A Formal Model of UDDI: UML Metamodel

Emilian PASCALAU, Adrian GIURCA, Gerd WAGNER

Department of Internet Technology
Institute of Informatics
Brandenburg Technical University at Cottbus, Germany
{pascalau, giurca, wagnerg}@tu-cottbus.de

Abstract. This paper presents the UML metamodel of UDDI v3.02
(release Oct 19, 2004). This release seems to be a final one since the
main promoters (i.e. IBM, Microsoft, HP) stopped their activities in
the UDDI technical committee. Since all major SOA vendors (BEA,
IBM, Microsoft, Oracle) offers UDDI support a metamodel helping to
understanding the standard and to easy deploy models to systems and
tools is necessary.

Keywords: Web Services, WSDL, UDDI

Math. Subject Classification 2000:68N19, 68U35, 68P05

1 Motivation

A new emerging software paradigm of nowadays is SOA. As stated in Marks
et. all [10] SOA is a conceptual business architecture, where business function-
ality or application logic is made available through services with exposed in-
terfaces, and are invoked by services. Examples of Web services technologies
are SOAP [9], Universal Description, Discovery and Integration (UDDI [15]),
WSDL [5], electronic business XML (ebXML [6]), Security Assertion Markup
Language (SAML [17]), WS-Security [16], and Business Process Execution Lan-
guage (BPEL [12]). Checking web services literature (for example Alonso et.
all [1] and Graham et. all [8]) we could not find an UDDI UML Metamodel.

The UDDI takes advantage of WorldWide Web Consortium (W3C!) and
Internet Engineering Task Force (IETF?) standards such as Extensible Markup
Language (XML [3]), and HTTP [7] and Domain Name System (DNS [11])
protocols. Additionally, cross platform programming features are addressed by
adopting early versions of the proposed Simple Object Access Protocol (SOAP)
known as XML Protocol messaging specifications found at the W3C Web site.
The UDDI protocol is the building block that will enable businesses to quickly,
easily and dynamically find and transact with one another using their preferred
applications.

On the WEB before January 2006 there existed some public UDDI reg-
istries. IBM, Microsoft, SAP, Systinet offered public registries. IBM discontin-
ued it’s public UDDI Registry. It is not available neither for inquiry neither for

! WorldWide Web Consortium, http://www.w3.org
2 Internet Engineering Task Force, http://www.ietf.org/

A Formal Model of UDDI: UML Metamodel 71

publish. Microsoft still has also a test registry and also a production registry,
but these are available only for inquiry. However, all these companies and some
others offers UDDI in their commercial SOA support.

Today SAP still has a public UDDI test registry that can be utilized for
testing purposes®

This paper puts into light the basic UDDI UML Metamodel. The UDDI
Metamodel presented here is based upon the UDDI v3.02 schema and stan-
dard. For the ease in understanding the UDDI XML vocabulary and standard,
a graphical representation would be of a great help. The proper graphical rep-
resentation of such problems is achieved by using UML. MDA techniques can
be useful to deploy UDDI Metamodel in order to build different servers and
tools.

2 UDDI

According with OASIS Executive Overview [14] the Universal Description,
Discovery, and Integration (UDDI) protocol is a key member of the group of
interrelated standards that comprise the Web services stack. It defines a stan-
dard for publishing and discovering the network-based software components of
a service-oriented architecture (SOA).

The main roles of UDDI are the Registry role and Service Discovery role.

As is in object programming where the concept of an object or component
registry is an essential element in the framework, a web service registry has the
same role. The Web service architecture it is about the interaction between
three primary roles: service provider, service registry, service requester.

The Service Discovery deal with tasks such as: (i) Discovering business part-
ner, (ii) Establish potential relationship between service requester and service
provider, (iii) Describes the way how the requester found out about services
provided by a service provider and (iv) Describes the way in which a requester
can obtain the WSDL service description from a service provider.

