 1. The system is designed to work in collaborative environments being
divided in a client part that will work on several workstations that perform
similar classification tasks and a server part that runs on server and shares the
knowledge between workstations.

The attributes used by the generic classification system are divided in two
categories: raw attributes whose values are directly available from the example
and processed attributes. For the last ones, their values are obtained by using
more complicate procedures.

The interaction between the client application interested to resolve the clas-
sification problem and the generic adaptive classification (GAC) system will
proceed as follows:

— The client application sends to the client side of the GAC system a set of
(attribute, value) pairs (AV pairs) that describe a thing or a situation.

102 M. PREDA

Algorithm 3 ADAPTTREFE1(Ex, Attr, D) - an algorithm that adaptively
builds a decision tree for a set of examples Ex and a set of attributes used for
classification Attr. The values c(ex) of the target function ¢ are known for each
ex € Ex. The maximum depth of the constructed tree cannot exceed the value
D. Other parameters used by the algorithm are: « the learning rate, v shows
how important are the future rewards, m a constant named the equivalent
sample size

Require: Ex # 0
1: Create a root node for the tree
2: if [c(ex) = c(ex’) Vexz,ex’ € Ex] or [Attr = 0] or [D = 0] then
3: Q(Ex,stop) = (1 — a)Q(Ewx, stop) + oo where r is the reward received by
performing the action stop in the state Ex.
4: return the single node tree root labeled with c(ex*) where

ex” = arg max |[ex]|
erx€Ex

5: else
Choose a € Attr using the e-greedy policy generated from) where the state is
constituted from the examples in Ez.

2

7: Observe the reward r

8 Q(Ez,a)=(1—-a)Q(Ex,a)+ ar

9: for each v; € Val(a) do

10: Add a new tree branch below root corresponding to the test a = v;.
11: Let Ex,; € Ex the subset of examples for that a(ex) = v; Vex € Ex,,
12: if Ex,, # 0 then

| By, |+m ot

13: Q(Ex,a)+ = a’y"ETwl a’egtavi)i{a} Q(Ezy,;,a)
14: Below this new branch add the subtree

ADAPTTREE1(Ex.,,, Attr — {a},D — 1)

15: else

16: Q(Ez,a)+ = a’ymﬂ where 7’ is the reward received by performing
the action stop in the state .

17: Below this new branch add a single tree node labeled with c(ex*) where

ex’ = arg max |[ex]|
erx€Ex

18: end if
19: end for
20: end if

A Collaborative Classifier Construction Framework 103

Workstation

Client Application

GAC - Server Side
GAC - Client side

Client Client Server Server
Classification |,| Inference Classification («» Inference

Engine Engine Engine Engine

Client Client, Server Server
Classifier Knowledge Classifier Knowledge

Database Base Database Base

Fig. 1. The global architecture of the Generic Adaptive Classification (GAC) system.
The system is divided in two parts: a client side and a server side. The server side
is able to gather experiences from several clients and consequently the server side
adaptive classifier will converge faster than its client side counterpart. On the other
side, the client side classification engine will be able to adapt better but slower to the
particular needs of a specific client application.

The client application is interested to receive a classification (category) for
the thing or situation.

— Beside the AV pairs received from the client application the client side
component of the GAC uses also its own derived AV pairs. These derived
AV pairs will be obtained by the Client Inference Engine using the available
Client Knowledge Base. For example, Client Inference Engine and Client
Knowledge Base can have logic programming foundations. In an e-mail
classification system used by an organization is important to establish if
the sender of a message is a person that is hierarchically superior. This
meaning can be captured by the following logical rule:

sender(L, X) A destination(L,Y) A boss(X,Y) — important(L)

The values of the attributes sender and destination are provided by the
client application. The Client Knowledge Base contains the definition of
the binary relation boss. Using the above logical rule it can be obtained the
value for the derived attribute important.

— The client side of the GAC sends the AV pairs, which do not raise pri-
vacy concerns (personal or sensitive information) to the server side of the
GAC to perform a partial classification. The server side of the GAC allows
to combine the experiences of several clients. The server side of the GAC

104 M. PREDA

receives far more examples to classify than a particular client and, conse-
quently, the adaptive classification engine from server will converge faster
than its client side counterparts. The server side will first try to derive new
AV pairs by using Server Inference Engine and Server Knowledge Base. Af-
ter that, Server Classification Engine will compute a partial classification
that will be sent back to the client side of the GAC.