The IT market shows us a number of other registry technologies such as
MDS*, WS-RF®, CCLRC® but none of them has a large number of users by
comparison with UDDI/ebXML.

3 Basic UDDI UML metamodel

The UDDI information model is composed of the following entity types:

3 SAP UDDI Test Registry: http://udditest.sap.com/, SAP UDDI Inquiry API:
http://udditest.sap.com/uddi/api/inquiry/, SAP UDDI Publish API: https:
//udditest.sap.com/uddi/api/publish/

4 Globus Monitoring and Discovery System: http://www-unix.globus.org/
toolkit/docs/4.0/info/key-index.html

® Web Services Resource Framework: http://www.globus.org/wsrf/

6 CCLRC Scientific Metadata Model and Data Portal: http://epubs.cclrc.ac.uk/
bitstream/485/csmdm.version-2.pdf

72

E. PASCALAU, A. GIURCA, G. WAGNER

. BusinessEntity: describes a business or other organization (may also be an

affiliate or subdivision) that typically provides Web services.

. BusinessService: describes a collection of related Web services offered by

an organization described by a BusinessEntity

. BindingTemplate: describes the technical information necessary to use a

particular Web service. It can be implemented by multiple businessServices.

. tModel: describes a ”technical model” representing a reusable concept, such

as a Web service type, a protocol used by Web services, or a category
system. tModels are in fact meant as a general way to speciffy information
about something, via services, a business, or anything else.

. PublisherAssertion: describes, in the view of one BusinessEntity, the rela-

tionship that the BusinessEntity has with another BusinessEntity.
Carlson [4] created in 2001 an UDDI metamodel based on UDDI schemas

compliant with an XML Schema Candidate Recommendation(from October
24, 2000). This schema is deprecated and does not exist anymore on the UDDI
official page.

We underline again that the metamodel of the present paper is based upon

UDDI v3.02 standard and XML schema according with [15].

0

W b .
Mama - - BusinassEnfity
Hangld..1] - String | 1 tuisinasskay(0. 1] | businasetey s
| | 0.1
k& IdentifierBag
o discovergdIRLs businessServices 0.1 o

W
DiscoveryURL

MG :
o BusinessSarvice
usuTypa|l. 1] : Swing W perviceley[0., 1] : sy icekey grature _J0.1

Disscription busingssBay(0, 1] | businassiey Wy
.7 contacls fangid_1] - String . Em;nryﬂa;
W i ' 0
Camact | 0- | 04
W T : a1 Bddross o
ParsonMams | 1 Phsnes | Ernail gl 1] - String =
e . - — — 1 B
largl0. 1] Sinng |0.* WseTypa{D. 1] Sting | [usaTypefd 1] : Sting Jr:g;:p:lgluju?lmmmg

g
W
AddnessLing

ey Mamal. 1) | Sanmg
by alua(0,. 1) : Sinng

Fig. 1. UDDI-BusinessEntity

The Figure 1 presents the BusinessEntity UML metamodel.

A Formal Model of UDDI: UML Metamodel 73

A BusinessEntity contains descriptive information about a business or or-
ganization.

A BusinessEntity has two properties. The businessKey property uniquely
identifies a businessEntity. When a BusinessEntity is published within a UDDI
registry, the businessKey must be omitted if the publisher wants the registry
to generate a key. When a BusinessEntity is retrieved from a UDDI registry,
the businessKey must be present. BusinessEntity refers to a Name.

A Name specifies the name of the business. Additional names can be used
to specify different names for the business, in different languages with the help
of the lang property (using guidelines from RFC 3066, but the name has to
have no more than 26.).

Also BusinessEntity instance refers to a list of optional DiscoveryURL, De-
scription, Contact, BusinessService, CategoryBag, IdentifierBag, and Signature
instances.