— The Client Classification Engine will perform its own inner classification
using the base AV pairs received from the client application, the derived AV
pairs and the partial result received from server which will be considered
as a separate attribute.

— The client side of the GAC will return to the client application an unique
identifier of the example and the result of the classification process. The
client application will use the unique identifier to provide feedback infor-
mation about the quality of the classification result. The client side of GAC
will use the feedback to adaptively improve the performances of the Client
Classification Engine. The feedback will be also sent to the Server Side of
the GAC to update Server Classification Engine.

The description of the collaborative classifier construction framework should
also discuss the program configuration. Both the client side and the server side
must be configured before use. The configuration will include the attributes
that will be used during classification process (attribute name, attribute type
(optional) and the attribute values). The possible categories (classes) and the
contents of the Client and Server Knowledge Bases should be also considered.

Privacy was always a concern for the collaborative systems. A mutual au-
thentication, authorization and privacy protocol between the client classifier
and the server classifier should be devised. In this way, the server will not
accept false clients and the client false servers that can provide wrong classifi-
cation results or wrong feedback information.

3.2 Applications

E-mail classification system. The inputs of the e-mail classification system
will include among other things the e-mail source address, the classification
of the e-mail subject, the classification of the attachments, the importance
specified by sender and the classification of the e-mail content. The output will
consist in a category assigned to the e-mail. The category can be a simple binary
one like spam and not spam or a more elaborated an such a rank indicating the
desirability of the received e-mail. The e-mail classification system involves
collaboration with a text classification system used to categorize the subject
and the body of the e-mail and with a binary payload classification system used
to classify the attachments. These two classification subsystems provide base
input attributes for the main e-mail classification system.

Adaptive Web recommendation system. A Web recommendation system
will maintain a decision tree for each registered user of the Web site. This tree

A Collaborative Classifier Construction Framework 105

will receive as inputs the AV pairs that describe a product and will return a
discrete rank representing the willingness of the customer to buy the product.
The products with the highest ranks will be recommended to the customer.

4 Conclusion

The paper outlines a collaborative classifier construction framework built
around ADAPTTREFOQ, an adaptive decision tree building algorithm. The
framework was devised to be used by several intelligent agents that must per-
form similar classification tasks. The framework promotes collaboration be-
tween these agents and through cooperation the agents have several bene-
fits: they can adjust their adaptive classification mechanisms and they skip
a classification problem if the problem was already solved by other trusted
agents. The role and functionality of the all system components is presented
as well as the details of the interaction between the client applications and the
generic classifier system. It worths also to mention the ADAPTTRFEFE] deci-
sion tree building algorithm introduced by the paper, an algorithm derived from
ADAPTTREEOQ that decomposes the initial reinforcement learning problem
in several small reinforcement learning problems.

Acknowledgments. The research was supported by the Romanian National
University Research Council (AT grant No. 102/2007).

References

[1] S. L. Lim, S. L. Loh, S. L. Shih:- A comparison of prediction accuracy, com-
plexity and training time of thirty-three old and new classification algorithms,
Machine Learning, 40, 2000, 203-228

[2] S. L. Loh, S. L. Shih:- Families of splitting criteria for classification trees,
Statist. Comput., 9, 1999, 309-315.

[3] T. Loh, T. Shih:- Split selection methods for classification trees, Statistica
Sinica, 7, 1997, 815-840.

[4] T. M. Mitchell:- Machine Learning, McGraw Hill, 1997

[5] J.R. Quinlan:- Induction of decision trees, Machine Learning, 1(1), 1986, 81-106.

[6] M. Preda:- Adaptive Building of Decision Trees by Reinforcement Learning,
The 7th WSEAS International Conference on Applied Informatics and Communi-
cations (AIC’07), Athens, Greece, 2007, 34-39.

[7] J.R. Quinlan:- C4.5: Programs for Machine Learning, Morgan Kaufmann, San
Francisco, CA, 1993

[8] L. D. Pyeatt:- Reinforcement Learning with Decision Trees, Applied Informatics,
AT 2003, Innsbruck, Austria, Acta Press, 2003.

[9] L. Rokach, O. Maimon:- Top-Down Induction of Decision Trees Classifiers
- A Survey, IEEE Transactions on Systems, Man and Cybernetics, 35(4), 2005,
476-487.

[10] R. S. Sutton, A. G. Barto:- Reinforcement Learning: An Introduction, A
Bradford Book, The MIT Press, Cambridge, Massachusetts London, England, 1998