DiscoveryURL is used to specify locations where an user can go for further
information about a BusinessEntity (a company). DiscoveryURL has optional
property useType that encodes the name of the convention that the referenced
document follows. There are reserved values like: ”businessEntity”, "home-
page”.

Description encodes the description of the business. One can specify a dif-
ferent descriptions in different languages by using the optional lang property.

A Contact contains information about the person or a job role within the
BusinessEntity so that someone who finds the information can make human
contact for any purpose. A Contact provides an optional use Type property that
help in defining a department i.e. "technical questions”, ”technical contact”,
”establish account”, ”sales contact”, etc. A Contact refers to a PersonName,
that encodes the name of the person or name of the job role supporting the
contact.

PersonName provides an optional property lang that encodes the language
signify the contextual language (if any) in which a given name is expressed in.
i.e. real person name is John in English and you can use the lang="RO” and
the name will be Ion. A Contact refers also to optional Phone, Email, and
Address. Phone and Email both provide optional property useType which is
used for descriptive purpose.

Address represents the contacts postal address, in a form suitable for ad-
dressing an envelope. Address provides some optional properties: lang, useType,
tModelKey, and refers to at least one AddressLine. lang property encodes the
language in which the address is expressed. useType encodes the type of the ad-
dress. i.e. "headquarters”, "sales office”, "billing department”, etc. tModelKey
is a tModel reference that specifies that keyName, keyValue pairs given by
subsequent addressLine elements, if AddressLine are present at all, are to be
interpreted by the address structure associated with the tModel that is refer-
enced. i.e. having a tModel that describes a postal address; the postal address
could have predefined Street with a value associated i.e. 20 etc. In this case the
AddressLine keyName will be Street, and keyValue will be 20.

74 E. PASCALAU, A. GIURCA, G. WAGNER

AddressLine encodes a part of the actual address. AddressLine provides two
optional properties, keyName and keyValue. Both properties must be present
in each address line if a tModelKey is specified in the address structure. When
no tModelKey is provided for the address structure, the keyName and key Value
properties have no defined meaning.

A businessEntity can refer to none or more Contacts.

A Signature is an identification signature. Signature is an XML digital sig-
nature, and is in accordance with XML-Signature specification.

The CategoryBag and IdentifierBag are going to be presented in the Section
3.1 because by their use UDDI catalogoues information that is registered.

There exists differences between the metamodel presented here and the
one introduced in [4]. For example in the present paper a BusinessEntity does
not have Name and Description as properties, but they are referenced. This is
because in the UDDI v3 schema these are block elements, and they also have
properties. Also there are optional properties and not mandatory as they were
presented in [4].

The BusinessService describes the service that is associated with the Busi-
nessEntity. A BusinessEntity can refer more than one BusinessService. The
metamodel of BusinessService is depicted in Figure 2.

BusinessSarvice

sericekayD. 1] : sardcakey
barsinesskay(D. 1] : businesskey

0.

i

Cad B

Jlang(0..1] : Strng 0.1 binding Templates

W

Binding Template

bindingkay[D.. 1] : bindngkay
marviceKey]0.1] | servicekay

| Description
llamg[0..1] : String

Fig. 2. UDDI-BusinessService

BusinessService optional refers to Name, Description, Signature, Category-
Bag, and BindingTemplate.

The Name, Description, Signature and CategoryBag have the same proper-
ties as stated when describing BusinessEntity.

A BusinessService can refer more than one BindingTemplate. A BindingTem-
plate defines how a service can be invoked and also what it does. There can
be multiple ways of invoking each BusinessService. Each invoke is encoded in
a BindingTemplate. Figure 3 depicts the BindingTemplate UML metamodel.

A Formal Model of UDDI: UML Metamodel

*

ﬁ_:

BindingTemplate

|chnding ey, 1] - bendingkey B
y Imervicekey(0. 1] : sandcakgy
i lv NS
AccessPaint
0. seTyae[l. 1] © String
W /
0 iptil 0.*
o [Samaar |
0. * lang[0 1] : Sirieg -e;:
! 0.1 tModelirstanceDetaids
= *
2| TMadelnstancalivie Peinis to & thiodel

= [dentifying senvice type

Piaeiitey - Wialitey | | Corating serdie ype:

Taie: | -
!
3 thoth or Al kkasi aneb \—‘

OverdicwURL

£
A&

asaTypel 1] - Siring

o4 £

Fs

&

linstanceDetalls

F —# InstanceParms

0.1

Fig. 3. UDDI-bindingTemplate

BindingTemplate has two optional properties: bindingKey and serviceKey.

75

bindingKey uniquely identifies a BindingTemplate. When a BindingTemplate
is published within a UDDI registry, the bindingKey must be omitted if the

publisher wants the registry to generate a key. When a bindingTemplate is

retrieved from a UDDI registry, the bindingKey must be present. serviceKey

uniquely identifies the BusinessService that contains the BindingTemplate.
BindingTemplate refers to a list that has already been discussed: Descrip-

tion, Signature, or will be discussed later: CategoryBag.

AccessPoint is used to convey the network address suitable for invoking the
Web service being described. This is typically a URL but may be an electronic
mail address, or even a telephone number. AccessPoint has an useType optional
property with the following possible values:

1. endPoint: The actual service endpoint, i.e. the network address at which
the Web service can be invoked

2. BindingTemplate: AccessPoint contains a bindingKey that points to a dif-
ferent BindingTemplate entry

3. hostingRedirector: AccessPoint can only be determined by querying another

UDDI registry.

76 E. PASCALAU, A. GIURCA, G. WAGNER

4. wsdlDeployment: The remotely hosted WSDL document that already con-
tains the necessary binding information, including the actual service end-
point.

A BindingTemplate may refer a TModellnstancelnfo. The tModelKey re-
quired property of TModellnstancelnfo references a UDDI tModel that encodes
a specification with which the Web service represented by the containing bind-
ingTemplate complies.

An instance of InstanceDetails may consist of Description InstanceParms
and QuerviewDoc. InstanceParms is used to encodes settings or parameters
related to the proper use of a TModellnstancelnfo, the suggested format by
the UDDI standard is a namespace-qualified XML document. At least one
OverviewDoc or InstanceParms must be provided within the InstanceDetails.

The OverviewDoc used to house URI references (i.e. OverviewURL) to re-
mote descriptive information or instructions related to the use of a partic-
ular tModel. OverviewDoc contains a Description of the document and the
OverviewURL of the document.

OverviewURL holds an URL referring to an overview document that covers
the way a particular tModel is used as a component of an overall Web service
description. The content from that URL is stored outside of the registry, typ-
ically at the publisher site. It provides an optional property useType encodes
the type of the document, found at the URL. i.e. ”text”.

A tModel can be viewed as a service vocabulary. The unique key of a tModel
i.e. tModelKey accommodates namespaces. A tModel helps the user to find in-
formation about the compliance with specifications, concepts. To illustrate let’s
take the following example: 49-355-690000, 49-355-690001, 1-56743-878-x.
There is no way to know what these numbers are. A context or a namespace is
needed to establish that 49-355-690000 is a telephone number, 49-355-690001
is FAX number and 1-56743-878-x is an ISBN number. So there will be three
tModels, one describing each of those numbers.

Figure 4 describes the tModel information model. The content model of a
tModel was already discussed. Recall that CategoryBag and IdentifierBag will
be discussed in the next section of the paper.

3.1 Categorization and identification

UDDI supports flexible capabilities for categorization and identification. It
offers built-ins and user defined value sets. When information is classified it is
important to agree on that. The classifications that are agreed upon are called
taxonomies.

As stated also in [2] built-in taxonomies includes NAICS” industry tax-
onomy; UNSPSC?® project and service taxonomy; and ISO-3166-2 geographic

7 North American Industry Classification System
8 United Nations Standard Products and Services Code

S w N e

A Formal Model of UDDI: UML Metamodel 77

. ThMedel — >E Signature

thdodeirey|0..1] : iModalkey e
deleted(C..1] - Boolean

R R

4

0. % identiversag

: 0."
Description o.* . Hama
4 “Nlang[D..1] : String

lang[0..1] : String

o o
-
o= P /
b OverviewURL
{bath or at least one) s Type]C. 1] String

Fig. 4. UDDI-tModel

taxonomy. Use of the built-in taxonomies is ”internally” checked by the UDDI
registry - therefore attempts to save invalid code are rejected.

There is now specific way to identify a BusinessEntity as belonging to some
specific business branch. UDDI provides two ways of identifying business by
means of identifierBag and categoryBag.

Figure 5 depicts the UML metamodel of IdentifierBag. IdentifierBag refers

KeyedReferance

IdentifierBag :}Ihﬂndeiﬁe:.r_ij : I".:‘.ﬂ[iEiKE'g,'
keyvalua[1] : String

: a.r oy Mame(0..1] . String

Fig. 5. UDDl-identifierBag

to many KeyedReference.

Any KeyedReference instance encodes an identifier of a specific identifier
system. KeyedReference has two required propertiess: tModelKey and key Value
and an optional one keyName. keyName is used to provide a descriptive name
for the business identification and key Value contains the actual identifier within
the system referred by tModelKey value. KeyedReference might be used to build

”search terms” in applications using the registry.
Below is an example of an identifierBag. Your Company is doing business
in Germany, and for this it has a tax ID number.

<identifierBag>
<keyedReference
tModelKey="DE-tax-code"
keyName="taxnumber"

~ o oA WwN e

78 E. PASCALAU, A. GIURCA, G. WAGNER

keyValue="000000" />

</identifierBag>

IdentifierBag instances allows BusinessEntity structures to be identified
according to different identifier systems described in the registry via tModelKey
values.

CategoryBag classifies BusinessEntity instances according to already pub-
lished categorization systems. For example, a BusinessEntity might contain
UNSPSC product and service categorizations that describe its product and
service offering, and ISO 3166 geographical regions that describe the geograph-
ical area where these products and services are offered.

Figure 6 depicts the UML metamodel of CategoryBag.

iain or B4 least cnal

a =
-~ "
- .

-~

"
el ~ 0.
= CategoryBag ~
il

s [KeyedReterance
Iiaceliay[1] tiadalkKay
KeyedReferancaGroup ~ JhEyvalual1] : Siring
IMﬂ.‘ICHr‘:y 1r.1;-|‘||:"H|":,- . « WeyMamall. 1) | Sifng

Fig. 6. UDDI-categoryBag

CategoryBag may consist of KeyedReference and a KeyedReferenceGroup.
At least one KeyedReference or one KeyedReferenceGroup must be provided
within the CategoryBag.

KeyedReference Group refers a KeyedReference list that logically belong to-
gether, and has a required tModelKey property.

For a better understanding see the example below that says that Vodafone
offers for example two types of services: Mobile Phone Network communication
and the numbers are identified by 3, and Fixed Phone Network communication
and the numbers are identified by 4. So both Mobile and Phone service types
belong logically to the category of servicetypes. Another example would be that
latitude and longitude belong logically to coordinates category.

The tModelKey of a KeyedReferenceGroup would be the tModelKey of the
tModel that encodes the group to which belong all the referenced KeyedRefer-
ence.
<categoryBag>

<keyedReferenceGroup tModelKey="uddi:vodafone.com:servicetypes">
<keyedReference tModelKey="uddi:vodafone.com:servicetypes:mobile"
keyName="Mobile"
keyValue="3" />

<keyedReference tModelKey="uddi:vodafone.com:servicetypes:phone"
keyName="Phone"

10

© N oA W N e

13

A Formal Model of UDDI: UML Metamodel 79

keyValue="4" />
</keyedReferenceGroup>

</categoryBag>

4

UDDI programmatically

This section presents a comparison (see Table 1) of three open source tools

implementing UDDI specification. The comparison criteria are:

1.
2.
3.

Al

© XN

10.

License. The licence under the product is published.

UDDI version support.

Development Level. The stage of the product according with the official
home page.

Implementation Platform i.e. java, C# NET ...

Minimal Deployment Resources i.e. the minimal set of software packages
necessary for the product deployment.

Actual stage i.e. If the application is still under development

Feature set Features that are implemented

High level API 1f is provided user friendly interface for publish and inquiry.
Registration of WSDL descriptions If is possible to register WSDL descrip-
tions.

Authentication support i.e. Signature or Token Authentication.

We propose as production solution the JUDDI implementation. It is the

most widely used and it also very easy to install. Our proposal includes JBoss
AS? and of course JUDDI. JUDDI need also data base support. You can use the
JBoss HSQLDB support, by using the creation scripts that come with JUDDI
distribution. But you can also use other data base support. The distribution
comes with creation SQL scripts for a list of data base systems.

Be aware that you will also need a data source file deployed into JBoss.

This is not specified into JUDDI specification. An example of a data source file
is bellow:

<datasources>
<local-tx-datasource>

<jndi-name>juddiDB</jndi-name>

<connection-url>jdbc:hsqldb:${jboss.server.data.dir}${/Ihypersonic${/}
localDB</connection-url>

<driver-class>org.hsqldb.jdbcDriver</driver-class>

<user-name>sa</user-name>

<password></password>

<check-valid-connection-sql>select count(*) from PUBLISHER</check-valid-connection-sql>

<max-pool-size>30</max-pool-size>

<min-pool-size>5</min-pool-size>

</local-tx-datasource>
</datasources>

For more information about installation you can browse JBoss ESB!? web

page and Apache JUDDI page. Grimoires has very good documentation pages

9 http://labs. jboss.com/jbossas/downloads
10 JBoss ESB - JBoss SOA infrastructure: http://labs. jboss. com/jbossesb/

80 E. PASCALAU, A. GIURCA, G. WAGNER

Table 1. UDDI Registries Open Source Implementations

[JUDDI [Grimoires [OpenUDDI Server
General
License Apache License 2.0 Modified BSD licence Apache License 2.0
Home site http://ws.apache.org/ |http://grimoires.org http://softwareborsen.
juddi/index.html dk/projekter/

softwarecenter/
serviceorienteret-
infrastruktur/
openuddi-server

UDDI version support|v2 v2 v3

(UDDI vX SOAP API)

Development Level Production Production Beta

Implementation Plat-|Java (as a Web Service) [Java (as a Web Service) [Java (as a Web Service)

form based on Novell Nsure
UDDI Server

Minimal Deployment|Tomcat (includes SOAP|Tomcat+Axis+SQL Tomcat (includes Axis

Resources stack) + SQL database |database SOAP stack) + SQL
database

Actual stage Inactive Inactive Active

Feature set UDDI v2 feature set UDDI v2 feature set +|UDDI v3 not fully imple-

WSDL 1.1 +Metadata [mented
High level API UDDI4J-like API Yes, WSDL API, Meta-|UDDI4J-like API
data API
Semantic related features

Registration of WSDL
descriptions

No Yes(WSDL 1.1) No

Security Features

authentication tokens
via username/password

Authentication support [authentication tokens|Signature based authen-

via username/password |tication

that you can use, but you will also have to install and configure Apache Axis,
since Grimoires does not have a SOAP stack as JUDDI. OpenUDDI Server is
a UDDI v3 implementation but is beta version and also suffers from lack of
documentation, so our proposal for an UDDI with no problem start is JUDDI.

5 Conclusions

For those who want to offer Web Services, it is good to have UDDI Support.
Using UDDI you offer a way to find a Web Services without having to explic-
itly publish each Web Service that is offered. Also Web Services are about to
change. Each change will broke the business process. Having UDDI these kind
of problems are resolved because if a broke occurred in the process the appli-
cation can always go back to the registry and recover. Also because UDDI was
developed especially for the Web Services it is most suited to be used.

References

[1] G. Alonso, F. Casati, H. Kuno, V. Machiraju:- Web Services Concepts,
Architectures and Applications, Springer, 2004, ISBN: 3-540-44008-9

[2] T. Bellwood, P. Brittenham, A. Hately, S. Field:- Publication and Dis-
covery of Web Services, TR IBM Library, 2003, ftp://ftp.software.ibm.com/
software/websphere/webservices/publicationdiscoverywebservices.pdf

A Formal Model of UDDI: UML Metamodel 81

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau,
J. Cowan:- Extensible Markup Language (XML) 1.1 (Second Edition), W3C
Recommendation 16 August 2006, http://www.w3.org/TR/xm111/

[4] D. Carlson:- Modeling the UDDI Schema with UML. http://xml.coverpages.
org/carlson-ModelingUDDI.pdf, 2001

[5] R. Chinnici, J.-J. Moreau, A. Ryman, S. Weerawarana (Eds.):- Web
Services Description Language (WSDL), Version 2.0, Part 1: Core Language,
W3C Recommendation, 26 June 2007, http://www.w3.org/TR/wsd120/

[6] F. Najmi, C. Mattocks:- ebXML Registry overview, OASIS ebXML Registry
3.0 Webinar 2005 Slides. http://ebxmlrr.sourceforge.net/presentations/
ebXML}%20Registry’20webinarb.pdf

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee:- Hypertext Transfer Protocol - HTTP/1.1, 1999, http://wuw.
ietf.org/rfc/rfc2616.txt

[8] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Naka-
mura, R. Neyama:- Building Web Services with Java: Making Sense of XML,
SOAP, WSDL, and UDDI. Sams Publishing, 2001, ISBN:0-672-32181-5

[9] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen,
A. Karmarkar, Y. Lafon:- SOAP Version 1.2, Part 1: Messaging Framework
(Second Edition), W3C Recommendation, 27 April 2007, http://wuw.w3.org/
TR/soapl2-partl/

[10] E. A. Marks, M. Bell:- Service-Oriented Architecture: A Planning and Im-
plementation Guide for Business and Technology, John Wiley and Sons, 2006,
ISBN: 0470036141

[11] P. Mockapetris:- Domain Names - Implementation and Specification, 1987,
http://www.ietf.org/rfc/rfc1035.txt

[12] ***.. OASIS, Web Services Business Process Execution Language Version 2.0,
OASIS Standard 11 April 2007, http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf

[13] ***.- OASIS, UDDI Technical White Paper, 2000, http://www.uddi.org/pubs/
Iru_UDDI_Technical_White_Paper.pdf

[14] ***.- OASIS, UDDI Executive Overview: Enabling Service-Oriented Ar-
chitecture. UDDIl.org white papers, 2004, http://uddi.xml.org/files/
uddi-exec-wp.pdf

[15] ***.. OASIS, UDDI Version 3.0.2, 2004 http://uddi.org/pubs/uddi-v3.0.
2-20041019.htm

[16] ***.- OASIS, Web Services Security, 2006, http://docs.oasis-open.org/wss/
vi.1/

[17] N. Ragouzis, J. Hughes, R. Philpott, E. Maler, P. Madsen, T. Scavo:-
Security Assertion Markup Language (SAML) V2.0, Technical Overview, OA-
SIS Draft, February 2007, http://www.oasis-open.org/committees/download.
php/22553/sstc-saml-tech-overview-2%200-draft-13.pdf

